test_layers.py 168.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36
import paddle.nn.functional as F
37 38 39 40 41 42 43 44 45 46 47


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
60
            paddle.seed(self.seed)
L
Leo Chen 已提交
61
            paddle.framework.random._manual_program_seed(self.seed)
62 63
            yield

64 65 66
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
67
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
68
        exe.run(fluid.default_startup_program())
69 70 71 72 73 74
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79 80
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
81
            paddle.seed(self.seed)
L
Leo Chen 已提交
82
            paddle.framework.random._manual_program_seed(self.seed)
83 84 85 86
            yield


class TestLayer(LayerTest):
87 88
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
89
            def __init__(self, input_size, linear1_size=4):
90
                super().__init__()
91 92 93
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
94 95 96 97 98 99
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
100 101 102
                return ret

        with self.dynamic_graph():
103 104 105 106 107
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
108
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
109
                ret = custom(x, do_linear2=True)
110
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
111 112
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
113 114
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
115
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
116
            ret = custom(x, do_linear2=True)
117
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
118

119 120 121
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
122 123 124 125 126 127
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
128 129
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
130 131 132
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
133
            static_ret, static_ret2 = self.get_static_graph_result(
134 135
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
136
        with self.dynamic_graph():
137 138 139 140
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
141 142 143
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
144 145 146
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

147 148 149
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
150 151 152
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
153 154 155
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

156 157
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
158

159 160 161
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
162

S
songyouwei 已提交
163 164 165
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
166 167 168 169 170 171
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
172
            linear = nn.Linear(
173 174
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
175
            ret = linear(t)
176 177 178
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
179
        with self.dynamic_graph():
180 181 182 183 184
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
185 186
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
187 188 189
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
190 191
            t = base.to_variable(inp)
            linear = nn.Linear(
192 193
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
194 195 196
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

197 198
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
199

200 201 202 203 204 205 206 207
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
208 209
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
210 211 212 213 214 215 216 217
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
218 219 220
                linear = nn.Linear(
                    32,
                    4,
221 222
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
223 224 225 226 227 228 229
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
230 231 232 233 234 235
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
236 237
            flatten = nn.Flatten()
            ret = flatten(t)
238 239 240
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
241
        with self.dynamic_graph():
242 243 244 245 246 247
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

248 249 250 251 252
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

253 254
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
255 256 257 258 259 260 261 262 263

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
264 265
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
266 267 268 269 270 271 272 273
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
274 275 276
                linear = nn.Linear(
                    32,
                    4,
277 278
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
279 280 281 282
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

283 284 285
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
286 287 288 289 290 291
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
292 293 294
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
295 296 297 298 299
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
300
        with self.static_graph():
301 302 303 304 305 306
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
307
            lm = nn.LayerNorm(
308
                normalized_shape=[32, 32],
309
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
310 311
                act='sigmoid',
            )
312
            ret = lm(t)
313 314 315
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
316
        with self.dynamic_graph():
317 318 319 320
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
321 322
                    act='sigmoid',
                )
323 324 325
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

326
            lm = nn.LayerNorm(
327
                normalized_shape=[32, 32],
328
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
329 330
                act='sigmoid',
            )
331
            dy_ret = lm(base.to_variable(inp))
332
            dy_ret_value = dy_ret.numpy()
333

334
        with self.dynamic_graph():
335 336 337 338 339 340 341
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
342 343
                    act='sigmoid',
                )
344 345 346 347 348
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

349
            lm = nn.LayerNorm(
350
                normalized_shape=[32, 32],
351 352 353 354
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
355 356
                act='sigmoid',
            )
357 358 359 360
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
361

362 363 364
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
365

366
        with self.dynamic_graph():
367 368 369 370
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
371 372
                    act='sigmoid',
                )
373 374 375
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

376 377 378
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
379 380
                act='sigmoid',
            )
381 382 383
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
384 385 386 387
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
388
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
389 390
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
391
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
392 393
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
394 395

            with self.dynamic_graph():
396 397 398 399 400 401
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
402 403 404 405
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
406 407
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
408

409 410 411 412 413
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
414 415
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
416 417

        with self.dynamic_graph():
418 419 420 421 422
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

423 424
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
425
            dy_ret_value = dy_ret.numpy()
426

427 428
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
429

430 431 432 433 434
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
435 436 437 438 439 440 441
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
442 443

        with self.dynamic_graph():
444 445 446
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
447 448 449
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
450 451
                dy_eager_ret_value = dy_eager_ret.numpy()

452 453
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
454
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
455
            dy_ret_value = dy_ret.numpy()
456

457 458
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
459

M
minqiyang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
473 474
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
475
            static_ret = self.get_static_graph_result(
476 477 478
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
479 480 481 482 483

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
484 485
                input=x, hidden=hidden, size=D * 3
            )
486
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
487 488 489
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
490 491 492
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
493 494

        with self.dynamic_graph():
495 496
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
497 498 499
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
500 501 502 503
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

504
            gru = nn.GRUUnit(size=D * 3)
505 506 507
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
508 509 510
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
511 512

        for i in range(len(static_ret)):
513 514 515 516 517 518 519 520 521
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
522

523
        with self.dynamic_graph():
524 525 526 527
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
528 529 530
                        custom_weight
                    )
                )
531 532
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
533 534 535 536 537 538
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
539
                self.assertFalse(
540 541
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
542 543 544 545
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
546 547 548 549 550 551
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
552
                for o1, o2 in zip(dy_ret1, dy_ret2):
553
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
554 555 556

