test_layers.py 212.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36 37 38


class LayerTest(unittest.TestCase):
39

40 41 42 43 44 45 46 47
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
60
            paddle.seed(self.seed)
L
Leo Chen 已提交
61
            paddle.framework.random._manual_program_seed(self.seed)
62 63
            yield

64 65 66 67 68 69
    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
70 71 72
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
73 74
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
C
cnn 已提交
80
            paddle.seed(self.seed)
L
Leo Chen 已提交
81
            paddle.framework.random._manual_program_seed(self.seed)
82 83 84 85
            yield


class TestLayer(LayerTest):
86

87
    def test_custom_layer_with_kwargs(self):
88

89
        class CustomLayer(fluid.Layer):
90

91 92
            def __init__(self, input_size, linear1_size=4):
                super(CustomLayer, self).__init__()
93 94 95
                self.linear1 = nn.Linear(input_size,
                                         linear1_size,
                                         bias_attr=False)
96 97 98 99 100 101
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
102 103 104
                return ret

        with self.dynamic_graph():
105 106 107 108 109
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
110
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
111
                ret = custom(x, do_linear2=True)
112
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
113 114
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
115 116
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
117
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
118
            ret = custom(x, do_linear2=True)
119
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
120

121 122 123
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
124 125 126 127
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
128 129
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
130 131 132 133
            ret2 = fluid.layers.dropout(t,
                                        dropout_prob=0.35,
                                        seed=1,
                                        is_test=False)
134 135 136
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2])
        with self.dynamic_graph():
137 138 139 140
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
141 142 143 144
                dy_eager_ret2 = fluid.layers.dropout(t,
                                                     dropout_prob=0.35,
                                                     seed=1,
                                                     is_test=False)
145 146 147
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

148 149 150
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
151 152 153 154
            dy_ret2 = fluid.layers.dropout(t,
                                           dropout_prob=0.35,
                                           seed=1,
                                           is_test=False)
155 156 157
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

158 159
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
160

161 162 163
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
164

S
songyouwei 已提交
165 166 167
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
168 169 170 171
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
S
songyouwei 已提交
172 173 174
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            ret = linear(t)
175 176
            static_ret = self.get_static_graph_result(feed={'data': inp},
                                                      fetch_list=[ret])[0]
S
songyouwei 已提交
177
        with self.dynamic_graph():
178 179 180 181 182 183 184 185 186
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
187 188 189 190 191 192
            t = base.to_variable(inp)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

193 194
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
213 214 215 216 217 218 219 220 221 222 223
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
224 225 226 227
            t = layers.data(name='data',
                            shape=[3, 4, 4, 5],
                            dtype='float32',
                            append_batch_size=False)
228 229
            flatten = nn.Flatten()
            ret = flatten(t)
230 231
            static_ret = self.get_static_graph_result(feed={'data': inp},
                                                      fetch_list=[ret])[0]
232
        with self.dynamic_graph():
233 234 235 236 237 238
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

239 240 241 242 243
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

244 245
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
264 265 266 267 268 269 270 271
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

272 273 274
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
275 276 277 278
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
279 280 281 282
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
283 284
            static_ret = self.get_static_graph_result(feed={'data': inp},
                                                      fetch_list=[ret])[0]
285
        with self.static_graph():
286 287 288 289
            t = layers.data(name='data',
                            shape=[3, 32, 32],
                            dtype='float32',
                            append_batch_size=False)
290
            lm = nn.LayerNorm(
291
                normalized_shape=[32, 32],
292 293
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
294
            ret = lm(t)
295 296
            static_ret2 = self.get_static_graph_result(feed={'data': inp},
                                                       fetch_list=[ret])[0]
297
        with self.dynamic_graph():
298 299 300 301 302 303 304 305
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

306
            lm = nn.LayerNorm(
307
                normalized_shape=[32, 32],
308 309
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
310
            dy_ret = lm(base.to_variable(inp))
311
            dy_ret_value = dy_ret.numpy()
312

313
        with self.dynamic_graph():
314 315 316 317 318 319 320 321 322 323 324 325 326
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

