test_layers.py 186.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19
import contextlib
import numpy as np
20
from decorator_helper import prog_scope
21 22
import inspect
from six.moves import filter
23 24 25

import paddle
import paddle.fluid as fluid
26
from paddle.fluid.layers.device import get_places
27 28 29
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
30
from paddle.fluid import core
J
jerrywgz 已提交
31
from paddle.fluid.initializer import Constant
32 33
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
34 35
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
36
from paddle.fluid.dygraph import to_variable
37
from paddle.fluid.framework import _test_eager_guard
38 39 40 41 42 43 44 45 46 47 48


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

49 50 51 52 53 54 55 56
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
57 58 59 60

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
61
            paddle.seed(self.seed)
L
Leo Chen 已提交
62
            paddle.framework.random._manual_program_seed(self.seed)
63 64
            yield

65 66 67 68 69 70
    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
71 72 73
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
74 75
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
76 77

    @contextlib.contextmanager
78
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
79
        with fluid.dygraph.guard(
80
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
C
cnn 已提交
81
            paddle.seed(self.seed)
L
Leo Chen 已提交
82
            paddle.framework.random._manual_program_seed(self.seed)
83 84 85 86
            yield


class TestLayer(LayerTest):
87 88
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
89 90 91 92 93 94 95 96 97 98
            def __init__(self, input_size, linear1_size=4):
                super(CustomLayer, self).__init__()
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False)
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
99 100 101
                return ret

        with self.dynamic_graph():
102 103 104 105 106 107 108 109
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
                self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2]))
                ret = custom(x, do_linear2=True)
                self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))
110 111
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
112 113
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
114
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2]))
115
            ret = custom(x, do_linear2=True)
116 117
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False)
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2])
        with self.dynamic_graph():
133 134 135 136 137 138 139 140 141
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False)
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

142 143 144 145 146 147 148 149
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False)
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

150 151 152
        self.assertTrue(np.array_equal(dy_eager_ret_value, dy_eager_ret2_value))
        self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))

153 154 155 156
        self.assertTrue(np.array_equal(static_ret, static_ret2))
        self.assertTrue(np.array_equal(dy_ret_value, dy_ret2_value))
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

S
songyouwei 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            ret = linear(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
171 172 173 174 175 176 177 178 179
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
180 181 182 183 184 185
            t = base.to_variable(inp)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

186
        self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))
S
songyouwei 已提交
187 188
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False)
            flatten = nn.Flatten()
            ret = flatten(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
227 228 229 230 231 232
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

233 234 235 236 237
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

238
        self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
258 259 260 261 262 263 264 265
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

266 267 268 269 270 271 272 273
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
274 275 276 277
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
278 279 280 281 282 283 284 285
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
286
            lm = nn.LayerNorm(
287
                normalized_shape=[32, 32],
288 289
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
290 291 292 293
            ret = lm(t)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
294 295 296 297 298 299 300 301
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

302
            lm = nn.LayerNorm(
303
                normalized_shape=[32, 32],
304 305
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
306
            dy_ret = lm(base.to_variable(inp))
307
            dy_ret_value = dy_ret.numpy()
308

309
        with self.dynamic_graph():
310 311 312 313 314 315 316 317 318 319 320 321 322
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

323
            lm = nn.LayerNorm(
324
                normalized_shape=[32, 32],
325 326 327 328 329 330 331 332 333
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
334

335
        self.assertTrue(np.array_equal(static_ret, static_ret2))
336
        self.assertTrue(np.array_equal(dy_eager_ret_value, static_ret2))
337
        self.assertTrue(np.array_equal(dy_ret_value, static_ret2))
338

339
        with self.dynamic_graph():
340 341 342 343 344 345 346 347
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

348 349 350 351 352 353 354
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
355 356 357 358
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
359
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
360 361 362 363 364 365 366
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
                    feed={'t': np.ones(
                        [3, 3, 5, 5], dtype='float32')},
                    fetch_list=[ret])[0]

            with self.dynamic_graph():
367 368 369 370 371 372
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
373 374 375 376
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
377
            self.assertTrue(np.array_equal(static_ret, dy_ret_value))
378
            self.assertTrue(np.array_equal(static_ret, dy_eager_ret_value))
C
ceci3 已提交
379

380 381 382 383 384 385 386 387 388
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
389 390 391 392 393
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

394 395
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
396
            dy_ret_value = dy_ret.numpy()
397

398
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
399
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
C
ceci3 已提交
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones(
                        [3, 3], dtype='float32'),
                    't2': np.ones(
                        [3, 3], dtype='float32')
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
416 417 418 419 420 421 422
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2))
                dy_eager_ret_value = dy_eager_ret.numpy()

423 424
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
425
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
426
            dy_ret_value = dy_ret.numpy()
427

428
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
429
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
430

431 432 433 434 435 436 437 438 439 440 441
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
442 443
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
444 445 446 447 448 449 450
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
451 452 453 454 455 456 457
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                conv2d = nn.Conv2D(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                dy_eager_ret = conv2d(base.to_variable(images))
                dy_eager_ret_value = dy_eager_ret.numpy()

458
            images = np.ones([2, 3, 5, 5], dtype='float32')
459 460
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
461
            dy_ret = conv2d(base.to_variable(images))
462
            dy_ret_value = dy_ret.numpy()
463

464
        with self.dynamic_graph():
465 466 467 468 469 470 471 472 473 474
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                conv2d = nn.Conv2D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    bias_attr=False)
                dy_ret = conv2d(base.to_variable(images))
                self.assertTrue(conv2d.bias is None)

475 476
            images = np.ones([2, 3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
477 478 479 480
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                bias_attr=False)
481
            dy_ret = conv2d(base.to_variable(images))
482
            self.assertTrue(conv2d.bias is None)
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        with self.static_graph():
            # the input of Conv2D must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                conv2d = nn.Conv2D(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2D must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32')
                conv2d = nn.Conv2D(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

505
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
506
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
507
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
508

509
        with self.dynamic_graph():
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                conv2d1 = nn.Conv2D(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d2 = nn.Conv2D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.weight.set_value(conv2d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertTrue(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
                self.assertTrue(
                    np.array_equal(conv2d1.weight.numpy(),
                                   conv2d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

549 550 551 552 553
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
554 555
            conv2d1 = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
556
            conv2d2 = nn.Conv2D(
557
                num_channels=3,
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

M
minqiyang 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
608
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
609 610 611 612 613 614 615 616
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
617 618 619 620 621 622 623 624
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input))
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

625
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
626 627
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))
628 629 630
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
631 632 633

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
634
            self.assertTrue(np.allclose(static_ret[i], dy_ret_value[i]))
635
            self.assertTrue(np.allclose(static_ret[i], dy_eager_ret_value[i]))
M
minqiyang 已提交
636

637
        with self.dynamic_graph():
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input))
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input))
                self.assertFalse(
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input))
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input))
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertTrue(np.array_equal(o1.numpy(), o2.numpy()))

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
                self.assertTrue(
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(gru1.bias.numpy(), gru2.bias.numpy()))

