test_layers.py 127.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19
import contextlib
import numpy as np
20
from decorator_helper import prog_scope
21 22
import inspect
from six.moves import filter
23 24 25

import paddle
import paddle.fluid as fluid
26
from paddle.fluid.layers.device import get_places
27 28 29
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
30
from paddle.fluid import core
J
jerrywgz 已提交
31
from paddle.fluid.initializer import Constant
32 33
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
34 35
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
36
from paddle.fluid.dygraph import to_variable
37 38 39 40 41 42 43 44 45 46 47


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59 60 61 62 63

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

64 65 66 67 68 69
    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
70 71 72
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
73 74
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
80 81 82 83 84 85
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield


class TestLayer(LayerTest):
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
            def __init__(self, name_scope, fc1_size=4):
                super(CustomLayer, self).__init__(name_scope)
                self.fc1 = nn.FC('fc1',
                                 size=fc1_size,
                                 bias_attr=False,
                                 num_flatten_dims=1)
                self.fc2 = nn.FC('fc2',
                                 size=1,
                                 bias_attr=False,
                                 num_flatten_dims=1)

            def forward(self, x, do_fc2=False):
                ret = self.fc1(x)
                if do_fc2:
                    ret = self.fc2(ret)
                return ret

        with self.dynamic_graph():
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
            custom = CustomLayer('custom', fc1_size=2)
            ret = custom(x, do_fc2=False)
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2]))
            ret = custom(x, do_fc2=True)
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))

S
songyouwei 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            ret = linear(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
            t = base.to_variable(inp)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

        inp = np.ones([3, 32], dtype='float32')
        with self.dynamic_graph():
            t = base.to_variable(inp)
            linear = nn.Linear(32, 4, bias_attr=False)
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()
        with self.dynamic_graph():
            t = base.to_variable(inp)
            fc = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
            dy_ret2 = fc(t)
            dy_ret_value2 = dy_ret2.numpy()
        self.assertTrue(np.array_equal(dy_ret_value, dy_ret_value2))

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    def test_fc(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            ret = layers.fc(t, size=4, bias_attr=False, num_flatten_dims=1)
            ret2 = layers.fc(ret, size=4)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret2])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
            fc2 = nn.FC('fc2', size=4)
            ret = fc1(t)
            ret2 = fc2(ret)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret2])[0]
        with self.dynamic_graph():
            t = base.to_variable(inp)
            fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
            fc2 = nn.FC('fc2', size=4)
            ret = fc1(t)
            dy_ret = fc2(ret)
179
            dy_ret_value = dy_ret.numpy()
180 181

        self.assertTrue(np.array_equal(static_ret, static_ret2))
182
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        with self.dynamic_graph():
            custom_weight = np.random.randn(1024, 4).astype("float32")
            weight_attr1 = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            fc1 = fluid.dygraph.FC("fc1",
                                   4,
                                   num_flatten_dims=1,
                                   param_attr=weight_attr1)
            out1 = fc1(base.to_variable(inp))
            loss1 = fluid.layers.reduce_mean(out1)

            fc1_weight_init = fc1.weight.detach()
            fc1_bias_init = fc1.bias.detach()

            loss1.backward()
200 201
            optimizer1 = fluid.optimizer.SGD(learning_rate=0.1,
                                             parameter_list=fc1.parameters())
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            optimizer1.minimize(loss1)

            fc1_weight_updated = fc1.weight.detach()

        with self.dynamic_graph():
            weight_attr2 = fluid.ParamAttr(
                initializer=fluid.initializer.Uniform())
            fc2 = fluid.dygraph.FC("fc2",
                                   4,
                                   num_flatten_dims=1,
                                   param_attr=weight_attr2)
            out2 = fc2(base.to_variable(inp))

            self.assertFalse(
                np.array_equal(fc1_weight_init.numpy(), fc2.weight.numpy()))
            self.assertFalse(np.array_equal(out1.numpy(), out2.numpy()))

            mismatched_weight = np.random.randn(4, 4).astype("float32")
H
hong 已提交
220
            with self.assertRaises(AssertionError):
221 222 223 224 225 226 227
                fc2.weight.set_value(mismatched_weight)
            fc2.weight.set_value(fc1_weight_init)
            fc2.bias.set_value(fc1_bias_init)

            out2 = fc2(base.to_variable(inp))
            loss2 = fluid.layers.reduce_mean(out2)
            loss2.backward()
228 229
            optimizer2 = fluid.optimizer.SGD(learning_rate=0.1,
                                             parameter_list=fc2.parameters())
230 231 232 233 234 235 236 237 238 239 240 241
            optimizer2.minimize(loss2)

            self.assertTrue(
                np.array_equal(fc2.weight.numpy(), fc1_weight_updated.numpy()))
            self.assertTrue(np.array_equal(out1.numpy(), out2.numpy()))

            fc2.weight = fc1.weight
            fc2.bias = fc1.bias
            self.assertTrue(
                np.array_equal(fc2.weight.numpy(), fc1.weight.numpy()))
            self.assertTrue(np.array_equal(fc2.bias.numpy(), fc1.bias.numpy()))