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
557 558 559 560 561 562
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
563

564
            custom_weight = np.random.randn(D, D * 3).astype("float32")
565 566 567 568 569
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
570 571
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
572 573 574 575 576 577
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
578
            self.assertFalse(
579 580
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
581 582 583 584
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
585 586 587 588 589 590
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
591
            for o1, o2 in zip(dy_ret1, dy_ret2):
592
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
593 594 595

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
596 597 598
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
599
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
600

X
Xin Pan 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
618
            ret = paddle.pow(ret, t3)
X
Xin Pan 已提交
619 620 621 622
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

623 624 625 626
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
627 628

        with self.dynamic_graph():
629 630
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
631
                ret = paddle.pow(ret, to_variable(n3))
632 633 634 635 636
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

637
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
638
            ret = paddle.pow(ret, to_variable(n3))
639 640 641
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
642
            dy_ret_value = dy_ret.numpy()
643

644 645
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
646 647 648 649 650 651

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
652
            with _test_eager_guard():
653
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
654
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
655 656 657
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

658
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
659
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
660 661
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
662

663 664 665 666
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
667

668 669 670 671 672 673 674
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
675 676 677 678 679 680 681
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
682
            out = layers.sequence_conv(seq, 2, act='sigmoid')
683 684 685 686 687 688 689 690 691
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
692 693

        with self.static_graph():
694 695 696 697 698 699 700
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
701
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
702
            out = seq_conv(seq)
703 704 705 706 707 708 709 710 711 712 713 714
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
715 716 717 718 719

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
720
            out = paddle.static.nn.conv2d_transpose(
721 722
                input=img,
                num_filters=10,
723
                filter_size=27,
724
                act='sigmoid',
725 726 727 728 729
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
730 731 732
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
733
                num_channels=3,
734
                num_filters=10,
735
                filter_size=27,
736
                act='sigmoid',
737 738
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
739
            out = conv2d_transpose(img)
740 741 742
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
743
        with self.dynamic_graph():
744 745 746 747 748 749
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
750 751
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
752 753 754
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

755
            conv2d_transpose = nn.Conv2DTranspose(
756
                num_channels=3,
757
                num_filters=10,
758
                filter_size=27,
759
                act='sigmoid',
760 761
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
762
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
763
            dy_rlt_value = dy_rlt.numpy()
764 765 766
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
767

768
        with self.dynamic_graph():
769 770 771 772 773
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
774 775 776 777 778 779 780 781 782 783 784 785
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
786 787 788
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
789 790
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
791 792 793 794

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
795 796
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
797
                conv2d2.weight.set_value(conv2d1_weight_np)
798 799 800
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
801 802 803
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
804
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
805 806 807

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
808 809 810 811 812 813
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
814

815 816
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
817 818 819 820 821 822 823 824 825 826 827 828 829 830
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
831 832 833 834 835 836 837
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
838 839
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
840
            conv2d2.weight.set_value(conv2d1_weight_np)
841 842 843
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
844 845 846
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
847
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
848 849 850

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
851 852 853 854 855 856
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
857

858 859 860 861 862
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
863 864 865
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
866 867 868 869 870 871 872
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
873 874 875 876 877 878
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
879 880 881 882
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

883 884 885 886 887
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
888 889 890 891 892 893
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
894 895 896 897 898
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
899 900
                act='sigmoid',
            )
901

902 903 904
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
905

906
        with self.static_graph():
907 908 909 910 911 912
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
913
            btp = nn.BilinearTensorProduct(
914 915
                3,
                3,
916 917
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
918 919
                act='sigmoid',
            )
920
            out = btp(data_x, data_y)
921 922 923
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
924
        with self.dynamic_graph():
925 926 927 928 929 930
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
931 932 933 934 935
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
936 937
                dy_eager_rlt_value = dy_eager_rlt.numpy()

938
            btp = nn.BilinearTensorProduct(
939 940
                3,
                3,
941 942
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
943 944
                act='sigmoid',
            )
945
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
946
            dy_rlt_value = dy_rlt.numpy()
947

948
        with self.dynamic_graph():
949 950
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
951 952 953
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
954 955
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

956
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
957 958 959
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
960
            dy_rlt2_value = dy_rlt2.numpy()
961

962
        with self.static_graph():
963 964 965 966 967 968 969 970 971 972 973 974 975
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
976

977 978 979 980 981
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
982

983
        with self.dynamic_graph():
984 985 986 987
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
988 989 990
                        custom_weight
                    )
                )
991
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
992 993 994 995 996 997 998 999 1000
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1001
                self.assertFalse(
1002 1003
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1004 1005
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1006 1007 1008 1009 1010 1011
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1012
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1013 1014 1015

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1016 1017 1018 1019 1020 1021
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1022

1023
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1024 1025 1026 1027 1028
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1029
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1030 1031 1032 1033 1034 1035 1036 1037 1038
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1039 1040 1041
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1042 1043 1044 1045 1046 1047
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1048
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1049 1050 1051

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1052 1053 1054
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1055
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1056

1057
    def prelu_test(self, mode):
1058 1059
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1072 1073

        with self.static_graph():
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1086
            out = prelu(data_t)
1087 1088 1089
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1090 1091

        with self.dynamic_graph():
1092 1093 1094 1095 1096
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1097 1098
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1099 1100 1101
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1102 1103 1104 1105 1106 1107
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1108
            dy_rlt = prelu(base.to_variable(inp_np))
1109
            dy_rlt_value = dy_rlt.numpy()
1110