669 670 671 672
            custom_weight = np.random.randn(D, D * 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
673 674
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            self.assertFalse(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertTrue(np.array_equal(o1.numpy(), o2.numpy()))

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
            self.assertTrue(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            self.assertTrue(
                np.array_equal(gru1.bias.numpy(), gru2.bias.numpy()))

X
Xin Pan 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

            static_ret = self.get_static_graph_result(
                feed={
                    't': n,
                    't2': n2,
                    't3': n3,
                    't4': n4,
                    't5': n5,
                    't6': n6
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
733 734 735 736 737 738 739 740
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
                ret = layers.elementwise_pow(ret, to_variable(n3))
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

741 742 743 744 745
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
746
            dy_ret_value = dy_ret.numpy()
747

748
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
749
        self.assertTrue(np.allclose(static_ret, dy_eager_ret_value))
X
Xin Pan 已提交
750 751 752 753 754 755

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
756 757 758 759 760 761 762 763
            with _test_eager_guard():
                min_eager_ret = layers.elementwise_min(
                    to_variable(n), to_variable(n2))
                max_eager_ret = layers.elementwise_max(
                    to_variable(n), to_variable(n2))
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

764 765
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
            max_ret = layers.elementwise_max(to_variable(n), to_variable(n2))
766 767
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
768

769 770
        self.assertTrue(np.allclose(n, min_ret_value))
        self.assertTrue(np.allclose(n2, max_ret_value))
771 772
        self.assertTrue(np.allclose(n, min_eager_ret_value))
        self.assertTrue(np.allclose(n2, max_eager_ret_value))
X
Xin Pan 已提交
773

774 775 776 777 778 779 780 781 782 783 784 785 786
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
787
            out = layers.sequence_conv(seq, 2, act='sigmoid')
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]

        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
805
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
806 807 808 809 810 811 812 813 814 815 816
            out = seq_conv(seq)
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]
        self.assertTrue(
817
            np.array_equal(np.array(static_rlt), np.array(static_rlt2)))
818 819 820 821 822 823

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
824 825
                input=img,
                num_filters=10,
826
                filter_size=27,
827 828
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
829 830 831 832 833
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
834
                num_channels=3,
835
                num_filters=10,
836
                filter_size=27,
837 838
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
839 840 841 842
            out = conv2d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.dynamic_graph():
843 844 845 846 847 848 849 850 851 852
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

853
            conv2d_transpose = nn.Conv2DTranspose(
854
                num_channels=3,
855
                num_filters=10,
856
                filter_size=27,
857 858
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
859
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
860
            dy_rlt_value = dy_rlt.numpy()
861
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
862
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt2))
863
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt2))
864

865
        with self.dynamic_graph():
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.weight.set_value(conv2d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertTrue(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
                self.assertTrue(
                    np.array_equal(conv2d1.weight.numpy(),
                                   conv2d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

905 906 907 908 909 910
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv2d1 = nn.Conv2DTranspose(
911
                num_channels=3, num_filters=3, filter_size=[2, 2])
912
            conv2d2 = nn.Conv2DTranspose(
913
                num_channels=3,
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32')
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
977 978 979 980 981 982
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
983 984 985 986

            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
987

988 989 990 991 992 993 994 995 996 997 998
        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
999
            btp = nn.BilinearTensorProduct(
1000 1001
                3,
                3,
1002 1003 1004
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
1005 1006 1007 1008 1009
            out = btp(data_x, data_y)
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.dynamic_graph():
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1021
            btp = nn.BilinearTensorProduct(
1022 1023
                3,
                3,
1024 1025 1026
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
1027
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
1028
            dy_rlt_value = dy_rlt.numpy()
1029

1030
        with self.dynamic_graph():
1031 1032 1033 1034 1035 1036
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y))
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

1037
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1038 1039
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
1040
            dy_rlt2_value = dy_rlt2.numpy()
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        with self.static_graph():
            data_x2 = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y2 = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid')

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out2])[0]

1060
        self.assertTrue(np.array_equal(dy_rlt2_value, static_rlt3))
1061
        self.assertTrue(np.array_equal(dy_eager_rlt2_value, static_rlt3))
1062
        self.assertTrue(np.array_equal(static_rlt2, static_rlt))
1063
        self.assertTrue(np.array_equal(dy_rlt_value, static_rlt))
1064
        self.assertTrue(np.array_equal(dy_eager_rlt_value, static_rlt))
1065

1066
        with self.dynamic_graph():
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr)
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y))
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y))
                self.assertFalse(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y))
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y))
                self.assertTrue(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
                self.assertTrue(
                    np.array_equal(btp1.weight.numpy(), btp2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(btp1.bias.numpy(), btp2.bias.numpy()))

1097 1098 1099 1100
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
1101
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1102
            btp2 = nn.BilinearTensorProduct(
1103
                3, 3, 6, act='sigmoid', param_attr=weight_attr)
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
            self.assertTrue(
                np.array_equal(btp1.weight.numpy(), btp2.weight.numpy()))
            self.assertTrue(
                np.array_equal(btp1.bias.numpy(), btp2.bias.numpy()))

1124
    def prelu_test(self, mode):
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            prelu = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
1145
                channel=inp_np.shape[1],
1146
                input_shape=data_t.shape,
1147 1148 1149 1150 1151 1152
                param_attr=ParamAttr(initializer=Constant(1.0)))
            out = prelu(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.dynamic_graph():
1153 1154 1155 1156 1157 1158 1159 1160 1161
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(1.0)))
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1162 1163
            prelu = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
1164
                channel=inp_np.shape[1],
1165
                input_shape=inp_np.shape,
1166 1167
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt = prelu(base.to_variable(inp_np))
1168
            dy_rlt_value = dy_rlt.numpy()
1169 1170

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1171
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1172
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1173

1174
        with self.dynamic_graph():
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(2.0)))
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(1.0)))
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy(
                    )))
                self.assertFalse(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertTrue(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

                prelu2.weight = prelu1.weight
                self.assertTrue(
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy(
                    )))

1206 1207 1208 1209
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
            prelu1 = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
1210
                channel=inp_np.shape[1],
1211
                input_shape=inp_np.shape,
1212 1213 1214
                param_attr=ParamAttr(initializer=Constant(2.0)))
            prelu2 = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
1215
                channel=inp_np.shape[1],
1216
                input_shape=inp_np.shape,
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            prelu2.weight = prelu1.weight
            self.assertTrue(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))

1232 1233 1234 1235 1236
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb])[0]
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb2 = nn.Embedding(
1252
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
1253 1254 1255 1256
            emb_rlt = emb2(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
        with self.dynamic_graph():
1257 1258 1259 1260 1261 1262 1263 1264
            with _test_eager_guard():
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False)
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1265
            emb2 = nn.Embedding(
1266
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
1267 1268
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1269 1270

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1271
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1272
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1273