242 243 244 245 246 247 248 249
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
250 251 252 253
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
254 255 256 257 258 259 260 261
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
262
            lm = nn.LayerNorm(
263
                normalized_shape=[32, 32],
264 265
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
266 267 268 269
            ret = lm(t)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
270
            lm = nn.LayerNorm(
271
                normalized_shape=[32, 32],
272 273
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
274
            dy_ret = lm(base.to_variable(inp))
275
            dy_ret_value = dy_ret.numpy()
276 277
        with self.dynamic_graph():
            lm = nn.LayerNorm(
278
                normalized_shape=[32, 32],
279 280 281 282 283 284 285 286 287
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
288

289
        self.assertTrue(np.array_equal(static_ret, static_ret2))
290
        self.assertTrue(np.array_equal(dy_ret_value, static_ret2))
291

292 293 294 295 296 297 298 299
        with self.dynamic_graph():
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

300 301 302 303 304 305 306 307 308 309 310
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
311
            dy_ret_value = dy_ret.numpy()
312

313
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones(
                        [3, 3], dtype='float32'),
                    't2': np.ones(
                        [3, 3], dtype='float32')
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
332
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
333
            dy_ret_value = dy_ret.numpy()
334

335
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
336

337 338 339 340 341 342 343 344 345 346 347
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
348 349
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
350 351 352 353 354 355 356 357
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
358 359
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
360
            dy_ret = conv2d(base.to_variable(images))
361
            dy_ret_value = dy_ret.numpy()
362

363 364 365
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
366 367 368 369
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                bias_attr=False)
370 371 372
            dy_ret = conv2d(base.to_variable(images))
            self.assertTrue(conv2d._bias_param is None)

373
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
374
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
375

376 377 378 379 380 381
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
382 383
            conv2d1 = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
384
            conv2d2 = nn.Conv2D(
385
                num_channels=3,
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

M
minqiyang 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
436
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
437 438 439 440 441 442 443 444
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
445
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
446 447
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))
448 449 450
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
451 452 453

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
454
            self.assertTrue(np.allclose(static_ret[i], dy_ret_value[i]))
M
minqiyang 已提交
455

456 457 458 459 460
        with self.dynamic_graph():
            custom_weight = np.random.randn(D, D * 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
461 462
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            self.assertFalse(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertTrue(np.array_equal(o1.numpy(), o2.numpy()))

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
            self.assertTrue(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            self.assertTrue(
                np.array_equal(gru1.bias.numpy(), gru2.bias.numpy()))

X
Xin Pan 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

            static_ret = self.get_static_graph_result(
                feed={
                    't': n,
                    't2': n2,
                    't3': n3,
                    't4': n4,
                    't5': n5,
                    't6': n6
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
521 522 523 524 525
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
526 527
            dy_ret_value = dy_ret.numpy()
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
X
Xin Pan 已提交
528 529 530 531 532 533

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
534 535
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
            max_ret = layers.elementwise_max(to_variable(n), to_variable(n2))
536 537
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
538

539 540
        self.assertTrue(np.allclose(n, min_ret_value))
        self.assertTrue(np.allclose(n2, max_ret_value))
X
Xin Pan 已提交
541

542 543 544 545 546 547 548 549 550 551 552 553 554
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
555
            out = layers.sequence_conv(seq, 2, act='sigmoid')
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]

        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
573
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
574 575 576 577 578 579 580 581 582 583 584
            out = seq_conv(seq)
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]
        self.assertTrue(
585
            np.array_equal(np.array(static_rlt), np.array(static_rlt2)))
586 587 588 589 590 591

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
592 593
                input=img,
                num_filters=10,
594
                filter_size=27,
595 596
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
597 598 599 600 601
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
602
                num_channels=3,
603
                num_filters=10,
604
                filter_size=27,
605 606
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
607 608 609 610 611
            out = conv2d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv2d_transpose = nn.Conv2DTranspose(
612
                num_channels=3,
613
                num_filters=10,
614
                filter_size=27,
615 616
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
617
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
618
            dy_rlt_value = dy_rlt.numpy()
619
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
620
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt2))
621

622 623 624 625 626 627 628
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv2d1 = nn.Conv2DTranspose(
629
                num_channels=3, num_filters=3, filter_size=[2, 2])
630
            conv2d2 = nn.Conv2DTranspose(
631
                num_channels=3,
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
673 674 675 676 677 678
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
679 680 681 682

            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
683

684 685 686 687 688 689 690 691 692 693 694
        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
695
            btp = nn.BilinearTensorProduct(
696 697
                3,
                3,
698 699 700
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
701 702 703 704 705
            out = btp(data_x, data_y)
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.dynamic_graph():
706
            btp = nn.BilinearTensorProduct(
707 708
                3,
                3,
709 710 711
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
712
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
713
            dy_rlt_value = dy_rlt.numpy()
714
        with self.dynamic_graph():
715
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
716 717
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
718
            dy_rlt2_value = dy_rlt2.numpy()
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        with self.static_graph():
            data_x2 = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y2 = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid')

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out2])[0]