1111 1112 1113
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1114

1115
        with self.dynamic_graph():
1116 1117 1118 1119 1120 1121 1122
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1123 1124
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1125 1126 1127 1128
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1129 1130
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1131 1132 1133
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1134 1135
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1136
                self.assertFalse(
1137 1138
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1139 1140 1141
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1142
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1143 1144

                prelu2.weight = prelu1.weight
1145 1146 1147
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1148

1149 1150
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1163 1164 1165
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1166 1167
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1168 1169 1170 1171
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1172
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1173 1174

            prelu2.weight = prelu1.weight
1175 1176 1177
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1178

1179 1180 1181 1182 1183
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1184 1185 1186 1187 1188
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1189 1190 1191 1192 1193 1194 1195 1196 1197
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1198 1199
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1200 1201 1202
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1203
            emb_rlt = emb2(data_t)
1204 1205 1206
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1207
        with self.dynamic_graph():
1208
            with _test_eager_guard():
1209 1210 1211 1212 1213
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1214 1215 1216
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1217 1218 1219
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1220 1221
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1222 1223

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1224
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1225
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1226

1227
        with self.dynamic_graph():
1228 1229 1230 1231
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1232 1233 1234
                        custom_weight
                    )
                )
1235
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1236 1237 1238 1239 1240
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1241 1242 1243
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1244 1245 1246 1247 1248
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1249 1250 1251
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1252
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1253 1254

                emb2.weight = emb1.weight
1255 1256 1257
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1258

1259
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1260 1261 1262 1263 1264
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1265
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1266 1267 1268
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1269 1270 1271
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1272
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1273 1274 1275
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1276
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1277 1278

            emb2.weight = emb1.weight
1279 1280 1281
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1282

1283 1284 1285 1286
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1287
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1288 1289 1290 1291 1292 1293
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1294 1295 1296 1297 1298 1299 1300
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1301 1302 1303 1304 1305
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1306 1307 1308 1309 1310 1311
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1312 1313 1314
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1315
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
            nce_loss = layers.nce(
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1328 1329 1330
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1331 1332 1333
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1334

1335 1336 1337 1338
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1370

1371 1372
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1373 1374 1375 1376
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1377 1378 1379
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1380

L
Leo Chen 已提交
1381
        with self.dynamic_graph():
W
Weilong Wu 已提交
1382 1383 1384 1385
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1386 1387 1388 1389 1390 1391 1392 1393
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1417 1418 1419 1420 1421

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1422 1423 1424
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1425 1426 1427 1428 1429 1430
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1431 1432 1433 1434 1435 1436 1437 1438 1439

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1454

1455 1456
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1457
            dy_rlt_value = dy_rlt.numpy()
1458

1459 1460 1461
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1462

L
Leo Chen 已提交
1463
        with self.dynamic_graph():
W
Weilong Wu 已提交
1464
            with _test_eager_guard():
1465 1466 1467
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1468 1469
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1470 1471 1472
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1473 1474 1475 1476 1477 1478
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1479 1480 1481 1482 1483 1484 1485
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1519 1520 1521 1522 1523

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1524 1525
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1526 1527 1528 1529
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1530 1531 1532
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1533 1534 1535

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1536 1537 1538 1539 1540 1541
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1542

1543
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1544 1545 1546 1547 1548
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1549 1550 1551 1552
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1553 1554
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1555 1556 1557 1558 1559
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1593

1594 1595 1596
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1597
            self.assertFalse(
1598 1599
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1600 1601
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1602 1603
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1604
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1605 1606 1607

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1608 1609 1610
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1611
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1612

S
songyouwei 已提交
1613 1614
    def test_one_hot(self):
        with self.dynamic_graph():
1615
            with _test_eager_guard():
1616 1617 1618
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1619 1620
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1621 1622 1623 1624 1625
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1626

S
songyouwei 已提交
1627 1628 1629
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1630 1631 1632 1633 1634
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1635 1636 1637

    def test_split(self):
        with self.dynamic_graph():
1638 1639 1640
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1641 1642 1643 1644 1645
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1646 1647
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1648

S
songyouwei 已提交
1649 1650
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1651 1652 1653 1654 1655
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1656 1657
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1658 1659 1660

    def test_topk(self):
        with self.dynamic_graph():
1661 1662 1663 1664
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1665 1666 1667 1668 1669 1670 1671 1672
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1673

S
songyouwei 已提交
1674 1675 1676
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1677 1678 1679 1680 1681 1682 1683 1684
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1685

L
lujun 已提交
1686 1687
    def test_conv3d(self):
        with self.static_graph():
1688 1689 1690
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1691
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1692
            static_ret = self.get_static_graph_result(
1693
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1694 1695
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1696 1697

        with self.static_graph():
1698 1699 1700
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1701
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1702 1703
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1704
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1705 1706
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1707 1708

        with self.dynamic_graph():
1709 1710 1711 1712 1713 1714
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1715
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1716
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1717
            dy_ret = conv3d(base.to_variable(images))
1718
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1719

1720 1721 1722
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1723

1724
        with self.dynamic_graph():
1725 1726 1727 1728 1729
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1742 1743 1744
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1745 1746
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1747 1748 1749 1750