327
            lm = nn.LayerNorm(
328
                normalized_shape=[32, 32],
329 330 331 332 333 334 335 336 337
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
338

339 340 341
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
342

343
        with self.dynamic_graph():
344 345 346 347 348 349 350 351
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

352 353 354 355 356 357 358
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
359 360 361 362
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
363
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
364 365
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
366
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
C
ceci3 已提交
367 368 369
                    fetch_list=[ret])[0]

            with self.dynamic_graph():
370 371 372 373 374 375
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
376 377 378 379
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
380 381
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
382

383 384 385 386 387
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
388 389
                feed={'t': np.ones([3, 3],
                                   dtype='float32')}, fetch_list=[ret])[0]
390 391

        with self.dynamic_graph():
392 393 394 395 396
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

397 398
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
399
            dy_ret_value = dy_ret.numpy()
400

401 402
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
403

404 405 406 407 408
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
409 410 411 412 413 414 415
            static_ret = self.get_static_graph_result(feed={
                't':
                np.ones([3, 3], dtype='float32'),
                't2':
                np.ones([3, 3], dtype='float32')
            },
                                                      fetch_list=[ret])[0]
416 417

        with self.dynamic_graph():
418 419 420
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
421 422
                dy_eager_ret = layers.matmul(base.to_variable(t),
                                             base.to_variable(t2))
423 424
                dy_eager_ret_value = dy_eager_ret.numpy()

425 426
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
427
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
428
            dy_ret_value = dy_ret.numpy()
429

430 431
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
432

433 434 435 436 437
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
438
                feed={'pixel': np.ones([2, 3, 5, 5], dtype='float32')},
439 440 441 442
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
443 444 445
            conv2d = nn.Conv2D(num_channels=3,
                               num_filters=3,
                               filter_size=[2, 2])
446 447
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
448
                feed={'pixel': np.ones([2, 3, 5, 5], dtype='float32')},
449 450 451
                fetch_list=[ret])[0]

        with self.dynamic_graph():
452 453
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
454 455 456
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2])
457 458 459
                dy_eager_ret = conv2d(base.to_variable(images))
                dy_eager_ret_value = dy_eager_ret.numpy()

460
            images = np.ones([2, 3, 5, 5], dtype='float32')
461 462 463
            conv2d = nn.Conv2D(num_channels=3,
                               num_filters=3,
                               filter_size=[2, 2])
464
            dy_ret = conv2d(base.to_variable(images))
465
            dy_ret_value = dy_ret.numpy()
466

467
        with self.dynamic_graph():
468 469
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
470 471 472 473
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2],
                                   bias_attr=False)
474 475 476
                dy_ret = conv2d(base.to_variable(images))
                self.assertTrue(conv2d.bias is None)

477
            images = np.ones([2, 3, 5, 5], dtype='float32')
478 479 480 481
            conv2d = nn.Conv2D(num_channels=3,
                               num_filters=3,
                               filter_size=[2, 2],
                               bias_attr=False)
482
            dy_ret = conv2d(base.to_variable(images))
483
            self.assertTrue(conv2d.bias is None)
484

485 486 487 488
        with self.static_graph():
            # the input of Conv2D must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
489 490 491
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2])
492 493 494 495 496 497 498
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2D must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
499 500 501 502 503 504
                images = layers.data(name='pixel',
                                     shape=[3, 5, 5],
                                     dtype='int32')
                conv2d = nn.Conv2D(num_channels=3,
                                   num_filters=3,
                                   filter_size=[2, 2])
505 506 507 508
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

509 510 511
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
Y
Yu Yang 已提交
512

513
        with self.dynamic_graph():
514 515 516 517 518 519
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
520 521 522 523 524 525 526
                conv2d1 = nn.Conv2D(num_channels=3,
                                    num_filters=3,
                                    filter_size=[2, 2])
                conv2d2 = nn.Conv2D(num_channels=3,
                                    num_filters=3,
                                    filter_size=[2, 2],
                                    param_attr=weight_attr)
527 528 529 530 531 532 533 534 535 536
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.weight.set_value(conv2d1_weight_np)
537 538
                np.testing.assert_array_equal(conv2d1_weight_np,
                                              conv2d2.weight.numpy())
539 540 541
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
542
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
543 544 545