737
        self.assertTrue(np.array_equal(dy_rlt2_value, static_rlt3))
738
        self.assertTrue(np.array_equal(static_rlt2, static_rlt))
739
        self.assertTrue(np.array_equal(dy_rlt_value, static_rlt))
740

741 742 743 744 745
        with self.dynamic_graph():
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
746
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
747
            btp2 = nn.BilinearTensorProduct(
748
                3, 3, 6, act='sigmoid', param_attr=weight_attr)
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
            self.assertTrue(
                np.array_equal(btp1.weight.numpy(), btp2.weight.numpy()))
            self.assertTrue(
                np.array_equal(btp1.bias.numpy(), btp2.bias.numpy()))

769
    def prelu_test(self, mode):
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            prelu = nn.PRelu(
                mode=mode,
790
                input_shape=data_t.shape,
791 792 793 794 795 796 797 798
                param_attr=ParamAttr(initializer=Constant(1.0)))
            out = prelu(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.dynamic_graph():
            prelu = nn.PRelu(
                mode=mode,
799
                input_shape=inp_np.shape,
800 801
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt = prelu(base.to_variable(inp_np))
802
            dy_rlt_value = dy_rlt.numpy()
803 804

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
805
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
806

807 808 809 810 811
        with self.dynamic_graph():
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
            prelu1 = nn.PRelu(
                mode=mode,
812
                input_shape=inp_np.shape,
813 814 815
                param_attr=ParamAttr(initializer=Constant(2.0)))
            prelu2 = nn.PRelu(
                mode=mode,
816
                input_shape=inp_np.shape,
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            prelu2.weight = prelu1.weight
            self.assertTrue(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))

832 833 834 835 836
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb])[0]
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb2 = nn.Embedding(
852
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
853 854 855 856 857
            emb_rlt = emb2(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
        with self.dynamic_graph():
            emb2 = nn.Embedding(
858
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
859 860
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
861 862

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
863
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
864

865 866 867 868 869
        with self.dynamic_graph():
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
870
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
871
            emb2 = nn.Embedding(
872
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False)
873 874 875 876 877 878 879 880 881 882 883 884 885
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
            self.assertTrue(np.array_equal(emb2.weight.numpy(), custom_weight))
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
            self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy()))

            emb2.weight = emb1.weight
            self.assertTrue(
                np.array_equal(emb1.weight.numpy(), emb2.weight.numpy()))

886 887 888 889
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
890
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
891 892 893 894 895 896 897
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
898
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
899 900
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
901 902 903 904 905
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

906
                emb = fluid.embedding(
907 908 909 910 911 912 913
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
914
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
915
            nce_loss = layers.nce(input=embs,
916
                                  label=wl,
917 918 919 920 921 922
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
923 924
                                  bias_attr='nce.b',
                                  sample_weight=sample_weights)
925 926 927 928 929 930 931 932 933 934
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss])[0]
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
935
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
936 937
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
938
            emb = nn.Embedding(
939
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
940 941 942 943 944 945 946 947 948 949

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
950 951
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs2.shape[1],
952 953 954 955 956
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
957 958
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
959

960 961
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
962 963 964 965 966 967 968 969 970 971 972
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2])[0]

        with self.dynamic_graph(force_to_use_cpu=True):
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
973 974
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
975
            emb = nn.Embedding(
976
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
977 978 979 980 981 982 983 984 985 986

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
987 988
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs3.shape[1],
989 990 991 992 993
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
994 995
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
996

997 998
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
999
            dy_rlt_value = dy_rlt.numpy()
1000 1001

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1002
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        with self.dynamic_graph(force_to_use_cpu=True):
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
            emb = nn.Embedding(
1015
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1026 1027
            nce1 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1028 1029 1030 1031 1032 1033 1034 1035
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
                          param_attr='nce1.w',
                          bias_attr='nce1.b',
                          sample_weight=sample_weights)

1036 1037
            nce2 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1038 1039 1040 1041
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
1042
                          param_attr=weight_attr,
1043 1044 1045
                          bias_attr='nce2.b',
                          sample_weight=sample_weights)

1046 1047 1048
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1049 1050 1051 1052
            self.assertFalse(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1053 1054
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
            self.assertTrue(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
            self.assertTrue(
                np.array_equal(nce1.weight.numpy(), nce2.weight.numpy()))
            self.assertTrue(
                np.array_equal(nce1.bias.numpy(), nce2.bias.numpy()))

L
lujun 已提交
1065 1066 1067 1068
    def test_conv3d(self):
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
1069
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1070 1071 1072 1073 1074 1075 1076 1077
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
1078
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1079 1080 1081 1082 1083 1084 1085 1086
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1087
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1088
            dy_ret = conv3d(base.to_variable(images))
1089
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1090

1091
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1092 1093
        self.assertTrue(np.allclose(static_ret, static_ret2))

1094 1095 1096 1097 1098 1099
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
1100
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1101
            conv3d2 = nn.Conv3D(
1102 1103 1104 1105
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

L
lujun 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.row_conv(input=x, future_context_size=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
1164
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
L
lujun 已提交
1165
                },
1166 1167
                fetch_list=[ret],
                with_lod=True)[0]
L
lujun 已提交
1168