1274
        with self.dynamic_graph():
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False)
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
                    np.array_equal(emb1.weight.numpy(), custom_weight))
                self.assertTrue(
                    np.array_equal(emb2.weight.numpy(), custom_weight))
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
                self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy()))

                emb2.weight = emb1.weight
                self.assertTrue(
                    np.array_equal(emb1.weight.numpy(), emb2.weight.numpy()))

1300 1301 1302 1303
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
1304
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1305
            emb2 = nn.Embedding(
1306
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
            self.assertTrue(np.array_equal(emb2.weight.numpy(), custom_weight))
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
            self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy()))

            emb2.weight = emb1.weight
            self.assertTrue(
                np.array_equal(emb1.weight.numpy(), emb2.weight.numpy()))

1320 1321 1322 1323
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1324
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1325 1326 1327 1328 1329 1330 1331
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
1332
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
1333 1334
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
1335 1336 1337 1338 1339
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1340
                emb = fluid.embedding(
1341 1342 1343 1344 1345 1346 1347
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1348
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1349
            nce_loss = layers.nce(input=embs,
1350
                                  label=wl,
1351 1352 1353 1354 1355 1356
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
1357 1358
                                  bias_attr='nce.b',
                                  sample_weight=sample_weights)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss])[0]
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
1369
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
1370 1371
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
1372
            emb = nn.Embedding(
1373
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1384 1385
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs2.shape[1],
1386 1387 1388 1389 1390
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
1391 1392
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
1393

1394 1395
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1396 1397 1398 1399 1400 1401 1402
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2])[0]

L
Leo Chen 已提交
1403
        with self.dynamic_graph():
1404
            # TODO(wuweilong): Add with _test_eager_guard():
1405 1406 1407
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1408 1409
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
1410
            emb = nn.Embedding(
1411
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
1412 1413 1414 1415 1416 1417 1418 1419 1420

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

S
songyouwei 已提交
1421 1422
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1])))
1423 1424
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs3.shape[1],
1425 1426 1427 1428 1429
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
1430 1431
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
1432

1433 1434
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1435
            dy_rlt_value = dy_rlt.numpy()
1436 1437

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1438
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1439

L
Leo Chen 已提交
1440
        with self.dynamic_graph():
1441
            # TODO(wuweilong): Add with _test_eager_guard():
1442 1443 1444 1445 1446 1447 1448 1449
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1450 1451 1452
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
                value=1)
1453
            emb = nn.Embedding(
1454
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1465 1466
            nce1 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1467 1468 1469 1470 1471 1472 1473 1474
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
                          param_attr='nce1.w',
                          bias_attr='nce1.b',
                          sample_weight=sample_weights)

1475 1476
            nce2 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1477 1478 1479 1480
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
1481
                          param_attr=weight_attr,
1482 1483 1484
                          bias_attr='nce2.b',
                          sample_weight=sample_weights)

1485 1486 1487
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1488 1489 1490 1491
            self.assertFalse(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1492 1493
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
            self.assertTrue(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
            self.assertTrue(
                np.array_equal(nce1.weight.numpy(), nce2.weight.numpy()))
            self.assertTrue(
                np.array_equal(nce1.bias.numpy(), nce2.bias.numpy()))

S
songyouwei 已提交
1504 1505
    def test_one_hot(self):
        with self.dynamic_graph():
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
            with _test_eager_guard():
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]]))
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
                    input=label,
                    depth=fluid.dygraph.to_variable(np.array([4])))
                self.assertTrue(
                    np.array_equal(one_hot_label1.numpy(),
                                   one_hot_label2.numpy()))

S
songyouwei 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
                input=label, depth=fluid.dygraph.to_variable(np.array([4])))
            self.assertTrue(
                np.array_equal(one_hot_label1.numpy(), one_hot_label2.numpy()))

    def test_split(self):
        with self.dynamic_graph():
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])))
                self.assertTrue(np.array_equal(x0.numpy(), x00.numpy()))
                self.assertTrue(np.array_equal(x1.numpy(), x11.numpy()))

S
songyouwei 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])))
            self.assertTrue(np.array_equal(x0.numpy(), x00.numpy()))
            self.assertTrue(np.array_equal(x1.numpy(), x11.numpy()))

    def test_topk(self):
        with self.dynamic_graph():
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
                    input, k=fluid.dygraph.to_variable(np.array([5])))
                self.assertTrue(
                    np.array_equal(top5_values1.numpy(), top5_values2.numpy()))
                self.assertTrue(
                    np.array_equal(top5_indices1.numpy(), top5_indices2.numpy(
                    )))

S
songyouwei 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
                input, k=fluid.dygraph.to_variable(np.array([5])))
            self.assertTrue(
                np.array_equal(top5_values1.numpy(), top5_values2.numpy()))
            self.assertTrue(
                np.array_equal(top5_indices1.numpy(), top5_indices2.numpy()))

L
lujun 已提交
1567 1568 1569 1570
    def test_conv3d(self):
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
1571
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1572 1573 1574 1575 1576 1577 1578 1579
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
1580
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1581 1582 1583 1584 1585 1586 1587
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
1588 1589 1590 1591 1592 1593
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1594
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1595
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1596
            dy_ret = conv3d(base.to_variable(images))
1597
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1598

1599
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
1600
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
L
lujun 已提交
1601 1602
        self.assertTrue(np.allclose(static_ret, static_ret2))

1603
        with self.dynamic_graph():
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2)
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d2.weight.set_value(conv3d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertTrue(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
                self.assertTrue(
                    np.array_equal(conv3d1.weight.numpy(),
                                   conv3d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

1643 1644 1645 1646 1647
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
1648
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1649
            conv3d2 = nn.Conv3D(
1650 1651 1652 1653
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

L
lujun 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.row_conv(input=x, future_context_size=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
1712
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
L
lujun 已提交
1713
                },
1714 1715
                fetch_list=[ret],
                with_lod=True)[0]
L
lujun 已提交
1716

1717
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_group_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1738 1739 1740 1741 1742 1743
            ret = layers.group_norm(
                input=X,
                groups=2,
                param_attr=fluid.initializer.Uniform(
                    low=-0.5, high=0.5),
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1759 1760 1761 1762 1763 1764
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
                param_attr=fluid.initializer.Uniform(
                    low=-0.5, high=0.5),
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
            ret = groupNorm(X)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1775
            # TODO(wuweilong): Add with _test_eager_guard():
1776 1777 1778 1779 1780 1781
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
                param_attr=fluid.initializer.Uniform(
                    low=-0.5, high=0.5),
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1782
            dy_ret = groupNorm(base.to_variable(input))
1783
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1784

1785
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1786 1787
        self.assertTrue(np.allclose(static_ret, static_ret2))

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False)
            ret = layers.instance_norm(input=X)
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret])[0]

        with self.static_graph():
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False)
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret])[0]

        with self.dynamic_graph():
1814 1815 1816 1817 1818
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1819 1820 1821 1822 1823
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1824 1825 1826 1827 1828
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1829
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1830 1831 1832 1833 1834
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
        self.assertTrue(np.allclose(static_ret, dy_rlt_value2))
1835 1836
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value2))
1837 1838 1839 1840 1841
        self.assertTrue(np.allclose(static_ret, static_ret2))