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1751 1752
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1753
                conv3d2.weight.set_value(conv3d1_weight_np)
1754 1755 1756
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1757 1758 1759
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1760
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1761 1762 1763

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1764 1765 1766 1767 1768 1769
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1770

1771 1772
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1773 1774 1775 1776 1777
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1778
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1779 1780 1781 1782 1783 1784
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1785 1786 1787 1788 1789 1790 1791
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1792 1793
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1794
            conv3d2.weight.set_value(conv3d1_weight_np)
1795 1796 1797
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1798 1799 1800
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1801
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1802 1803 1804

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1805 1806 1807 1808 1809 1810
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1811

L
lujun 已提交
1812 1813 1814 1815 1816 1817 1818 1819
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1820 1821 1822 1823 1824 1825 1826
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1827
            ret = layers.row_conv(input=x, future_context_size=2)
1828 1829 1830 1831 1832 1833 1834 1835 1836
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1837 1838

        with self.static_graph():
1839 1840 1841 1842 1843 1844 1845
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1846 1847
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1848 1849 1850 1851 1852 1853 1854 1855 1856
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1857

1858
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1859

1860
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1861

1862
    def func_group_norm(self):
L
lujun 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1873 1874 1875 1876 1877 1878 1879
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1880 1881 1882
            ret = layers.group_norm(
                input=X,
                groups=2,
1883
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1895 1896

        with self.static_graph():
1897 1898 1899 1900 1901 1902 1903
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1904 1905 1906
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1907
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1908 1909
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1910
            ret = groupNorm(X)
1911 1912 1913 1914 1915 1916 1917 1918 1919
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1920 1921

        with self.dynamic_graph():
1922 1923 1924
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1925
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1926 1927
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1928
            dy_ret = groupNorm(base.to_variable(input))
1929
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1930

1931 1932
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1933

1934 1935 1936 1937 1938
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1950 1951 1952
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1953
            ret = layers.instance_norm(input=X)
1954 1955 1956
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1957 1958

        with self.static_graph():
1959 1960 1961
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1962 1963
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1964 1965 1966
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1967 1968

        with self.dynamic_graph():
1969 1970 1971 1972 1973
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1974 1975 1976 1977 1978
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1979 1980 1981 1982 1983
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1984
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1985 1986 1987
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1988 1989 1990 1991 1992
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1993 1994 1995 1996

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1997
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1998 1999 2000 2001 2002 2003 2004
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2005
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2006 2007 2008 2009
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2021 2022 2023 2024 2025 2026 2027
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2028
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2029 2030 2031 2032 2033 2034 2035 2036 2037
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2038 2039

        with self.static_graph():
2040 2041 2042 2043 2044 2045 2046
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2047
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2048
            ret = spectralNorm(Weight)
2049 2050 2051 2052 2053 2054 2055 2056 2057
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2058 2059

        with self.dynamic_graph():
2060 2061 2062 2063 2064
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2065
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2066
            dy_ret = spectralNorm(base.to_variable(input))
2067
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2068

2069 2070 2071
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2116 2117

        with self.static_graph():
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2135
            ret = treeConv(NodesVector, EdgeSet)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2148 2149

        with self.dynamic_graph():
2150
            with _test_eager_guard():
2151 2152 2153 2154 2155 2156
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2157 2158
                dy_eager_rlt_value = dy_eager_ret.numpy()

2159 2160 2161
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2162
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2163
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2164

2165 2166 2167
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2168

2169
        with self.dynamic_graph():
2170 2171 2172 2173
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2198
                self.assertFalse(
2199 2200
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2201 2202
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2203 2204 2205 2206 2207 2208
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2209
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2210 2211 2212

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2213 2214 2215 2216 2217 2218
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2219

2220
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2247 2248 2249
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2250 2251 2252 2253 2254 2255
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2256
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2257 2258 2259

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2260 2261 2262 2263 2264 2265
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2266

L
lujun 已提交
2267
    def test_conv3d_transpose(self):
2268 2269 2270
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2271 2272 2273

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2274
            out = paddle.static.nn.conv3d_transpose(
2275 2276
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2277
            static_rlt = self.get_static_graph_result(
2278 2279
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2280 2281
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2282 2283 2284
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2285 2286
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2287 2288
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2289
        with self.dynamic_graph():
2290
            with _test_eager_guard():
2291 2292 2293 2294 2295 2296
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2297 2298 2299
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2300 2301 2302
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2303
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2304
            dy_rlt_value = dy_rlt.numpy()
2305 2306 2307
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2308

2309
        with self.dynamic_graph():
2310 2311 2312 2313 2314
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2333 2334 2335
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2336 2337
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2338 2339 2340 2341

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2342 2343
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2344
                conv3d2.weight.set_value(conv3d1_weight_np)
2345 2346 2347
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2348 2349 2350
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2351
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2352 2353 2354

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2355 2356 2357 2358 2359 2360
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2361

2362 2363
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2384 2385 2386 2387 2388 2389 2390
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2391 2392
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2393
            conv3d2.weight.set_value(conv3d1_weight_np)
2394 2395 2396
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2397 2398 2399
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2400
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2401 2402 2403

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2404 2405 2406 2407 2408 2409
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2410

2411
    def func_while_loop(self):
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2429
            def cond1(i):
2430 2431
                return layers.less_than(i, ten)