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
546 547 548 549
                np.testing.assert_array_equal(conv2d1.weight.numpy(),
                                              conv2d2.weight.numpy())
                np.testing.assert_array_equal(conv2d1.bias.numpy(),
                                              conv2d2.bias.numpy())
550

551 552
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
553 554 555 556 557 558 559 560 561
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            conv2d1 = nn.Conv2D(num_channels=3,
                                num_filters=3,
                                filter_size=[2, 2])
            conv2d2 = nn.Conv2D(num_channels=3,
                                num_filters=3,
                                filter_size=[2, 2],
                                param_attr=weight_attr)
562 563 564 565 566 567 568 569 570
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
571 572
            np.testing.assert_array_equal(conv2d1_weight_np,
                                          conv2d2.weight.numpy())
573 574 575
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
576
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
577 578 579

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
580 581 582 583
            np.testing.assert_array_equal(conv2d1.weight.numpy(),
                                          conv2d2.weight.numpy())
            np.testing.assert_array_equal(conv2d1.bias.numpy(),
                                          conv2d2.bias.numpy())
584

M
minqiyang 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
600 601 602 603
                feed={
                    'x': input,
                    'hidden': hidden_input
                },
M
minqiyang 已提交
604 605 606 607 608 609 610
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
611
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
612 613 614
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
615 616 617 618
                feed={
                    'x': input,
                    'hidden': hidden_input
                },
M
minqiyang 已提交
619 620 621
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
622 623
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
624 625
                dy_eager_ret = gru(base.to_variable(input),
                                   base.to_variable(hidden_input))
626 627 628 629
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

630
            gru = nn.GRUUnit(size=D * 3)
631 632
            dy_ret = gru(base.to_variable(input),
                         base.to_variable(hidden_input))
633 634 635
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
636 637

        for i in range(len(static_ret)):
638 639 640 641 642 643 644 645 646
            np.testing.assert_allclose(static_ret[i],
                                       static_ret2[i],
                                       rtol=1e-05)
            np.testing.assert_allclose(static_ret[i],
                                       dy_ret_value[i],
                                       rtol=1e-05)
            np.testing.assert_allclose(static_ret[i],
                                       dy_eager_ret_value[i],
                                       rtol=1e-05)
M
minqiyang 已提交
647

648
        with self.dynamic_graph():
649 650 651 652 653 654 655
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
656 657 658 659
                dy_ret1 = gru1(base.to_variable(input),
                               base.to_variable(hidden_input))
                dy_ret2 = gru2(base.to_variable(input),
                               base.to_variable(hidden_input))
660 661 662 663 664 665
                self.assertFalse(
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
666 667 668 669
                dy_ret1 = gru1(base.to_variable(input),
                               base.to_variable(hidden_input))
                dy_ret2 = gru2(base.to_variable(input),
                               base.to_variable(hidden_input))
670
                for o1, o2 in zip(dy_ret1, dy_ret2):
671
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
672 673 674

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
675 676 677 678
                np.testing.assert_array_equal(gru1.weight.numpy(),
                                              gru2.weight.numpy())
                np.testing.assert_array_equal(gru1.bias.numpy(),
                                              gru2.bias.numpy())
679

680
            custom_weight = np.random.randn(D, D * 3).astype("float32")
681 682
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
683 684
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
685 686 687 688
            dy_ret1 = gru1(base.to_variable(input),
                           base.to_variable(hidden_input))
            dy_ret2 = gru2(base.to_variable(input),
                           base.to_variable(hidden_input))
689 690 691 692 693 694
            self.assertFalse(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
695 696 697 698
            dy_ret1 = gru1(base.to_variable(input),
                           base.to_variable(hidden_input))
            dy_ret2 = gru2(base.to_variable(input),
                           base.to_variable(hidden_input))
699
            for o1, o2 in zip(dy_ret1, dy_ret2):
700
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
701 702 703