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1842
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1843 1844 1845 1846 1847 1848 1849
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
1850
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1851 1852 1853 1854
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place),
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1888
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
            ret = spectralNorm(Weight)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1899 1900 1901 1902 1903
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1904
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1905
            dy_ret = spectralNorm(base.to_variable(input))
1906
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1907

1908
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
1909
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
L
lujun 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
1934
            ret = fluid.contrib.layers.tree_conv(
L
lujun 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            treeConv = nn.TreeConv(
1964
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
            ret = treeConv(NodesVector, EdgeSet)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.dynamic_graph():
1977 1978 1979 1980 1981 1982 1983
            with _test_eager_guard():
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2)
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1984
            treeConv = nn.TreeConv(
1985
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1986
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
1987
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1988 1989

        self.assertTrue(np.allclose(static_ret, static_ret2))
1990
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
1991
        self.assertTrue(np.allclose(static_ret, dy_eager_rlt_value))
L
lujun 已提交
1992

1993
        with self.dynamic_graph():
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b')
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b')
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj))
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj))
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj))
                self.assertTrue(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
                self.assertTrue(
                    np.array_equal(treeConv1.weight.numpy(),
                                   treeConv2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(treeConv1.bias.numpy(),
                                   treeConv2.bias.numpy()))

2036 2037 2038 2039 2040
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            treeConv1 = nn.TreeConv(
2041
                feature_size=5,
2042 2043 2044 2045 2046
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b')
            treeConv2 = nn.TreeConv(
2047
                feature_size=5,
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b')
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
            self.assertTrue(
                np.array_equal(treeConv1.weight.numpy(),
                               treeConv2.weight.numpy()))
            self.assertTrue(
                np.array_equal(treeConv1.bias.numpy(), treeConv2.bias.numpy()))

L
lujun 已提交
2074 2075 2076 2077 2078 2079 2080
    def test_conv3d_transpose(self):
        input_array = np.arange(0, 48).reshape(
            [2, 3, 2, 2, 2]).astype('float32')

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            out = layers.conv3d_transpose(
2081
                input=img, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
2082 2083 2084 2085 2086
            static_rlt = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            conv3d_transpose = nn.Conv3DTranspose(
2087
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
2088 2089 2090 2091
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.dynamic_graph():
2092 2093 2094 2095 2096 2097 2098 2099 2100
            with _test_eager_guard():
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

L
lujun 已提交
2101
            conv3d_transpose = nn.Conv3DTranspose(
2102
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
2103
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2104
            dy_rlt_value = dy_rlt.numpy()
L
lujun 已提交
2105
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
2106
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
2107
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
L
lujun 已提交
2108

2109
        with self.dynamic_graph():
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False)
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d2.weight.set_value(conv3d1_weight_np)
                self.assertTrue(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertTrue(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
                self.assertTrue(
                    np.array_equal(conv3d1.weight.numpy(),
                                   conv3d2.weight.numpy()))
                self.assertTrue(
                    np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

2155 2156 2157 2158 2159 2160
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv3d1 = nn.Conv3DTranspose(
2161
                num_channels=3,
2162 2163 2164 2165 2166
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False)
            conv3d2 = nn.Conv3DTranspose(
2167
                num_channels=3,
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

2196 2197 2198 2199 2200 2201 2202 2203
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
            with _test_eager_guard():
                eager_eye_tensor = layers.eye(num_rows=3, num_columns=2)
                eager_eye_tensor_rlt1 = layers.eye(num_rows=3,
                                                   num_columns=2,
                                                   batch_shape=[3])
                eager_eye_tensor_rlt2 = layers.eye(num_rows=3,
                                                   num_columns=2,
                                                   batch_shape=[4, 3])
                eager_diag_tensor = layers.eye(20)
                eager_eye_tensor_value = eager_eye_tensor.numpy()
                eager_eye_tensor_rlt1_value = eager_eye_tensor_rlt1.numpy()
                eager_eye_tensor_rlt2_value = eager_eye_tensor_rlt2.numpy()
                eager_diag_tensor_value = eager_diag_tensor.numpy()

2218 2219 2220 2221 2222 2223 2224 2225
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
            eye_tensor_rlt1 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[3])
            eye_tensor_rlt2 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[4, 3])
            diag_tensor = layers.eye(20)
2226 2227 2228 2229
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
2230 2231 2232 2233 2234 2235

        self.assertTrue(np.allclose(eager_eye_tensor_value, np_eye))
        self.assertTrue(np.allclose(eager_eye_tensor_rlt1_value, stack_rlt1))
        self.assertTrue(np.allclose(eager_eye_tensor_rlt2_value, stack_rlt2))
        self.assertTrue(np.allclose(eager_diag_tensor_value, np.eye(20)))

2236 2237 2238 2239
        self.assertTrue(np.allclose(eye_tensor_value, np_eye))
        self.assertTrue(np.allclose(eye_tensor_rlt1_value, stack_rlt1))
        self.assertTrue(np.allclose(eye_tensor_rlt2_value, stack_rlt2))
        self.assertTrue(np.allclose(diag_tensor_value, np.eye(20)))
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
    def test_while_loop(self):
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
2265
            # TODO(wuweilong): Add with _test_eager_guard():
2266 2267 2268
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2269
            def cond1(i):
2270 2271
                return layers.less_than(i, ten)

2272
            def body1(i):
2273 2274
                return i + 1

2275
            dy_ret = layers.while_loop(cond1, body1, [i])
2276 2277 2278 2279 2280 2281
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2282
                layers.while_loop(cond1, body2, [j])
2283 2284 2285

        self.assertTrue(np.array_equal(static_ret[0], dy_ret[0].numpy()))

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
            static_ret = self.get_static_graph_result(
                feed={"a": value_a,
                      "b": value_b}, fetch_list=[cond])[0]
        with self.dynamic_graph():
2298 2299 2300 2301 2302 2303 2304 2305
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2306 2307 2308 2309
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2310 2311
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a,
                      "b1": value_b}, fetch_list=[cond1])[0]
        with self.dynamic_graph():
2322 2323 2324 2325 2326 2327 2328 2329
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

        #greater than
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a,
                      "b2": value_b}, fetch_list=[cond2])[0]
        with self.dynamic_graph():
2346 2347 2348 2349 2350 2351 2352 2353
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