2432
            def body1(i):
2433 2434
                return i + 1

2435
            dy_ret = layers.while_loop(cond1, body1, [i])
2436 2437 2438 2439 2440 2441
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2442
                layers.while_loop(cond1, body2, [j])
2443

2444
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2445

2446 2447 2448 2449 2450
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2451 2452 2453 2454 2455 2456 2457 2458
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2459 2460 2461
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2462
        with self.dynamic_graph():
2463 2464 2465 2466 2467 2468 2469 2470
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2471 2472 2473 2474
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2475 2476
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2477 2478 2479 2480 2481 2482

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2483 2484 2485
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2486
        with self.dynamic_graph():
2487 2488 2489 2490 2491 2492 2493 2494
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2495 2496 2497 2498 2499 2500 2501
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2502
        # greater than
2503 2504 2505 2506
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2507 2508 2509
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2510
        with self.dynamic_graph():
2511 2512 2513 2514 2515 2516 2517 2518
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2519 2520 2521 2522 2523 2524 2525
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2526
        # greater equal
2527 2528 2529 2530
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2531 2532 2533
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2534
        with self.dynamic_graph():
2535 2536 2537 2538 2539 2540 2541 2542
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2555 2556 2557
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2558
        with self.dynamic_graph():
2559 2560 2561 2562 2563 2564 2565 2566
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2579 2580 2581
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2582
        with self.dynamic_graph():
2583 2584 2585 2586 2587 2588 2589 2590
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2591 2592 2593 2594 2595 2596 2597
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2598 2599 2600 2601 2602 2603 2604 2605
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2622 2623 2624 2625 2626
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2627 2628 2629
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2642 2643
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2644 2645 2646
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2647 2648 2649 2650 2651
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2652 2653
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2664 2665
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2666
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2667 2668 2669 2670 2671
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2672 2673
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2694 2695 2696
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2697 2698
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2699 2700 2701 2702 2703
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2704 2705 2706 2707
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2708 2709 2710 2711 2712 2713 2714 2715 2716
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2717 2718 2719 2720 2721 2722
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2723 2724 2725
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2726 2727 2728 2729 2730 2731 2732 2733
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2734 2735 2736
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2737 2738 2739 2740
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2741 2742 2743 2744
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2780 2781
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2782 2783
                fetch_list=[out_1, out_2, out_3]
            )
2784 2785

        with self.dynamic_graph():
2786
            with _test_eager_guard():
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2808 2809 2810 2811 2812

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2813 2814 2815
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2830 2831 2832 2833 2834

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2835 2836 2837 2838 2839 2840
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2841

2842 2843 2844 2845
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2846 2847 2848 2849 2850 2851
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2852
            crop_shape1 = (1, 2, 4, 4)
2853 2854 2855
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2856 2857
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2858 2859 2860
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2861 2862
            crop_offsets3 = [0, dim1, dim2, 0]

2863 2864 2865 2866 2867 2868 2869 2870 2871
            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1
            )
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2
            )
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3
            )
2872 2873 2874 2875 2876

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2877 2878 2879
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2880 2881 2882
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2883 2884 2885

        self.assertIsNotNone(shard_label)

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2899 2900
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2901 2902 2903
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2904

L
Leo Chen 已提交
2905
        with self.dynamic_graph(force_to_use_cpu=True):
2906 2907 2908 2909 2910 2911
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2912
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2913

Y
Yu Yang 已提交
2914

2915
class TestBook(LayerTest):
H
hong 已提交
2916 2917
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_gaussian_random_batch_size_like",
                "make_kldiv_loss",
                "make_prelu",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2928
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2929

2930
    def func_all_layers(self):
2931 2932 2933 2934 2935
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2936 2937 2938
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2951 2952
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2953

2954 2955 2956
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2957 2958
            if method.__name__ in self.only_static_set:
                continue
2959 2960 2961 2962 2963

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2964
                dy_result_value = dy_result.numpy()
2965

2966
            if method.__name__ in self.all_close_compare:
2967 2968 2969 2970 2971 2972
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2973 2974 2975
                        method.__name__
                    ),
                )
2976 2977
                continue

H
hong 已提交
2978
            if method.__name__ not in self.not_compare_static_dygraph_set:
2979 2980 2981 2982
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2983 2984 2985
                        method.__name__
                    ),
                )
2986

2987 2988 2989 2990 2991
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2992 2993 2994
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2995
            shape = [self._batch_size] + shape
2996 2997 2998 2999 3000
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3001 3002 3003
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3004
        elif dtype == 'int64':
3005 3006 3007 3008 3009 3010 3011
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3012
        if base.enabled():
3013 3014 3015 3016 3017
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3018 3019
        else:
            if set_feed_dict:
3020
                self._feed_dict[name] = self._get_np_data(
3021 3022 3023 3024 3025 3026 3027 3028
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3029 3030

    def make_fit_a_line(self):
3031 3032 3033 3034
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3035
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3036
            y_predict = layers.fc(input=x, size=1, act=None)
3037
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3038
            cost = layers.square_error_cost(input=y_predict, label=y)
3039
            avg_cost = paddle.mean(cost)
3040
            return avg_cost
Y
Yu Yang 已提交
3041

3042
    def make_recognize_digits_mlp(self):
3043 3044 3045
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3046
            # Change g_program, so the rest layers use `g_program`
3047 3048
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3049 3050
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3051 3052 3053 3054 3055 3056
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3057
            cost = layers.cross_entropy(input=predict, label=label)
3058
            avg_cost = paddle.mean(cost)
3059
            return avg_cost
Y
Yu Yang 已提交
3060