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
704 705 706
            np.testing.assert_array_equal(gru1.weight.numpy(),
                                          gru2.weight.numpy())
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
707

X
Xin Pan 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

730 731 732 733 734 735 736 737 738
            static_ret = self.get_static_graph_result(feed={
                't': n,
                't2': n2,
                't3': n3,
                't4': n4,
                't5': n5,
                't6': n6
            },
                                                      fetch_list=[ret])[0]
X
Xin Pan 已提交
739 740

        with self.dynamic_graph():
741 742 743 744 745 746 747 748
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
                ret = layers.elementwise_pow(ret, to_variable(n3))
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

749 750 751 752 753
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
754
            dy_ret_value = dy_ret.numpy()
755

756 757
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
758 759 760 761 762 763

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
764
            with _test_eager_guard():
765 766 767 768
                min_eager_ret = layers.elementwise_min(to_variable(n),
                                                       to_variable(n2))
                max_eager_ret = layers.elementwise_max(to_variable(n),
                                                       to_variable(n2))
769 770 771
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

772 773
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
            max_ret = layers.elementwise_max(to_variable(n), to_variable(n2))
774 775
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
776

777 778 779 780
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
781

782 783 784 785 786 787 788
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
789 790 791 792 793
            seq = layers.data(name='seq_in',
                              shape=[3, 4],
                              dtype='float32',
                              lod_level=1,
                              append_batch_size=False)
794
            out = layers.sequence_conv(seq, 2, act='sigmoid')
795 796 797 798 799 800 801 802
            static_rlt = self.get_static_graph_result(feed={
                "seq_in":
                fluid.create_lod_tensor(data=inp_np,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                      fetch_list=[out],
                                                      with_lod=True)[0]
803 804

        with self.static_graph():
805 806 807 808 809
            seq = layers.data(name='seq_in',
                              shape=[3, 4],
                              dtype='float32',
                              lod_level=1,
                              append_batch_size=False)
810
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
811
            out = seq_conv(seq)
812 813 814 815 816 817 818 819
            static_rlt2 = self.get_static_graph_result(feed={
                "seq_in":
                fluid.create_lod_tensor(data=inp_np,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                       fetch_list=[out],
                                                       with_lod=True)[0]
820 821
        np.testing.assert_array_equal(np.array(static_rlt),
                                      np.array(static_rlt2))
822 823 824 825 826 827

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
828 829
                input=img,
                num_filters=10,
830
                filter_size=27,
831 832
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
833 834
            static_rlt = self.get_static_graph_result(feed={'pixel': inp_np},
                                                      fetch_list=[out])[0]
835 836 837
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
838
                num_channels=3,
839
                num_filters=10,
840
                filter_size=27,
841 842
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
843
            out = conv2d_transpose(img)
844 845
            static_rlt2 = self.get_static_graph_result(feed={'pixel': inp_np},
                                                       fetch_list=[out])[0]
846
        with self.dynamic_graph():
847 848 849 850 851 852 853 854 855 856
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

857
            conv2d_transpose = nn.Conv2DTranspose(
858
                num_channels=3,
859
                num_filters=10,
860
                filter_size=27,
861 862
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
863
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
864
            dy_rlt_value = dy_rlt.numpy()
865 866 867
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
868

869
        with self.dynamic_graph():
870 871 872 873 874 875
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
876 877 878 879 880 881 882
                conv2d1 = nn.Conv2DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=[2, 2])
                conv2d2 = nn.Conv2DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=[2, 2],
                                             param_attr=weight_attr)
883 884 885 886 887 888 889 890 891 892
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
                conv2d2.weight.set_value(conv2d1_weight_np)
893 894
                np.testing.assert_array_equal(conv2d1_weight_np,
                                              conv2d2.weight.numpy())
895 896 897
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
898
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
899 900 901

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
902 903 904 905
                np.testing.assert_array_equal(conv2d1.weight.numpy(),
                                              conv2d2.weight.numpy())
                np.testing.assert_array_equal(conv2d1.bias.numpy(),
                                              conv2d2.bias.numpy())
906