1169
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_group_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.group_norm(input=X, groups=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1206
            groupNorm = nn.GroupNorm(channels=shape[1], groups=2)
L
lujun 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
            ret = groupNorm(X)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1217
            groupNorm = nn.GroupNorm(channels=shape[1], groups=2)
L
lujun 已提交
1218
            dy_ret = groupNorm(base.to_variable(input))
1219
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1220

1221
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place),
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1257
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
            ret = spectralNorm(Weight)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1268
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1269
            dy_ret = spectralNorm(base.to_variable(input))
1270
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1271

1272
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
1297
            ret = fluid.contrib.layers.tree_conv(
L
lujun 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            treeConv = nn.TreeConv(
1327
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
            ret = treeConv(NodesVector, EdgeSet)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.dynamic_graph():
            treeConv = nn.TreeConv(
1341
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1342
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
1343
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1344 1345

        self.assertTrue(np.allclose(static_ret, static_ret2))
1346
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1347

1348 1349 1350 1351 1352 1353
        with self.dynamic_graph():
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            treeConv1 = nn.TreeConv(
1354
                feature_size=5,
1355 1356 1357 1358 1359
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b')
            treeConv2 = nn.TreeConv(
1360
                feature_size=5,
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b')
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
            self.assertTrue(
                np.array_equal(treeConv1.weight.numpy(),
                               treeConv2.weight.numpy()))
            self.assertTrue(
                np.array_equal(treeConv1.bias.numpy(), treeConv2.bias.numpy()))

L
lujun 已提交
1387 1388 1389 1390 1391 1392 1393
    def test_conv3d_transpose(self):
        input_array = np.arange(0, 48).reshape(
            [2, 3, 2, 2, 2]).astype('float32')

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            out = layers.conv3d_transpose(
1394
                input=img, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1395 1396 1397 1398 1399
            static_rlt = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            conv3d_transpose = nn.Conv3DTranspose(
1400
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1401 1402 1403 1404 1405
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv3d_transpose = nn.Conv3DTranspose(
1406
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1407
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
1408
            dy_rlt_value = dy_rlt.numpy()
L
lujun 已提交
1409
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1410
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
L
lujun 已提交
1411

1412 1413 1414 1415 1416 1417 1418
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv3d1 = nn.Conv3DTranspose(
1419
                num_channels=3,
1420 1421 1422 1423 1424
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False)
            conv3d2 = nn.Conv3DTranspose(
1425
                num_channels=3,
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
            eye_tensor_rlt1 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[3])
            eye_tensor_rlt2 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[4, 3])
            diag_tensor = layers.eye(20)
1470 1471 1472 1473 1474 1475 1476 1477
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
        self.assertTrue(np.allclose(eye_tensor_value, np_eye))
        self.assertTrue(np.allclose(eye_tensor_rlt1_value, stack_rlt1))
        self.assertTrue(np.allclose(eye_tensor_rlt2_value, stack_rlt2))
        self.assertTrue(np.allclose(diag_tensor_value, np.eye(20)))
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

H
huangjun12 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
    def test_hard_swish(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.hard_swish(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.hard_swish(base.to_variable(t))
1499
            dy_ret_rlt = dy_ret.numpy()
H
huangjun12 已提交
1500

1501
        self.assertTrue(np.allclose(static_ret, dy_ret_rlt))
H
huangjun12 已提交
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
            static_ret = self.get_static_graph_result(
                feed={"a": value_a,
                      "b": value_b}, fetch_list=[cond])[0]
        with self.dynamic_graph():
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

1519 1520
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a,
                      "b1": value_b}, fetch_list=[cond1])[0]
        with self.dynamic_graph():
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

        #greater than
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a,
                      "b2": value_b}, fetch_list=[cond2])[0]
        with self.dynamic_graph():
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

        #greater equal
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a,
                      "b3": value_b}, fetch_list=[cond3])[0]
        with self.dynamic_graph():
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a,
                      "b4": value_b}, fetch_list=[cond4])[0]
        with self.dynamic_graph():
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a,
                      "b5": value_b}, fetch_list=[cond5])[0]
        with self.dynamic_graph():
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False)
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False)
            crop_shape1 = (1, 2, 4, 4)
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False)
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False)
            crop_offsets3 = [0, dim1, dim2, 0]

            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3)

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

Y
Yu Yang 已提交
1630

1631 1632 1633 1634 1635 1636 1637
class TestBook(LayerTest):
    def test_all_layers(self):
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1638 1639 1640
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
                        force_to_use_cpu=self._force_to_use_cpu)
                else:
                    assert method.__name__ in ('make_get_places')
                    continue

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
1662
                dy_result_value = dy_result.numpy()
1663

1664
        self.assertTrue(np.array_equal(static_result[0], dy_result_value))
1665 1666 1667 1668