3061
    def make_conv2d_transpose(self):
3062 3063 3064
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3065
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3066
            return paddle.static.nn.conv2d_transpose(
3067 3068
                input=img, num_filters=10, output_size=28
            )
3069

3070
    def make_recognize_digits_conv(self):
3071 3072 3073 3074 3075 3076
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3077
            label = self._get_data(name='label', shape=[1], dtype='int64')
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3094 3095 3096

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3097
            avg_cost = paddle.mean(cost)
3098
            return avg_cost
Y
Yu Yang 已提交
3099

3100
    def make_word_embedding(self):
3101 3102 3103
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3104 3105
            dict_size = 10000
            embed_size = 32
3106
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3107 3108 3109
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3110 3111 3112
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3139 3140 3141

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3142 3143
                axis=1,
            )
Y
Yu Yang 已提交
3144 3145

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3146 3147 3148
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3149
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3150
            avg_cost = paddle.mean(cost)
3151
            return avg_cost
Y
Yu Yang 已提交
3152

3153
    def make_sigmoid_cross_entropy(self):
3154 3155 3156
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3157 3158
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3159
            ignore_index = -1
3160 3161 3162
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3163 3164

    def make_pool2d(self):
3165 3166 3167
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3168
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3169 3170 3171
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3172

K
Kaipeng Deng 已提交
3173
    def make_pool2d_infershape(self):
3174 3175 3176
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3177
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3178 3179 3180
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3181 3182 3183
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3184 3185

    def make_pool3d(self):
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32'
            )
            return layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1),
            )
K
Kaipeng Deng 已提交
3198

3199
    def make_lstm_unit(self):
3200 3201 3202 3203 3204 3205
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3206
            x_t = layers.fc(input=x_t_data, size=10)
3207 3208 3209
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3210
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3211 3212 3213
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3214
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3215 3216 3217
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3218

3219
    def make_softmax(self):
3220 3221 3222
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3223
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3224
            hid = layers.fc(input=data, size=20)
3225
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3226

3227
    def make_space_to_depth(self):
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data',
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.space_to_depth(data, 3)
J
JiabinYang 已提交
3238

3239
    def make_get_places(self):
3240 3241 3242
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3243
            get_places(device_count=1)
X
xuezhong 已提交
3244

3245
    @prog_scope()
3246
    def make_nce(self):
Y
Yang Yu 已提交
3247 3248
        window_size = 5
        words = []
3249
        for i in range(window_size):
Y
Yang Yu 已提交
3250
            words.append(
3251 3252 3253 3254
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3255 3256

        dict_size = 10000
M
minqiyang 已提交
3257
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3258 3259

        embs = []
3260
        for i in range(window_size):
Y
Yang Yu 已提交
3261 3262 3263
            if i == label_word:
                continue

3264 3265 3266 3267 3268 3269
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3270 3271 3272 3273

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3274 3275 3276 3277 3278 3279 3280
        loss = layers.nce(
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3281
        avg_loss = paddle.mean(loss)
3282
        return avg_loss
Y
Yang Yu 已提交
3283

3284
    def make_multiplex(self):
3285 3286 3287
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3288 3289 3290
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3291
            out = layers.multiplex(inputs=[x1, x2], index=index)
3292
            return out
3293 3294

    def make_softmax_with_cross_entropy(self):
3295 3296 3297
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3298 3299
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3300
            loss, softmax = layers.softmax_with_cross_entropy(
3301 3302
                x, y, return_softmax=True
            )
3303 3304 3305
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3306
            loss = layers.softmax_with_cross_entropy(x, y)
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3321
            return loss4
3322 3323

    def make_smooth_l1(self):
3324 3325 3326
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3327 3328
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3329
            loss = layers.smooth_l1(x, y)
3330
            return loss
3331

3332
    def make_scatter(self):
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3348
            out = paddle.scatter(x, index=idx, updates=updates)
3349
            return out
Y
yangyaming 已提交
3350

3351 3352 3353 3354
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3355
            return one_hot_label
3356

3357 3358 3359 3360 3361
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3362
            one_hot_label = layers.one_hot(input=label, depth=10)
3363
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
3364
            return smooth_label
3365

3366
    def make_topk(self):
3367 3368 3369
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3370 3371
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3372 3373
            return values
            return indices
J
jerrywgz 已提交
3374

3375
    def make_resize_bilinear(self):
3376 3377 3378
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3379
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3380
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3381
            return output
K
Kaipeng Deng 已提交
3382 3383

    def make_resize_bilinear_by_scale(self):
3384 3385 3386
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3387 3388
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3389
            return output
3390

3391
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3392
        try:
3393 3394 3395
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3396 3397 3398 3399 3400 3401
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3402 3403 3404 3405 3406 3407
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3408 3409 3410 3411
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3412 3413 3414
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3415
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3416
            output = layers.resize_nearest(x, out_shape=[12, 12])
3417
            return output
K
Kaipeng Deng 已提交
3418 3419

    def make_resize_nearest_by_scale(self):
3420 3421 3422
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3423 3424
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3425
            return output
K
Kaipeng Deng 已提交
3426 3427 3428

    def make_resize_trilinear(self):
        try:
3429 3430 3431
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3432 3433 3434 3435 3436 3437
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3438 3439 3440 3441 3442 3443
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3444 3445 3446 3447
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3448 3449 3450
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3451 3452
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3453
            return output
K
Kaipeng Deng 已提交
3454 3455

    def make_resize_trilinear_by_scale(self):
3456 3457 3458
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3459 3460
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3461
            return output
3462