907 908
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
909 910 911 912 913 914 915 916 917
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            conv2d1 = nn.Conv2DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=[2, 2])
            conv2d2 = nn.Conv2DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=[2, 2],
                                         param_attr=weight_attr)
918 919 920 921 922 923 924 925 926
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
927 928
            np.testing.assert_array_equal(conv2d1_weight_np,
                                          conv2d2.weight.numpy())
929 930 931
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
932
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
933 934 935

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
936 937 938 939
            np.testing.assert_array_equal(conv2d1.weight.numpy(),
                                          conv2d2.weight.numpy())
            np.testing.assert_array_equal(conv2d1.bias.numpy(),
                                          conv2d2.bias.numpy())
940

941 942 943 944 945
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
946 947 948
                conv2d = nn.Conv2DTranspose(num_channels=3,
                                            num_filters=3,
                                            filter_size=[2, 2])
949 950 951 952 953 954 955
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
956 957 958 959 960 961
                images = layers.data(name='pixel',
                                     shape=[3, 5, 5],
                                     dtype='int32')
                conv2d = nn.Conv2DTranspose(num_channels=3,
                                            num_filters=3,
                                            filter_size=[2, 2])
962 963 964 965
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

966 967 968 969 970
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
971 972 973 974 975 976 977 978
            data_x = layers.data(name='x',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
            data_y = layers.data(name='y',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
979 980 981 982 983 984
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
985

986 987 988 989 990
            static_rlt = self.get_static_graph_result(feed={
                'x': inp_np_x,
                'y': inp_np_y
            },
                                                      fetch_list=[out])[0]
991

992
        with self.static_graph():
993 994 995 996 997 998 999 1000
            data_x = layers.data(name='x',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
            data_y = layers.data(name='y',
                                 shape=[1, 3],
                                 dtype="float32",
                                 append_batch_size=False)
1001
            btp = nn.BilinearTensorProduct(
1002 1003
                3,
                3,
1004 1005 1006
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
1007
            out = btp(data_x, data_y)
1008 1009 1010 1011 1012
            static_rlt2 = self.get_static_graph_result(feed={
                'x': inp_np_x,
                'y': inp_np_y
            },
                                                       fetch_list=[out])[0]
1013
        with self.dynamic_graph():
1014 1015 1016 1017 1018 1019 1020
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                    act='sigmoid')
1021 1022
                dy_eager_rlt = btp(base.to_variable(inp_np_x),
                                   base.to_variable(inp_np_y))
1023 1024
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1025
            btp = nn.BilinearTensorProduct(
1026 1027
                3,
                3,
1028 1029 1030
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
1031
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
1032
            dy_rlt_value = dy_rlt.numpy()
1033

1034
        with self.dynamic_graph():
1035 1036
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1037 1038
                dy_eager_rlt2 = btp2(base.to_variable(inp_np_x),
                                     base.to_variable(inp_np_y))
1039 1040
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

1041
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1042 1043
            dy_rlt2 = btp2(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
1044
            dy_rlt2_value = dy_rlt2.numpy()
1045

1046
        with self.static_graph():
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
            data_x2 = layers.data(name='x',
                                  shape=[1, 3],
                                  dtype="float32",
                                  append_batch_size=False)
            data_y2 = layers.data(name='y',
                                  shape=[1, 3],
                                  dtype="float32",
                                  append_batch_size=False)
            out2 = layers.bilinear_tensor_product(data_x2,
                                                  data_y2,
                                                  6,
                                                  act='sigmoid')

            static_rlt3 = self.get_static_graph_result(feed={
                'x': inp_np_x,
                'y': inp_np_y
            },
                                                       fetch_list=[out2])[0]
1065

1066 1067 1068 1069 1070
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
1071