        #greater equal
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a,
                      "b3": value_b}, fetch_list=[cond3])[0]
        with self.dynamic_graph():
2370 2371 2372 2373 2374 2375 2376 2377
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a,
                      "b4": value_b}, fetch_list=[cond4])[0]
        with self.dynamic_graph():
2394 2395 2396 2397 2398 2399 2400 2401
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a,
                      "b5": value_b}, fetch_list=[cond5])[0]
        with self.dynamic_graph():
2418 2419 2420 2421 2422 2423 2424 2425
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2426 2427 2428 2429 2430 2431 2432
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1)
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23)
            out = fluid.layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                                    lambda: less_than_branch(a, b))
            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
                    np.array([0.23]).astype('float32'))
                out = layers.cond(a < b, lambda: less_than_branch(a, b),
                                  lambda: greater_equal_branch(a, b))
                out2 = layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                                   lambda: less_than_branch(a, b))
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
                self.assertTrue(
                    np.array_equal(eager_dynamic_res, eager_dynamic_res2))
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
            out = layers.cond(a < b, lambda: less_than_branch(a, b),
                              lambda: greater_equal_branch(a, b))
            out2 = layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                               lambda: less_than_branch(a, b))
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
            self.assertTrue(np.array_equal(dynamic_res, dynamic_res2))
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

        self.assertTrue(np.array_equal(static_res, dynamic_res))
2486
        self.assertTrue(np.array_equal(static_res, eager_dynamic_res))
2487

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)],
                    default=fn_3)
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

        self.assertTrue(np.array_equal(static_res1, dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, dynamic_res2))
2550 2551
        self.assertTrue(np.array_equal(static_res1, eager_dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, eager_dynamic_res2))
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1,
                            2: fn_2},
                default=fn_3)
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3)
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
                fetch_list=[out_1, out_2, out_3])

        with self.dynamic_graph():
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
            with _test_eager_guard():
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1)
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2)

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1,
                                2: fn_2},
                    default=fn_3)
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1,
                            2: fn_2},
                default=fn_3)
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3)
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

        self.assertTrue(np.array_equal(static_res1, dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, dynamic_res2))
        self.assertTrue(np.array_equal(static_res3, dynamic_res3))
2633 2634 2635
        self.assertTrue(np.array_equal(static_res1, eager_dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, eager_dynamic_res2))
        self.assertTrue(np.array_equal(static_res3, eager_dynamic_res3))
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False)
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False)
            crop_shape1 = (1, 2, 4, 4)
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False)
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False)
            crop_offsets3 = [0, dim1, dim2, 0]

            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3)

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2665 2666 2667 2668 2669 2670 2671 2672
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0)

        self.assertIsNotNone(shard_label)

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2686 2687
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2688 2689 2690 2691
            static_out = exe.run(feed={"input": x,
                                       "label": y},
                                 fetch_list=result[0])

L
Leo Chen 已提交
2692
        with self.dynamic_graph(force_to_use_cpu=True):
2693 2694 2695 2696 2697 2698 2699 2700
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

        self.assertTrue(np.array_equal(static_out[0], dynamic_out.numpy()))

Y
Yu Yang 已提交
2701

2702
class TestBook(LayerTest):
H
hong 已提交
2703 2704 2705 2706 2707 2708 2709 2710
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
        self.not_compare_static_dygraph_set = set({
            "make_gaussian_random", "make_gaussian_random_batch_size_like",
            "make_kldiv_loss", "make_prelu",
            "make_sampled_softmax_with_cross_entropy", "make_sampling_id",
            "make_uniform_random_batch_size_like"
        })
2711
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2712

2713 2714 2715 2716 2717 2718
    def test_all_layers(self):
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2719 2720 2721
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
                        force_to_use_cpu=self._force_to_use_cpu)
H
hong 已提交
2735

2736 2737 2738
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2739 2740
            if method.__name__ in self.only_static_set:
                continue
2741 2742 2743 2744 2745

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2746
                dy_result_value = dy_result.numpy()
2747

2748 2749 2750 2751 2752 2753 2754 2755
            if method.__name__ in self.all_close_compare:
                self.assertTrue(
                    np.allclose(
                        static_result[0], dy_result_value, atol=0, rtol=1e-05),
                    "Result of function [{}] compare failed".format(
                        method.__name__))
                continue

H
hong 已提交
2756 2757
            if method.__name__ not in self.not_compare_static_dygraph_set:
                self.assertTrue(
2758 2759
                    np.array_equal(static_result[0], dy_result_value),
                    "Result of function [{}] not equal".format(method.__name__))
2760 2761 2762 2763

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2764
            shape = [self._batch_size] + shape
2765 2766 2767 2768 2769
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
M
minqiyang 已提交
2770 2771
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2772
        elif dtype == 'int64':
M
minqiyang 已提交
2773 2774
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

    def _get_data(self,
                  name,
                  shape,
                  dtype,
                  set_feed_dict=True,
                  append_batch_size=True):
        if base.enabled():
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
2785 2786
                name=name,
                zero_copy=False)
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
        else:
            if set_feed_dict:
                self._feed_dict[name] = self._get_np_data(shape, dtype,
                                                          append_batch_size)
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size)

    def make_sampled_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2800
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
2801
            label = self._get_data(name='Label', shape=[1], dtype='int64')
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
            num_samples = 25
            output = layers.sampled_softmax_with_cross_entropy(logits, label,
                                                               num_samples)
            return (output)

    def make_fit_a_line(self):
        with program_guard(
                fluid.default_main_program(),
                startup_program=fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
2812
            y_predict = layers.fc(input=x, size=1, act=None)
2813
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
2814
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
2815
            avg_cost = layers.mean(cost)
2816
            return (avg_cost)
Y
Yu Yang 已提交
2817

2818 2819 2820
    def make_recognize_digits_mlp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
2821
            # Change g_program, so the rest layers use `g_program`
2822 2823
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2824 2825
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
2826 2827 2828 2829
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
2830
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
2831
            avg_cost = layers.mean(cost)
2832
            return (avg_cost)
Y
Yu Yang 已提交
2833

2834 2835 2836 2837 2838 2839
    def make_conv2d_transpose(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28)
2840

2841 2842 2843 2844
    def make_recognize_digits_conv(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            images = self._get_data(
Y
Yu Yang 已提交
2845
                name='pixel', shape=[1, 28, 28], dtype='float32')
2846
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
2864
            avg_cost = layers.mean(cost)
2865
            return avg_cost
Y
Yu Yang 已提交
2866

2867 2868 2869
    def make_word_embedding(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
2870 2871
            dict_size = 10000
            embed_size = 32
2872 2873 2874 2875 2876 2877
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64')
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
2910
            avg_cost = layers.mean(cost)
2911
            return (avg_cost)
Y
Yu Yang 已提交
2912

2913 2914 2915 2916 2917
    def make_sigmoid_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
2918
            ignore_index = -1
2919 2920 2921 2922 2923 2924 2925 2926 2927
            return (layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index))

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
            return (layers.hsigmoid(input=x, label=y, num_classes=2))
W
weixing02 已提交
2928

J
JiabinYang 已提交
2929
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
2930 2931
        program2 = Program()
        with program_guard(program2):
2932 2933 2934
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
            path_table = self._get_data(
2935
                name='path_table', shape=[4, 6], dtype='int64')
2936
            path_code = self._get_data(
2937
                name='path_code', shape=[4, 6], dtype='int64')
2938 2939 2940 2941 2942 2943 2944
            return (layers.hsigmoid(
                input=x2,
                label=y2,
                num_classes=6,
                path_table=path_table,
                path_code=path_code,
                is_custom=True))
J
JiabinYang 已提交
2945

2946 2947 2948 2949 2950 2951 2952
    def make_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