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
1669
            shape = [self._batch_size] + shape
1670 1671 1672 1673 1674
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
M
minqiyang 已提交
1675 1676
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
1677
        elif dtype == 'int64':
M
minqiyang 已提交
1678 1679
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

    def _get_data(self,
                  name,
                  shape,
                  dtype,
                  set_feed_dict=True,
                  append_batch_size=True):
        if base.enabled():
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name)
        else:
            if set_feed_dict:
                self._feed_dict[name] = self._get_np_data(shape, dtype,
                                                          append_batch_size)
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size)

    def make_sampled_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
1704
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
1705
            label = self._get_data(name='Label', shape=[1], dtype='int64')
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
            num_samples = 25
            output = layers.sampled_softmax_with_cross_entropy(logits, label,
                                                               num_samples)
            return (output)

    def make_fit_a_line(self):
        with program_guard(
                fluid.default_main_program(),
                startup_program=fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
1716
            y_predict = layers.fc(input=x, size=1, act=None)
1717
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
1718
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
1719
            avg_cost = layers.mean(cost)
1720
            return (avg_cost)
Y
Yu Yang 已提交
1721

1722 1723 1724
    def make_recognize_digits_mlp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
1725
            # Change g_program, so the rest layers use `g_program`
1726 1727
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1728 1729
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
1730 1731 1732 1733
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
1734
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1735
            avg_cost = layers.mean(cost)
1736
            return (avg_cost)
Y
Yu Yang 已提交
1737

1738 1739 1740 1741 1742 1743
    def make_conv2d_transpose(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28)
1744

1745 1746 1747 1748
    def make_recognize_digits_conv(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            images = self._get_data(
Y
Yu Yang 已提交
1749
                name='pixel', shape=[1, 28, 28], dtype='float32')
1750
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1768
            avg_cost = layers.mean(cost)
1769
            return avg_cost
Y
Yu Yang 已提交
1770

1771 1772 1773
    def make_word_embedding(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
1774 1775
            dict_size = 10000
            embed_size = 32
1776 1777 1778 1779 1780 1781
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64')
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
1814
            avg_cost = layers.mean(cost)
1815
            return (avg_cost)
Y
Yu Yang 已提交
1816

1817 1818 1819 1820 1821
    def make_sigmoid_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
1822
            ignore_index = -1
1823 1824 1825 1826 1827 1828 1829 1830 1831
            return (layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index))

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
            return (layers.hsigmoid(input=x, label=y, num_classes=2))
W
weixing02 已提交
1832

J
JiabinYang 已提交
1833
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
1834 1835
        program2 = Program()
        with program_guard(program2):
1836 1837 1838
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
            path_table = self._get_data(
1839
                name='path_table', shape=[4, 6], dtype='int64')
1840
            path_code = self._get_data(
1841
                name='path_code', shape=[4, 6], dtype='int64')
1842 1843 1844 1845 1846 1847 1848
            return (layers.hsigmoid(
                input=x2,
                label=y2,
                num_classes=6,
                path_table=path_table,
                path_code=path_code,
                is_custom=True))
J
JiabinYang 已提交
1849

1850 1851 1852 1853 1854 1855 1856
    def make_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

K
Kaipeng Deng 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    def make_pool2d_infershape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

    def make_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32')
            return (layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1)))

1876 1877 1878 1879 1880
    def make_adaptive_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
1881
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
1882 1883 1884
            return (pool)
            return (mask)
            return (layers.adaptive_pool2d(x, 3, pool_type='avg'))
1885
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
1886 1887 1888 1889 1890 1891 1892 1893 1894
            return (pool)
            return (mask)

    def make_adaptive_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 224, 224], dtype='float32')
            return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
1895 1896
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
1897 1898 1899
            return (pool)
            return (mask)
            return (layers.adaptive_pool3d(x, 3, pool_type='avg'))
1900
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
1901 1902
            return (pool)
            return (mask)
1903

1904 1905 1906 1907
    def make_lstm_unit(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x_t_data = self._get_data(
Y
yangyaming 已提交
1908 1909
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
1910
            prev_hidden_data = self._get_data(
Y
yangyaming 已提交
1911 1912
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
1913
            prev_cell_data = self._get_data(
Y
yangyaming 已提交
1914 1915
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
1916 1917
            return (layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
1918

1919 1920 1921 1922
    def make_softmax(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
1923
            hid = layers.fc(input=data, size=20)
1924
            return (layers.softmax(hid, axis=1))
D
dangqingqing 已提交
1925

1926 1927 1928 1929
    def make_space_to_depth(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
J
JiabinYang 已提交
1930
                name='data',
J
JiabinYang 已提交
1931 1932 1933
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
1934
            return (layers.space_to_depth(data, 3))
J
JiabinYang 已提交
1935

1936 1937 1938 1939 1940
    def make_lrn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
            return (layers.lrn(data))
1941

1942 1943 1944 1945
    def make_get_places(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            get_places(device_count=1)
X
xuezhong 已提交
1946

1947
    @prog_scope()
1948
    def make_nce(self):
Y
Yang Yu 已提交
1949 1950
        window_size = 5
        words = []
1951
        for i in range(window_size):
Y
Yang Yu 已提交
1952
            words.append(
1953
                self._get_data(
Y
Yang Yu 已提交
1954 1955 1956
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
1957
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
1958 1959

        embs = []
1960
        for i in range(window_size):
Y
Yang Yu 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
1978
        avg_loss = layers.mean(loss)
1979
        return (avg_loss)
Y
Yang Yu 已提交
1980