1072
        with self.dynamic_graph():
1073 1074 1075 1076 1077 1078
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1079 1080 1081 1082 1083 1084 1085 1086 1087
                btp2 = nn.BilinearTensorProduct(3,
                                                3,
                                                6,
                                                act='sigmoid',
                                                param_attr=weight_attr)
                dy_rlt1 = btp1(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
                dy_rlt2 = btp2(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
1088 1089 1090 1091
                self.assertFalse(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1092 1093 1094 1095
                dy_rlt1 = btp1(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
                dy_rlt2 = btp2(base.to_variable(inp_np_x),
                               base.to_variable(inp_np_y))
1096
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1097 1098 1099

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1100 1101 1102 1103
                np.testing.assert_array_equal(btp1.weight.numpy(),
                                              btp2.weight.numpy())
                np.testing.assert_array_equal(btp1.bias.numpy(),
                                              btp2.bias.numpy())
1104

1105
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1106 1107
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1108
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1109 1110 1111 1112 1113 1114 1115 1116 1117
            btp2 = nn.BilinearTensorProduct(3,
                                            3,
                                            6,
                                            act='sigmoid',
                                            param_attr=weight_attr)
            dy_rlt1 = btp1(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
            dy_rlt2 = btp2(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
1118 1119 1120
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1121 1122 1123 1124
            dy_rlt1 = btp1(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
            dy_rlt2 = btp2(base.to_variable(inp_np_x),
                           base.to_variable(inp_np_y))
1125
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1126 1127 1128

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1129 1130 1131
            np.testing.assert_array_equal(btp1.weight.numpy(),
                                          btp2.weight.numpy())
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1132

1133
    def prelu_test(self, mode):
1134 1135
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1136 1137 1138 1139 1140 1141 1142 1143 1144
            data_t = layers.data(name="input",
                                 shape=[5, 200, 100, 100],
                                 dtype="float32",
                                 append_batch_size=False)
            out = layers.prelu(data_t,
                               mode,
                               param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(feed={"input": inp_np},
                                                      fetch_list=[out])[0]
1145 1146

        with self.static_graph():
1147 1148 1149 1150 1151 1152 1153 1154
            data_t = layers.data(name="input",
                                 shape=[5, 200, 100, 100],
                                 dtype="float32",
                                 append_batch_size=False)
            prelu = nn.PRelu(mode=mode,
                             channel=inp_np.shape[1],
                             input_shape=data_t.shape,
                             param_attr=ParamAttr(initializer=Constant(1.0)))
1155
            out = prelu(data_t)
1156 1157
            static_rlt2 = self.get_static_graph_result(feed={"input": inp_np},
                                                       fetch_list=[out])[0]
1158 1159

        with self.dynamic_graph():
1160 1161 1162 1163 1164 1165 1166 1167 1168
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(1.0)))
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1169 1170 1171 1172
            prelu = nn.PRelu(mode=mode,
                             channel=inp_np.shape[1],
                             input_shape=inp_np.shape,
                             param_attr=ParamAttr(initializer=Constant(1.0)))
1173
            dy_rlt = prelu(base.to_variable(inp_np))
1174
            dy_rlt_value = dy_rlt.numpy()
1175

1176 1177 1178
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1179

1180
        with self.dynamic_graph():
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(2.0)))
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
                    param_attr=ParamAttr(initializer=Constant(1.0)))
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1197 1198
                    np.array_equal(prelu1.weight.numpy(),
                                   prelu2.weight.numpy()))
1199 1200 1201 1202 1203
                self.assertFalse(
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1204
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1205 1206

                prelu2.weight = prelu1.weight
1207 1208
                np.testing.assert_array_equal(prelu1.weight.numpy(),
                                              prelu2.weight.numpy())
1209

1210 1211
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1212 1213 1214 1215 1216 1217 1218 1219
            prelu1 = nn.PRelu(mode=mode,
                              channel=inp_np.shape[1],
                              input_shape=inp_np.shape,
                              param_attr=ParamAttr(initializer=Constant(2.0)))
            prelu2 = nn.PRelu(mode=mode,
                              channel=inp_np.shape[1],
                              input_shape=inp_np.shape,
                              param_attr=ParamAttr(initializer=Constant(1.0)))
1220 1221 1222 1223 1224 1225 1226 1227
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1228
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1229 1230

            prelu2.weight = prelu1.weight
1231 1232
            np.testing.assert_array_equal(prelu1.weight.numpy(),
                                          prelu2.weight.numpy())
1233