K
Kaipeng Deng 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
    def make_pool2d_infershape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

    def make_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32')
            return (layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1)))

2972 2973 2974 2975 2976
    def make_adaptive_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
2977
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
2978 2979 2980
            return (pool)
            return (mask)
            return (layers.adaptive_pool2d(x, 3, pool_type='avg'))
2981
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
2982 2983 2984 2985 2986 2987 2988 2989 2990
            return (pool)
            return (mask)

    def make_adaptive_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 224, 224], dtype='float32')
            return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
2991 2992
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
2993 2994 2995
            return (pool)
            return (mask)
            return (layers.adaptive_pool3d(x, 3, pool_type='avg'))
2996
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
2997 2998
            return (pool)
            return (mask)
2999

3000 3001 3002 3003
    def make_lstm_unit(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x_t_data = self._get_data(
Y
yangyaming 已提交
3004 3005
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
3006
            prev_hidden_data = self._get_data(
Y
yangyaming 已提交
3007 3008
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3009
            prev_cell_data = self._get_data(
Y
yangyaming 已提交
3010 3011
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3012 3013
            return (layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
3014

3015 3016 3017 3018
    def make_softmax(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3019
            hid = layers.fc(input=data, size=20)
3020
            return (layers.softmax(hid, axis=1))
D
dangqingqing 已提交
3021

3022 3023 3024 3025
    def make_space_to_depth(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
J
JiabinYang 已提交
3026
                name='data',
J
JiabinYang 已提交
3027 3028 3029
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
3030
            return (layers.space_to_depth(data, 3))
J
JiabinYang 已提交
3031

3032 3033 3034 3035 3036
    def make_lrn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
            return (layers.lrn(data))
3037

3038 3039 3040 3041
    def make_get_places(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            get_places(device_count=1)
X
xuezhong 已提交
3042

3043
    @prog_scope()
3044
    def make_nce(self):
Y
Yang Yu 已提交
3045 3046
        window_size = 5
        words = []
3047
        for i in range(window_size):
Y
Yang Yu 已提交
3048
            words.append(
3049
                self._get_data(
Y
Yang Yu 已提交
3050 3051 3052
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
3053
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3054 3055

        embs = []
3056
        for i in range(window_size):
Y
Yang Yu 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
3074
        avg_loss = layers.mean(loss)
3075
        return (avg_loss)
Y
Yang Yu 已提交
3076

3077 3078 3079 3080 3081 3082
    def make_multiplex(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3083
            out = layers.multiplex(inputs=[x1, x2], index=index)
3084 3085 3086 3087 3088 3089 3090
            return (out)

    def make_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3091 3092
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
3093 3094 3095
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3096
            loss = layers.softmax_with_cross_entropy(x, y)
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
            return (loss4)
3112 3113 3114 3115 3116 3117

    def make_smooth_l1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3118
            loss = layers.smooth_l1(x, y)
3119
            return (loss)
3120

3121 3122 3123 3124
    def make_scatter(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
3125 3126 3127 3128
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
3129
            idx = self._get_data(
3130
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
3131
            updates = self._get_data(
3132 3133 3134 3135 3136
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
3137
            return (out)
Y
yangyaming 已提交
3138

3139 3140 3141 3142 3143 3144
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            return (one_hot_label)

3145 3146 3147 3148 3149
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3150 3151
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
3152 3153
                label=one_hot_label, epsilon=0.1, dtype="int32")
            return (smooth_label)
3154

3155 3156 3157 3158 3159 3160 3161
    def make_topk(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            return (values)
            return (indices)
J
jerrywgz 已提交
3162

3163 3164 3165 3166
    def make_resize_bilinear(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3167
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3168
            return (output)
K
Kaipeng Deng 已提交
3169 3170 3171 3172 3173 3174

    def make_resize_bilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3175
            return (output)
3176

3177
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3195 3196 3197
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3198
            output = layers.resize_nearest(x, out_shape=[12, 12])
3199
            return (output)
K
Kaipeng Deng 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236

    def make_resize_nearest_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
            return (output)

    def make_resize_trilinear(self):
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
            return (output)

    def make_resize_trilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3237
            return (output)
3238

3239 3240 3241 3242
    def make_polygon_box_transform(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3243
            output = layers.polygon_box_transform(input=x)
3244
            return (output)
3245

3246 3247 3248 3249
    def make_l2_normalize(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3250
            output = layers.l2_normalize(x, axis=1)
3251
            return output
3252

3253 3254 3255 3256 3257
    def make_crop(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
3258
            output = layers.crop(x, shape=y)
3259 3260 3261 3262 3263
            return (output)

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
3264 3265
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
3266
            return (iou)
W
whs 已提交
3267

3268 3269 3270 3271
    def make_argsort(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3272
            out, ids = layers.argsort(input=data, axis=1)
3273 3274 3275 3276 3277 3278 3279
            return (out)
            return (ids)

    def make_rank_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            label = self._get_data(
3280 3281 3282 3283
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
3284
            left = self._get_data(
3285 3286 3287 3288
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
3289
            right = self._get_data(
3290 3291 3292 3293 3294
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
3295
            return (out)
3296

3297 3298 3299 3300
    def make_shape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
B
Bai Yifan 已提交
3301
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
3302
            out = layers.shape(input)
3303
            return (out)
B
Bai Yifan 已提交
3304

3305 3306 3307 3308
    def make_pad2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
W
whs 已提交
3309
                name="input", shape=[3, 100, 100], dtype="float32")
3310
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
3311 3312 3313 3314 3315 3316
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
3317 3318 3319 3320 3321 3322
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
3323 3324
            return (out)
            return (out_1)
W
whs 已提交
3325

3326 3327 3328 3329
    def make_prelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
J
jerrywgz 已提交
3330 3331 3332 3333 3334 3335 3336
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
3337
            return (out)
J
jerrywgz 已提交
3338

3339 3340 3341 3342
    def make_soft_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3343
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
3344
            return (out)
T
tensor-tang 已提交
3345

3346 3347 3348 3349
    def make_sigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3350
            out = layers.sigmoid(input, name='sigmoid')
3351
            return (out)
T
tensor-tang 已提交
3352

3353 3354 3355 3356
    def make_exp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3357
            out = layers.exp(input, name='exp')
3358
            return (out)
T
tensor-tang 已提交
3359

3360 3361 3362 3363
    def make_tanh(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3364
            out = layers.tanh(input, name='tanh')
3365
            return (out)
T
tensor-tang 已提交
3366

3367 3368 3369 3370
    def make_tanh_shrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3371
            out = layers.tanh_shrink(input, name='tanh_shrink')
3372
            return (out)
T
tensor-tang 已提交
3373

3374 3375 3376 3377
    def make_sqrt(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3378
            out = layers.sqrt(input, name='sqrt')
3379
            return (out)
T
tensor-tang 已提交
3380

3381 3382 3383 3384
    def make_abs(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3385
            out = layers.abs(input, name='abs')
3386
            return (out)
T
tensor-tang 已提交
3387