3463
    def make_polygon_box_transform(self):
3464 3465 3466
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3467
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3468
            output = layers.polygon_box_transform(input=x)
3469
            return output
3470

3471
    def make_l2_normalize(self):
3472 3473 3474
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3475
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3476
            output = layers.l2_normalize(x, axis=1)
3477
            return output
3478

3479
    def make_argsort(self):
3480 3481 3482
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3483
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3484
            out, ids = layers.argsort(input=data, axis=1)
3485 3486
            return out
            return ids
3487 3488

    def make_shape(self):
3489 3490 3491 3492 3493 3494
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3495
            out = layers.shape(input)
3496
            return out
B
Bai Yifan 已提交
3497

3498
    def make_pad2d(self):
3499 3500 3501 3502 3503 3504
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
3505 3506 3507

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
3508 3509 3510 3511
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
3512
            out = tmp_pad(input)
3513
            return out
W
whs 已提交
3514

3515
    def make_prelu(self):
3516 3517 3518 3519 3520 3521
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[5, 200, 100, 100], dtype="float32"
            )
J
jerrywgz 已提交
3522
            mode = 'channel'
3523 3524 3525 3526 3527 3528 3529
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu',
            )
            return out
J
jerrywgz 已提交
3530

K
Kaipeng Deng 已提交
3531
    def make_mish(self):
3532 3533 3534
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3535 3536
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3537
            return out
K
Kaipeng Deng 已提交
3538

3539
    def make_cross_entropy(self):
3540 3541 3542
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3543 3544
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3545 3546
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3547
            return out
3548

3549
    def make_uniform_random_batch_size_like(self):
3550 3551 3552 3553 3554 3555
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3556
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3557
            return out
G
fix  
gongweibao 已提交
3558

3559
    def make_gaussian_random(self):
3560 3561 3562
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3563
            out = layers.gaussian_random(shape=[20, 30])
3564
            return out
G
fix  
gongweibao 已提交
3565

3566
    def make_sampling_id(self):
3567 3568 3569 3570 3571 3572 3573 3574 3575
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3576 3577

            out = layers.sampling_id(x)
3578
            return out
G
fix  
gongweibao 已提交
3579

3580
    def make_gaussian_random_batch_size_like(self):
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0
            )
            return out
G
fix  
gongweibao 已提交
3592

3593
    def make_sum(self):
3594 3595 3596 3597 3598 3599
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3600 3601

            out = layers.sum(input)
3602
            return out
G
fix  
gongweibao 已提交
3603

3604
    def make_slice(self):
G
fix  
gongweibao 已提交
3605 3606 3607 3608
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3609 3610 3611 3612 3613 3614
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3615 3616

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3617
            return out
G
merge  
gongweibao 已提交
3618

3619
    def make_scale_variable(self):
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3632
            out = layers.scale(input, scale=scale_var)
3633 3634
            return out

M
minqiyang 已提交
3635
    def make_iou_similarity(self):
3636 3637 3638
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3639 3640
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3641
            out = layers.iou_similarity(x, y, name='iou_similarity')
3642
            return out
3643 3644

    def make_grid_sampler(self):
3645 3646 3647
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3648 3649
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3650
            out = layers.grid_sampler(x, grid)
3651
            return out
3652 3653

    def make_bilinear_tensor_product_layer(self):
3654 3655 3656
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3657 3658 3659 3660
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3661
            return out
3662 3663

    def make_batch_norm(self):
3664 3665 3666 3667 3668 3669
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3670
            out = layers.batch_norm(data)
3671
            return out
3672

3673
    def make_batch_norm_momentum_variable(self):
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3686
            out = layers.batch_norm(data, momentum=momentum)
3687
            return out
3688

3689
    def make_range(self):
3690 3691 3692
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
3693 3694 3695
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
3696 3697 3698
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
3699
            y = paddle.arange(start, end, step, 'float64')
3700 3701 3702
            return y

    def make_spectral_norm(self):
3703 3704 3705 3706 3707 3708 3709 3710 3711
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
3712
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
3713
            return out
3714 3715

    def make_kldiv_loss(self):
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
3731
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
3732
            return loss
3733 3734

    def make_temporal_shift(self):
3735 3736 3737
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3738 3739
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
3740
            return out
3741 3742

    def make_shuffle_channel(self):
3743 3744 3745
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3746 3747
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
3748
            return out
3749

M
minqiyang 已提交
3750
    def make_fsp_matrix(self):
3751 3752 3753
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3754 3755 3756
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
3757
            return out
3758

M
minqiyang 已提交
3759
    def make_pixel_shuffle(self):
3760 3761 3762
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3763 3764
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
3765
            return out
M
minqiyang 已提交
3766

R
ruri 已提交
3767
    def make_mse_loss(self):
3768 3769 3770
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
3771 3772 3773
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
3774
            return out
R
ruri 已提交
3775

3776
    def make_square_error_cost(self):
3777 3778 3779
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3780 3781 3782
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
3783
            return out
3784

3785 3786 3787 3788
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3789 3790 3791
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3792 3793
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3794 3795 3796 3797
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
3798 3799 3800 3801 3802 3803