1234 1235 1236 1237 1238
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1239 1240 1241 1242 1243
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1244 1245 1246 1247 1248 1249
            emb = layers.embedding(input=data_t,
                                   size=[dict_size, 32],
                                   param_attr='emb.w',
                                   is_sparse=False)
            static_rlt = self.get_static_graph_result(feed={'word': inp_word},
                                                      fetch_list=[emb])[0]
1250 1251
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1252 1253 1254
            emb2 = nn.Embedding(size=[dict_size, 32],
                                param_attr='emb.w',
                                is_sparse=False)
1255
            emb_rlt = emb2(data_t)
1256 1257
            static_rlt2 = self.get_static_graph_result(feed={'word': inp_word},
                                                       fetch_list=[emb_rlt])[0]
1258
        with self.dynamic_graph():
1259
            with _test_eager_guard():
1260 1261 1262
                emb2 = nn.Embedding(size=[dict_size, 32],
                                    param_attr='eager_emb.w',
                                    is_sparse=False)
1263 1264 1265
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1266 1267 1268
            emb2 = nn.Embedding(size=[dict_size, 32],
                                param_attr='emb.w',
                                is_sparse=False)
1269 1270
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1271 1272

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1273
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1274
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1275

1276
        with self.dynamic_graph():
1277 1278 1279 1280 1281 1282
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1283 1284 1285
                emb2 = nn.Embedding(size=[dict_size, 32],
                                    param_attr=weight_attr,
                                    is_sparse=False)
1286 1287 1288 1289
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
                    np.array_equal(emb1.weight.numpy(), custom_weight))
1290 1291
                np.testing.assert_array_equal(emb2.weight.numpy(),
                                              custom_weight)
1292 1293 1294
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1295
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1296 1297

                emb2.weight = emb1.weight
1298 1299
                np.testing.assert_array_equal(emb1.weight.numpy(),
                                              emb2.weight.numpy())
1300

1301
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1302 1303
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1304
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1305 1306 1307
            emb2 = nn.Embedding(size=[dict_size, 32],
                                param_attr=weight_attr,
                                is_sparse=False)
1308 1309 1310
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1311
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1312 1313 1314
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1315
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1316 1317

            emb2.weight = emb1.weight
1318 1319
            np.testing.assert_array_equal(emb1.weight.numpy(),
                                          emb2.weight.numpy())
1320

1321 1322 1323 1324
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1325
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1326 1327 1328 1329 1330 1331
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1332 1333 1334 1335 1336 1337
                    layers.data(name='word_{0}'.format(i),
                                shape=[None],
                                dtype='int64'))
            sample_weights = layers.fill_constant(shape=[5, 1],
                                                  dtype='float32',
                                                  value=1)
1338 1339 1340 1341 1342
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1343 1344 1345 1346
                emb = fluid.embedding(input=words[i],
                                      size=[dict_size, 32],
                                      param_attr='emb.w',
                                      is_sparse=False)
1347 1348 1349
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1350
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1351
            nce_loss = layers.nce(input=embs,
1352
                                  label=wl,
1353 1354 1355 1356 1357 1358
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
1359 1360
                                  bias_attr='nce.b',
                                  sample_weight=sample_weights)
1361 1362 1363
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1364 1365
            static_rlt = self.get_static_graph_result(feed=feed_dict,
                                                      fetch_list=[nce_loss])[0]
W
Weilong Wu 已提交
1366

1367 1368 1369 1370
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1371 1372 1373 1374 1375 1376 1377 1378 1379
                    layers.data(name='word_{0}'.format(i),
                                shape=[None],
                                dtype='int64'))
            sample_weights = layers.fill_constant(shape=[5, 1],
                                                  dtype='float32',
                                                  value=1)
            emb = nn.Embedding(size=[dict_size, 32],
                               param_attr='emb.w',
                               is_sparse=False)
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1390 1391
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs2.shape[1],
1392 1393 1394 1395 1396
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
1397 1398
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
1399