3388 3389 3390 3391
    def make_ceil(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3392
            out = layers.ceil(input, name='ceil')
3393
            return (out)
T
tensor-tang 已提交
3394

3395 3396 3397 3398
    def make_floor(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3399
            out = layers.floor(input, name='floor')
3400
            return (out)
T
tensor-tang 已提交
3401

3402 3403 3404 3405
    def make_cos(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3406
            out = layers.cos(input, name='cos')
3407
            return (out)
T
tensor-tang 已提交
3408

3409 3410 3411 3412
    def make_sin(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3413
            out = layers.sin(input, name='sin')
3414
            return (out)
T
tensor-tang 已提交
3415

3416 3417 3418 3419
    def make_round(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3420
            out = layers.round(input, name='round')
3421
            return (out)
T
tensor-tang 已提交
3422

3423 3424 3425 3426
    def make_reciprocal(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3427
            out = layers.reciprocal(input, name='reciprocal')
3428
            return (out)
T
tensor-tang 已提交
3429

3430 3431 3432 3433
    def make_square(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3434
            out = layers.square(input, name='square')
3435
            return (out)
T
tensor-tang 已提交
3436

3437 3438 3439 3440
    def make_softplus(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3441
            out = layers.softplus(input, name='softplus')
3442
            return (out)
T
tensor-tang 已提交
3443

3444 3445 3446 3447
    def make_softsign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3448
            out = layers.softsign(input, name='softsign')
3449
            return (out)
T
tensor-tang 已提交
3450

K
Kaipeng Deng 已提交
3451 3452 3453 3454 3455 3456 3457
    def make_mish(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
            return (out)

3458 3459 3460 3461 3462
    def make_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3463 3464
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3465
            return (out)
3466

3467 3468 3469 3470 3471
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3472
            out = layers.bpr_loss(x, label)
3473
            return (out)
3474

3475 3476 3477 3478
    def make_expand(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
3479
            out = layers.expand(x, [1, 2])
3480
            return out
W
whs 已提交
3481

3482 3483 3484 3485 3486
    def make_uniform_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
3487
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3488
            return (out)
G
fix  
gongweibao 已提交
3489

3490 3491 3492
    def make_gaussian_random(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
G
fix  
gongweibao 已提交
3493
            out = layers.gaussian_random(shape=[20, 30])
3494
            return (out)
G
fix  
gongweibao 已提交
3495

3496 3497 3498 3499
    def make_sampling_id(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
G
fix  
gongweibao 已提交
3500 3501 3502 3503
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
3504 3505

            out = layers.sampling_id(x)
3506
            return (out)
G
fix  
gongweibao 已提交
3507

3508 3509 3510 3511 3512
    def make_gaussian_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
3513 3514 3515

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
3516
            return (out)
G
fix  
gongweibao 已提交
3517

3518 3519 3520 3521 3522
    def make_sum(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
3523 3524

            out = layers.sum(input)
3525
            return (out)
G
fix  
gongweibao 已提交
3526

3527
    def make_slice(self):
G
fix  
gongweibao 已提交
3528 3529 3530 3531
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3532 3533 3534
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
G
fix  
gongweibao 已提交
3535 3536 3537
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3538
            return out
G
merge  
gongweibao 已提交
3539

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    def make_scale_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False)

            out = layers.scale(input, scale=scale_var)
            return out

3554 3555 3556 3557
    def make_softshrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
3558
            out = layers.softshrink(input, alpha=0.3)
3559
            return (out)
G
fix  
gongweibao 已提交
3560

M
minqiyang 已提交
3561
    def make_iou_similarity(self):
3562 3563
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
3564 3565
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3566
            out = layers.iou_similarity(x, y, name='iou_similarity')
3567 3568 3569 3570 3571 3572 3573
            return (out)

    def make_grid_sampler(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3574
            out = layers.grid_sampler(x, grid)
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
            return (out)

    def make_bilinear_tensor_product_layer(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
            return (out)

    def make_batch_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)
            return (out)

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
    def make_batch_norm_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False)
            out = layers.batch_norm(data, momentum=momentum)
            return (out)

K
Kaipeng Deng 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
    def make_inplace_abn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
            return (out)

    def make_inplace_abn_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False)
            out = layers.inplace_abn(
                data, momentum=momentum, act='elu', act_alpha=2.0)
            return (out)

3629 3630 3631 3632
    def make_range(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            layers.range(0, 10, 2, 'int32')
3633 3634 3635 3636 3637 3638
            layers.range(0.1, 10.0, 0.2, 'float32')
            layers.range(0.1, 10.0, 0.2, 'float64')
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
            y = layers.range(start, end, step, 'float64')
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
            return y

    def make_spectral_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False)
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            return (out)

    def make_kldiv_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
3655 3656 3657 3658 3659
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
3660
            target = self._get_data(
M
minqiyang 已提交
3661 3662 3663 3664
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            return (loss)

    def make_temporal_shift(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
            return (out)

    def make_shuffle_channel(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
            return (out)

M
minqiyang 已提交
3682
    def make_fsp_matrix(self):
3683 3684 3685 3686 3687 3688 3689
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            return (out)

M
minqiyang 已提交
3690 3691 3692 3693 3694 3695 3696
    def make_pixel_shuffle(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
            return (out)

R
ruri 已提交
3697 3698 3699 3700 3701 3702 3703 3704
    def make_mse_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
            return (out)

3705 3706 3707 3708 3709 3710 3711 3712
    def make_square_error_cost(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
            return (out)

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))

    def test_linear_chain_crf(self):
        with self.static_graph():
            label_dict_len = 10
3727 3728 3729
            feature = layers.data(name='feature', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10)
3730
            crf = layers.linear_chain_crf(
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
                input=emission, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=emission, param_attr=ParamAttr(name="crfw"))
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_linear_chain_crf_padding(self):
        with self.static_graph():
            label_dict_len, max_len = 10, 20
            feature = layers.data(
                name='feature', shape=[max_len, 784], dtype='float32')
            label = layers.data(name='label', shape=[max_len], dtype='int64')
            length = layers.data(name='length', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
            crf = layers.linear_chain_crf(
                input=emission,
                label=label,
                length=length,
                param_attr=ParamAttr(name="crfw"))
3755
            crf_decode = layers.crf_decoding(
3756 3757 3758
                input=emission,
                length=length,
                param_attr=ParamAttr(name="crfw"))
3759 3760 3761 3762 3763
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
3764
                seq_length=length,
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
            return (output)

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3784
            # case 1
3785 3786 3787
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
3788 3789 3790
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3791
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3792 3793 3794 3795 3796 3797
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3798

W
whs 已提交
3799
    def test_affine_grid(self):
3800
        with self.static_graph():
W
whs 已提交
3801 3802 3803 3804
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3805
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
W
whs 已提交
3806 3807 3808 3809 3810
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3811

W
wangchaochaohu 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides)
            return out

3823 3824 3825 3826 3827 3828 3829 3830
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64')
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64')
            return out

3831 3832 3833 3834 3835 3836 3837 3838
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            return (output)
3839