1981 1982 1983 1984 1985 1986
    def make_multiplex(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
1987
            out = layers.multiplex(inputs=[x1, x2], index=index)
1988 1989 1990 1991 1992 1993 1994
            return (out)

    def make_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
1995 1996
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
1997 1998 1999
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

2000
            loss = layers.softmax_with_cross_entropy(x, y)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
            return (loss4)
2016 2017 2018 2019 2020 2021

    def make_smooth_l1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
2022
            loss = layers.smooth_l1(x, y)
2023
            return (loss)
2024

2025 2026 2027 2028
    def make_scatter(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
2029 2030 2031 2032
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
2033
            idx = self._get_data(
2034
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
2035
            updates = self._get_data(
2036 2037 2038 2039 2040
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
2041
            return (out)
Y
yangyaming 已提交
2042

2043 2044 2045 2046 2047 2048
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            return (one_hot_label)

2049 2050 2051 2052 2053
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
2054 2055
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
2056 2057
                label=one_hot_label, epsilon=0.1, dtype="int32")
            return (smooth_label)
2058

2059 2060 2061 2062 2063 2064 2065
    def make_topk(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            return (values)
            return (indices)
J
jerrywgz 已提交
2066

2067 2068 2069 2070
    def make_resize_bilinear(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
2071
            output = layers.resize_bilinear(x, out_shape=[12, 12])
2072
            return (output)
K
Kaipeng Deng 已提交
2073 2074 2075 2076 2077 2078

    def make_resize_bilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
2079
            return (output)
2080

2081
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

2099 2100 2101
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
2102
            output = layers.resize_nearest(x, out_shape=[12, 12])
2103
            return (output)
K
Kaipeng Deng 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

    def make_resize_nearest_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
            return (output)

    def make_resize_trilinear(self):
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
            return (output)

    def make_resize_trilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
2141
            return (output)
2142

2143 2144 2145 2146
    def make_polygon_box_transform(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
2147
            output = layers.polygon_box_transform(input=x)
2148
            return (output)
2149

2150 2151 2152 2153
    def make_l2_normalize(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
2154
            output = layers.l2_normalize(x, axis=1)
2155
            return output
2156

2157 2158 2159 2160
    def make_maxout(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[8, 6, 6], dtype="float32")
Q
qingqing01 已提交
2161
            output = layers.maxout(x=data, groups=2)
2162 2163 2164 2165 2166 2167 2168
            return (output)

    def make_crop(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
2169
            output = layers.crop(x, shape=y)
2170 2171 2172 2173 2174
            return (output)

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
2175 2176
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
2177
            return (iou)
W
whs 已提交
2178

2179 2180 2181 2182
    def make_argsort(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
2183
            out, ids = layers.argsort(input=data, axis=1)
2184 2185 2186 2187 2188 2189 2190
            return (out)
            return (ids)

    def make_rank_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            label = self._get_data(
2191 2192 2193 2194
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
2195
            left = self._get_data(
2196 2197 2198 2199
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
2200
            right = self._get_data(
2201 2202 2203 2204 2205
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
2206
            return (out)
2207

2208 2209 2210 2211
    def make_shape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
B
Bai Yifan 已提交
2212
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
2213
            out = layers.shape(input)
2214
            return (out)
B
Bai Yifan 已提交
2215

2216 2217 2218 2219
    def make_pad2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
W
whs 已提交
2220
                name="input", shape=[3, 100, 100], dtype="float32")
2221
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
2222 2223 2224 2225 2226 2227
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
2228 2229 2230 2231 2232 2233
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
2234 2235
            return (out)
            return (out_1)
W
whs 已提交
2236

2237 2238 2239 2240
    def make_prelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
J
jerrywgz 已提交
2241 2242 2243 2244 2245 2246 2247
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
2248
            return (out)
J
jerrywgz 已提交
2249

2250 2251 2252 2253
    def make_brelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2254
            out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
2255
            return (out)
T
tensor-tang 已提交
2256

2257 2258 2259 2260
    def make_leaky_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2261
            out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
2262
            return (out)
T
tensor-tang 已提交
2263

2264 2265 2266 2267
    def make_soft_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2268
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
2269
            return (out)
T
tensor-tang 已提交
2270

2271 2272 2273 2274
    def make_sigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2275
            out = layers.sigmoid(input, name='sigmoid')
2276
            return (out)
T
tensor-tang 已提交
2277

2278 2279 2280 2281
    def make_logsigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2282
            out = layers.logsigmoid(input, name='logsigmoid')
2283
            return (out)
T
tensor-tang 已提交
2284

2285 2286 2287 2288
    def make_exp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2289
            out = layers.exp(input, name='exp')
2290
            return (out)
T
tensor-tang 已提交
2291

2292 2293 2294 2295
    def make_tanh(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2296
            out = layers.tanh(input, name='tanh')
2297
            return (out)
T
tensor-tang 已提交
2298

2299 2300 2301 2302
    def make_tanh_shrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2303
            out = layers.tanh_shrink(input, name='tanh_shrink')
2304
            return (out)
T
tensor-tang 已提交
2305

