提交 13958284 编写于 作者: S songyouwei 提交者: hong

Add dygraph Linear layer (#21265)

* add Linear layer
test=develop

* update unittest for coverage
test=develop
上级 d683b65b
......@@ -27,9 +27,10 @@ import numbers
import logging
__all__ = [
'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit',
'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'Linear', 'BatchNorm', 'Embedding',
'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct',
'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm',
'TreeConv'
]
......@@ -873,6 +874,101 @@ class Pool2D(layers.Layer):
return pool_out
class Linear(layers.Layer):
"""
Fully-connected linear transformation layer:
.. math::
Out = Act({XW + b})
where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.
Different from FC layer, Linear layer takes only one ``Tensor`` input.
The Linear layer multiplies input tensor with weight matrix and
produces an output Tensor of shape [N, *, `output_dim`],
where N is batch size and `*` means any number of additional dimensions.
If ``bias_attr`` is not None, a bias variable will be created and added to the output.
Finally, if ``act`` is not None, it will be applied to the output as well.
Parameters:
input_dim(int): The number of input units in this layer.
output_dim(int): The number of output units in this layer.
param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
weights(Parameter) of this layer. Default: None.
bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str, optional): Activation to be applied to the output of this layer. Default: None.
dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
Attributes:
**weight** (Parameter): the learnable weights of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Returns:
None
Examples:
.. code-block:: python
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear
import numpy as np
data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
with fluid.dygraph.guard():
linear = Linear(32, 64)
data = to_variable(data)
res = linear(data) # [30, 10, 64]
"""
def __init__(self,
input_dim,
output_dim,
param_attr=None,
bias_attr=None,
act=None,
dtype="float32"):
super(Linear, self).__init__()
self._act = act
self._dtype = dtype
self.weight = self.create_parameter(
shape=[input_dim, output_dim],
attr=param_attr,
dtype=dtype,
is_bias=False)
self.bias = self.create_parameter(
shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)
def forward(self, input):
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="matmul",
inputs={"X": input,
"Y": self.weight},
outputs={"Out": tmp},
attrs={
"transpose_X": False,
"transpose_Y": False,
"alpha": 1,
})
if self.bias:
pre_activation = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
self._helper.append_op(
type='elementwise_add',
inputs={'X': [tmp],
'Y': [self.bias]},
outputs={'Out': [pre_activation]},
attrs={'axis': len(input.shape) - 1})
else:
pre_activation = tmp
return self._helper.append_activation(pre_activation, act=self._act)
class FC(layers.Layer):
"""
This interface is used to construct a callable object of the ``FC`` class.
......
......@@ -110,6 +110,41 @@ class TestLayer(LayerTest):
ret = custom(x, do_fc2=True)
self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))
def test_linear(self):
inp = np.ones([3, 32, 32], dtype='float32')
with self.static_graph():
t = layers.data(
name='data',
shape=[3, 32, 32],
dtype='float32',
append_batch_size=False)
linear = nn.Linear(
32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
ret = linear(t)
static_ret = self.get_static_graph_result(
feed={'data': inp}, fetch_list=[ret])[0]
with self.dynamic_graph():
t = base.to_variable(inp)
linear = nn.Linear(
32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
dy_ret = linear(t)
dy_ret_value = dy_ret.numpy()
self.assertTrue(np.array_equal(static_ret, dy_ret_value))
inp = np.ones([3, 32], dtype='float32')
with self.dynamic_graph():
t = base.to_variable(inp)
linear = nn.Linear(32, 4, bias_attr=False)
dy_ret = linear(t)
dy_ret_value = dy_ret.numpy()
with self.dynamic_graph():
t = base.to_variable(inp)
fc = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
dy_ret2 = fc(t)
dy_ret_value2 = dy_ret2.numpy()
self.assertTrue(np.array_equal(dy_ret_value, dy_ret_value2))
def test_fc(self):
inp = np.ones([3, 32, 32], dtype='float32')
with self.static_graph():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册