3840 3841 3842 3843 3844 3845 3846
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            return (layers.sequence_expand(x=x, y=y, ref_level=1))
3847

3848 3849 3850 3851 3852 3853
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            return (out)
3854

3855 3856 3857 3858
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3859
            length = layers.data(name='length', shape=[], dtype='int64')
3860
            return (layers.sequence_unpad(x=x, length=length))
3861

3862 3863 3864 3865 3866 3867 3868
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
            return (layers.sequence_softmax(seq))
3869

3870 3871 3872 3873 3874 3875
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
            return (out)
3876

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            return (out)
W
whs 已提交
3899

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            return (out)
W
whs 已提交
3911

J
Jiawei Wang 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x1 = layers.data(
                name='Ins', shape=[32, 1], dtype='float32', lod_level=0)
            x2 = layers.data(
                name='Ins_tag',
                shape=[32, 1],
                dtype='int64',
                lod_level=0,
                stop_gradient=True)
            x3 = layers.create_global_var(
                shape=[1, 1],
                value=20,
                dtype='int64',
                persistable=True,
                force_cpu=True,
                name='Filter_tag')
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0)
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            return (out1)

3944 3945 3946 3947 3948 3949 3950 3951
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2)
            return (sum)

S
ShenLiang 已提交
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                act="relu")
        return (out)

S
ShenLiang 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32")
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                max_rank=3)
            return (out)

3986
    def test_roi_pool(self):
3987 3988 3989 3990
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

3991
        with self.static_graph():
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
            static_res = self.get_static_graph_result(
                feed={'x': x_np,
                      'rois': rois_np,
                      'rois_num': rois_num_np},
                fetch_list=[output])[0]

        with self.dynamic_graph():
4003 4004 4005 4006 4007 4008 4009 4010
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy)
                dy_eager_res_value = dy_eager_res[0].numpy()

4011 4012 4013 4014 4015 4016 4017
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy)
            dy_res_value = dy_res[0].numpy()
        self.assertTrue(np.array_equal(static_res, dy_res_value))
4018
        self.assertTrue(np.array_equal(static_res, dy_eager_res_value))
4019 4020 4021 4022 4023 4024 4025 4026

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4027 4028 4029 4030
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4031
        with self.static_graph():
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
            static_res = self.get_static_graph_result(
                feed={'x': x_np,
                      'rois': rois_np,
                      'rois_num': rois_num_np},
                fetch_list=[output])[0]

        with self.dynamic_graph():
4043 4044 4045 4046 4047 4048 4049 4050
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy)
                dy_eager_res_value = dy_eager_res.numpy()

4051 4052 4053 4054 4055 4056
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy)
            dy_res_value = dy_res.numpy()
4057
        self.assertTrue(np.array_equal(static_res, dy_eager_res_value))
4058
        self.assertTrue(np.array_equal(static_res, dy_res_value))
4059

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
    def test_dice_loss(self):
        num_classes = 4
        eps = 1e-6
        input_np = np.random.rand(2, 3, num_classes).astype('float32')
        label_np = np.random.randint(0, num_classes, [2, 3, 1], dtype=np.int64)

        with self.static_graph():
            input_ = layers.data(
                name="input", shape=[None, 3, num_classes], dtype="float32")
            label_ = layers.data(
                name="label", shape=[None, 3, 1], dtype="int64")
            output = layers.dice_loss(input_, label_, eps)
            static_res = self.get_static_graph_result(
                feed={'input': input_np,
                      'label': label_np},
                fetch_list=[output])[0]

        with self.dynamic_graph():
4078 4079 4080 4081 4082 4083
            with _test_eager_guard():
                input_ = base.to_variable(input_np)
                label_ = base.to_variable(label_np)
                dy_eager_res = layers.dice_loss(input_, label_, eps)
                dy_eager_res_value = dy_eager_res.numpy()

4084 4085 4086 4087 4088
            input_ = base.to_variable(input_np)
            label_ = base.to_variable(label_np)
            dy_res = layers.dice_loss(input_, label_, eps)
            dy_res_value = dy_res.numpy()
        self.assertTrue(np.array_equal(static_res, dy_res_value))
4089
        self.assertTrue(np.array_equal(static_res, dy_eager_res_value))
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            return (output)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            return (out)

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4])

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
            return (out)

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            return (out)
4132

Z
zhoukunsheng 已提交
4133 4134 4135 4136 4137 4138 4139
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4140
    def test_deformable_conv(self):
4141
        with self.static_graph():
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            mask = layers.data(
                name='mask',
                append_batch_size=False,
                shape=[2, 9, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)

    def test_deformable_conv2(self):
        with self.static_graph():
            input = fluid.data(
                name='input', shape=[None, 3, None, None], dtype="float32")
            offset = fluid.data(
                name='offset', shape=[None, 18, None, None], dtype="float32")
            mask = fluid.data(
                name='mask', shape=[None, 9, None, None], dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
4178 4179 4180 4181
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)
4182

4183 4184 4185 4186 4187 4188
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
            return (out)

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1)
            return concat1, concat2

C
cjt222 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
    def test_deform_roi_pooling(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1)
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1)
        return (out)

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
    def test_deformable_conv_v1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=None,
                num_filters=2,
                filter_size=3,
                padding=1,
                modulated=False)
            return (out)

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
    def test_retinanet_target_assign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32')
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
4283
                dtype='int32')
4284 4285 4286 4287
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
4288
                dtype='int32')
4289 4290 4291 4292 4293 4294 4295 4296 4297
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            return (layers.retinanet_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes,
                gt_labels, is_crowd, im_info, 10))

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
    def test_sigmoid_focal_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32')
            fg_num = layers.data(
                name='fg_num',
                shape=[1],
                append_batch_size=False,
                dtype='int32')
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2., alpha=0.25)
            return (out)

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
    def test_addmm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
            x = layers.data(
                name='x',
                shape=[3, 2],
                append_batch_size=False,
                dtype='float32')
            y = layers.data(
                name='y',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')

            out = paddle.addmm(input=input, x=x, y=y)
            return (out)

4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
    def test_retinanet_detection_output(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32')
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32')
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
                nms_eta=1.)
            return (nmsed_outs)

4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64')
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64')
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32')
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length)
            return (output)

4394 4395 4396 4397 4398 4399 4400 4401 4402
    def test_edit_distance(self):
        with self.static_graph():
            predict = layers.data(
                name='predict', shape=[-1, 1], dtype='int64', lod_level=1)
            label = layers.data(
                name='label', shape=[-1, 1], dtype='int64', lod_level=1)
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32')
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32')
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32')

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
                        batch_first=batch_first)

Y
Yu Yang 已提交
4426

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32')
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21)
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
        super(ExampleNet, self).__init__()
        self.weight = self.create_parameter(
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False))

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
class MyLayer(paddle.nn.Layer):
    def __init__(self):
        super(MyLayer, self).__init__()
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
        super(MySuperLayer, self).__init__()
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4519
if __name__ == '__main__':
4520
    paddle.enable_static()
Y
Yu Yang 已提交
4521
    unittest.main()