2306 2307 2308 2309
    def make_sqrt(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2310
            out = layers.sqrt(input, name='sqrt')
2311
            return (out)
T
tensor-tang 已提交
2312

2313 2314 2315 2316
    def make_abs(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2317
            out = layers.abs(input, name='abs')
2318
            return (out)
T
tensor-tang 已提交
2319

2320 2321 2322 2323
    def make_ceil(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2324
            out = layers.ceil(input, name='ceil')
2325
            return (out)
T
tensor-tang 已提交
2326

2327 2328 2329 2330
    def make_floor(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2331
            out = layers.floor(input, name='floor')
2332
            return (out)
T
tensor-tang 已提交
2333

2334 2335 2336 2337
    def make_cos(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2338
            out = layers.cos(input, name='cos')
2339
            return (out)
T
tensor-tang 已提交
2340

2341 2342 2343 2344
    def make_sin(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2345
            out = layers.sin(input, name='sin')
2346
            return (out)
T
tensor-tang 已提交
2347

2348 2349 2350 2351
    def make_round(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2352
            out = layers.round(input, name='round')
2353
            return (out)
T
tensor-tang 已提交
2354

2355 2356 2357 2358
    def make_reciprocal(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2359
            out = layers.reciprocal(input, name='reciprocal')
2360
            return (out)
T
tensor-tang 已提交
2361

2362 2363 2364 2365
    def make_square(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2366
            out = layers.square(input, name='square')
2367
            return (out)
T
tensor-tang 已提交
2368

2369 2370 2371 2372
    def make_softplus(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2373
            out = layers.softplus(input, name='softplus')
2374
            return (out)
T
tensor-tang 已提交
2375

2376 2377 2378 2379
    def make_softsign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2380
            out = layers.softsign(input, name='softsign')
2381
            return (out)
T
tensor-tang 已提交
2382

2383 2384 2385 2386 2387
    def make_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2388 2389
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
2390
            return (out)
2391

2392 2393 2394 2395 2396
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2397
            out = layers.bpr_loss(x, label)
2398
            return (out)
2399

2400 2401 2402 2403
    def make_expand(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
2404
            out = layers.expand(x, [1, 2])
2405
            return out
W
whs 已提交
2406

2407 2408 2409 2410 2411
    def make_uniform_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2412
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
2413
            return (out)
G
fix  
gongweibao 已提交
2414

2415 2416 2417
    def make_gaussian_random(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
G
fix  
gongweibao 已提交
2418
            out = layers.gaussian_random(shape=[20, 30])
2419
            return (out)
G
fix  
gongweibao 已提交
2420

2421 2422 2423 2424
    def make_sampling_id(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
G
fix  
gongweibao 已提交
2425 2426 2427 2428
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
2429 2430

            out = layers.sampling_id(x)
2431
            return (out)
G
fix  
gongweibao 已提交
2432

2433 2434 2435 2436 2437
    def make_gaussian_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2438 2439 2440

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
2441
            return (out)
G
fix  
gongweibao 已提交
2442

2443 2444 2445 2446 2447
    def make_sum(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2448 2449

            out = layers.sum(input)
2450
            return (out)
G
fix  
gongweibao 已提交
2451

2452
    def make_slice(self):
G
fix  
gongweibao 已提交
2453 2454 2455 2456
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

2457 2458 2459
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
G
fix  
gongweibao 已提交
2460 2461 2462
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
2463
            return out
G
merge  
gongweibao 已提交
2464

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
    def make_scale_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False)

            out = layers.scale(input, scale=scale_var)
            return out

2479 2480 2481 2482
    def make_softshrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
2483
            out = layers.softshrink(input, alpha=0.3)
2484
            return (out)
G
fix  
gongweibao 已提交
2485

M
minqiyang 已提交
2486
    def make_iou_similarity(self):
2487 2488
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2489 2490
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
2491
            out = layers.iou_similarity(x, y, name='iou_similarity')
2492 2493 2494 2495 2496 2497 2498
            return (out)

    def make_grid_sampler(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
2499
            out = layers.grid_sampler(x, grid)
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
            return (out)

    def make_bilinear_tensor_product_layer(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
            return (out)

    def make_batch_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)
            return (out)

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
    def make_batch_norm_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False)
            out = layers.batch_norm(data, momentum=momentum)
            return (out)

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
    def make_range(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            layers.range(0, 10, 2, 'int32')
            y = layers.range(0.1, 10.0, 0.2, 'float32')
            return y

    def make_spectral_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False)
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            return (out)

    def make_kldiv_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2553 2554 2555 2556 2557
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
2558
            target = self._get_data(
M
minqiyang 已提交
2559 2560 2561 2562
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            return (loss)

    def make_temporal_shift(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
            return (out)

    def make_shuffle_channel(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
            return (out)

M
minqiyang 已提交
2580
    def make_fsp_matrix(self):
2581 2582 2583 2584 2585 2586 2587
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            return (out)

M
minqiyang 已提交
2588 2589 2590 2591 2592 2593 2594
    def make_pixel_shuffle(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
            return (out)