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3804 3805 3806 3807 3808 3809 3810 3811
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
3812 3813 3814 3815

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3816
            # case 1
3817
            x = layers.data(name='x', shape=[10], dtype='float32')
3818 3819 3820
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
3821 3822 3823
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3824
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3825 3826 3827 3828 3829 3830
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3831

W
whs 已提交
3832
    def test_affine_grid(self):
3833
        with self.static_graph():
W
whs 已提交
3834 3835 3836 3837
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3838
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
3839 3840
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3841 3842 3843

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3844

W
wangchaochaohu 已提交
3845 3846 3847 3848 3849 3850 3851
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3852 3853 3854
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3855 3856
            return out

3857 3858
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3859 3860 3861 3862 3863 3864
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3865 3866
            return out

3867 3868 3869 3870
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3871 3872 3873
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1
            )
3874
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
3875
            return output
3876

3877 3878 3879 3880
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3881 3882 3883 3884
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3885

3886 3887 3888 3889 3890
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3891
            return out
3892

3893 3894 3895 3896
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3897
            length = layers.data(name='length', shape=[], dtype='int64')
3898
            return layers.sequence_unpad(x=x, length=length)
3899

3900 3901 3902
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3903 3904 3905
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3906
            seq = layers.fc(input=seq_data, size=20)
3907
            return layers.sequence_softmax(seq)
3908

3909 3910 3911 3912 3913
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3914
            return out
3915

3916 3917 3918
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3936
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3937
            return out
W
whs 已提交
3938

3939 3940 3941 3942
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3943 3944 3945 3946

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3947 3948
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
3949 3950 3951 3952
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
3953

Z
zhoushiyu 已提交
3954 3955 3956
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3957 3958 3959
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
3960 3961 3962 3963 3964
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
3965
            return out1
Z
zhoushiyu 已提交
3966

3967 3968 3969 3970
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3971 3972 3973 3974
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
3975

S
ShenLiang 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
3985 3986
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
3987 3988 3989 3990
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
3991 3992 3993 3994 3995
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
3996

S
ShenLiang 已提交
3997 3998 3999
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4000 4001 4002
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
4003 4004 4005 4006 4007 4008 4009
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
4010 4011 4012 4013 4014
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
4015

4016
    def test_roi_pool(self):
4017 4018 4019 4020
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4021
        with self.static_graph():
4022 4023 4024 4025
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4026 4027 4028 4029
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4030 4031

        with self.dynamic_graph():
4032 4033 4034 4035
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4036 4037 4038
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
                )
4039 4040
                dy_eager_res_value = dy_eager_res[0].numpy()

4041 4042 4043
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4044 4045 4046
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
            )
4047
            dy_res_value = dy_res[0].numpy()
4048 4049
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4050 4051 4052 4053 4054 4055 4056 4057

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4058 4059 4060 4061
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4062
        with self.static_graph():
4063 4064 4065 4066
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4067 4068 4069 4070
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4071 4072

        with self.dynamic_graph():
4073 4074 4075 4076
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4077 4078 4079
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
                )
4080 4081
                dy_eager_res_value = dy_eager_res.numpy()

4082 4083 4084
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4085 4086 4087
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
            )
4088
            dy_res_value = dy_res.numpy()
4089 4090
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4091 4092 4093 4094 4095

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4096 4097 4098
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
4099
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
4100
            return output
4101 4102 4103 4104 4105 4106

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
4107
            return out
4108 4109 4110 4111

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4112 4113 4114 4115 4116 4117
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
4118 4119 4120 4121 4122 4123

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
4124
            return out
4125 4126 4127 4128

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4129 4130 4131 4132 4133 4134
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
4135
            out = layers.flatten(x, axis=1, name="flatten")
4136
            return out
4137

Z
zhoukunsheng 已提交
4138 4139 4140 4141 4142 4143 4144
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4145 4146 4147 4148
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4149
            return out
4150

4151 4152 4153 4154
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4155 4156 4157 4158 4159 4160
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4161 4162
            return concat1, concat2

C
cjt222 已提交
4163
    def test_deform_roi_pooling(self):
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4196

4197
    def test_retinanet_target_assign(self):
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4260

4261
    def test_sigmoid_focal_loss(self):
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4284

4285
    def test_addmm(self):
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4301 4302

            out = paddle.addmm(input=input, x=x, y=y)
4303
            return out
4304

4305
    def test_retinanet_detection_output(self):
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4333 4334 4335 4336 4337 4338 4339 4340 4341
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4342 4343 4344
                nms_eta=1.0,
            )
            return nmsed_outs
4345

4346 4347 4348
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4349 4350 4351 4352 4353 4354
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64'
            )
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64'
            )
4355
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length,
            )
            return output
4366

4367 4368 4369 4370
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4371 4372 4373 4374 4375 4376 4377 4378 4379
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4391 4392
                        batch_first=batch_first,
                    )
4393

Y
Yu Yang 已提交
4394

4395 4396 4397 4398
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4420 4421 4422 4423 4424 4425
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4426 4427
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4428
        super().__init__()
4429
        self.weight = self.create_parameter(
4430 4431
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4462 4463
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4464
        super().__init__()
J
Jiabin Yang 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4476
        super().__init__()
J
Jiabin Yang 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4492
if __name__ == '__main__':
4493
    paddle.enable_static()
Y
Yu Yang 已提交
4494
    unittest.main()