R
ruri 已提交
2595 2596 2597 2598 2599 2600 2601 2602
    def make_mse_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
            return (out)

2603 2604 2605 2606 2607 2608 2609 2610
    def make_square_error_cost(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
            return (out)

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))

    def test_linear_chain_crf(self):
        with self.static_graph():
            label_dict_len = 10
2625 2626 2627
            feature = layers.data(name='feature', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10)
2628
            crf = layers.linear_chain_crf(
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
                input=emission, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=emission, param_attr=ParamAttr(name="crfw"))
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_linear_chain_crf_padding(self):
        with self.static_graph():
            label_dict_len, max_len = 10, 20
            feature = layers.data(
                name='feature', shape=[max_len, 784], dtype='float32')
            label = layers.data(name='label', shape=[max_len], dtype='int64')
            length = layers.data(name='length', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
            crf = layers.linear_chain_crf(
                input=emission,
                label=label,
                length=length,
                param_attr=ParamAttr(name="crfw"))
2653
            crf_decode = layers.crf_decoding(
2654 2655 2656
                input=emission,
                length=length,
                param_attr=ParamAttr(name="crfw"))
2657 2658 2659 2660 2661
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
2662
                seq_length=length,
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
            return (output)

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2682
            # case 1
2683 2684 2685
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int64')
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
2696

W
whs 已提交
2697
    def test_affine_grid(self):
2698
        with self.static_graph():
W
whs 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
            out_shape = layers.data(
                name="out_shape", shape=[-1], dtype="float32")
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2710

W
wangchaochaohu 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides)
            return out

2722 2723 2724 2725 2726 2727 2728 2729
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64')
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64')
            return out

2730 2731 2732 2733 2734 2735 2736 2737
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            return (output)
2738

2739 2740 2741 2742 2743 2744 2745
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            return (layers.sequence_expand(x=x, y=y, ref_level=1))
2746

2747 2748 2749 2750 2751 2752
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            return (out)
2753

2754 2755 2756 2757
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
2758
            length = layers.data(name='length', shape=[], dtype='int64')
2759
            return (layers.sequence_unpad(x=x, length=length))
2760

2761 2762 2763 2764 2765 2766 2767
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
            return (layers.sequence_softmax(seq))
2768

2769 2770 2771 2772 2773 2774
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
            return (out)
2775

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            return (out)
W
whs 已提交
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            return (out)
W
whs 已提交
2810

J
Jiawei Wang 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x1 = layers.data(
                name='Ins', shape=[32, 1], dtype='float32', lod_level=0)
            x2 = layers.data(
                name='Ins_tag',
                shape=[32, 1],
                dtype='int64',
                lod_level=0,
                stop_gradient=True)
            x3 = layers.create_global_var(
                shape=[1, 1],
                value=20,
                dtype='int64',
                persistable=True,
                force_cpu=True,
                name='Filter_tag')
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
    def test_roi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_pool(x, rois, 7, 7, 0.6)
            return (output)

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.roi_align(x, rois, 14, 14, 0.5, 2)
            return (output)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            return (output)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            return (out)

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4])

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
            return (out)

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            return (out)
2896

Z
zhoukunsheng 已提交
2897 2898 2899 2900 2901 2902 2903
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

2904
    def test_deformable_conv(self):
2905
        with self.static_graph():
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            mask = layers.data(
                name='mask',
                append_batch_size=False,
                shape=[2, 9, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)

    def test_deformable_conv2(self):
        with self.static_graph():
            input = fluid.data(
                name='input', shape=[None, 3, None, None], dtype="float32")
            offset = fluid.data(
                name='offset', shape=[None, 18, None, None], dtype="float32")
            mask = fluid.data(
                name='mask', shape=[None, 9, None, None], dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
2942 2943 2944 2945
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)
2946

2947 2948 2949 2950 2951 2952
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
            return (out)

C
cjt222 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
    def test_deform_roi_pooling(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1)
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1)
        return (out)

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
    def test_deformable_conv_v1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=None,
                num_filters=2,
                filter_size=3,
                padding=1,
                modulated=False)
            return (out)

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
    def test_retinanet_target_assign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32')
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32')
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='float32')
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            return (layers.retinanet_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes,
                gt_labels, is_crowd, im_info, 10))

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
    def test_sigmoid_focal_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32')
            fg_num = layers.data(
                name='fg_num',
                shape=[1],
                append_batch_size=False,
                dtype='int32')
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2., alpha=0.25)
            return (out)

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
    def test_retinanet_detection_output(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32')
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32')
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
                nms_eta=1.)
            return (nmsed_outs)

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64')
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64')
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32')
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length)
            return (output)

3126 3127 3128 3129 3130 3131 3132 3133 3134
    def test_edit_distance(self):
        with self.static_graph():
            predict = layers.data(
                name='predict', shape=[-1, 1], dtype='int64', lod_level=1)
            label = layers.data(
                name='label', shape=[-1, 1], dtype='int64', lod_level=1)
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32')
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32')
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32')

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
                        batch_first=batch_first)

Y
Yu Yang 已提交
3158 3159 3160

if __name__ == '__main__':
    unittest.main()