1400 1401
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1402 1403 1404 1405
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1406 1407 1408
            static_rlt2 = self.get_static_graph_result(feed=feed_dict,
                                                       fetch_list=[nce_loss2
                                                                   ])[0]
1409

L
Leo Chen 已提交
1410
        with self.dynamic_graph():
W
Weilong Wu 已提交
1411 1412 1413 1414
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1415 1416 1417 1418 1419 1420
                sample_weights = layers.fill_constant(shape=[5, 1],
                                                      dtype='float32',
                                                      value=1)
                emb = nn.Embedding(size=[dict_size, 32],
                                   param_attr='eager_emb.w',
                                   is_sparse=False)
W
Weilong Wu 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1430 1431 1432
                embs3 = layers.concat(input=embs3,
                                      axis=fluid.dygraph.to_variable(
                                          np.array([1])))
W
Weilong Wu 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
                nce = nn.NCE(num_total_classes=dict_size,
                             dim=embs3.shape[1],
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=seed,
                             param_attr='eager_nce.w',
                             bias_attr='eager_nce.b',
                             sample_weight=sample_weights)

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1447 1448 1449
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1450 1451 1452 1453 1454 1455
            sample_weights = layers.fill_constant(shape=[5, 1],
                                                  dtype='float32',
                                                  value=1)
            emb = nn.Embedding(size=[dict_size, 32],
                               param_attr='emb.w',
                               is_sparse=False)
1456 1457 1458 1459 1460 1461 1462 1463 1464

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1465 1466
            embs3 = layers.concat(input=embs3,
                                  axis=fluid.dygraph.to_variable(np.array([1])))
1467 1468
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs3.shape[1],
1469 1470 1471 1472 1473
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
1474 1475
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
1476

1477 1478
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1479
            dy_rlt_value = dy_rlt.numpy()
1480

1481 1482 1483
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1484

L
Leo Chen 已提交
1485
        with self.dynamic_graph():
W
Weilong Wu 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size,
                                                128).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
                    value=1)
1499 1500 1501
                emb = nn.Embedding(size=[dict_size, 32],
                                   param_attr='eager_emb.w',
                                   is_sparse=False)
W
Weilong Wu 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
                nce1 = nn.NCE(num_total_classes=dict_size,
                              dim=embs3.shape[1],
                              num_neg_samples=2,
                              sampler="custom_dist",
                              custom_dist=nid_freq_arr.tolist(),
                              seed=seed,
                              param_attr='eager_nce1.w',
                              bias_attr='eager_nce1.b',
                              sample_weight=sample_weights)

                nce2 = nn.NCE(num_total_classes=dict_size,
                              dim=embs3.shape[1],
                              num_neg_samples=2,
                              sampler="custom_dist",
                              custom_dist=nid_freq_arr.tolist(),
                              seed=seed,
                              param_attr=weight_attr,
                              bias_attr='eager_nce2.b',
                              sample_weight=sample_weights)

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1541 1542
                np.testing.assert_array_equal(nce1_loss.numpy(),
                                              nce2_loss.numpy())
W
Weilong Wu 已提交
1543 1544 1545

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1546 1547 1548 1549
                np.testing.assert_array_equal(nce1.weight.numpy(),
                                              nce2.weight.numpy())
                np.testing.assert_array_equal(nce1.bias.numpy(),
                                              nce2.bias.numpy())
W
Weilong Wu 已提交
1550

1551
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1552 1553
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1554 1555 1556 1557
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1558 1559 1560
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
                value=1)
1561 1562 1563
            emb = nn.Embedding(size=[dict_size, 32],
                               param_attr='emb.w',
                               is_sparse=False)
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1574 1575
            nce1 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1576 1577 1578 1579 1580 1581 1582 1583
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
                          param_attr='nce1.w',
                          bias_attr='nce1.b',
                          sample_weight=sample_weights)

1584 1585
            nce2 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1586 1587 1588 1589
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
1590
                          param_attr=weight_attr,
1591 1592 1593
                          bias_attr='nce2.b',
                          sample_weight=sample_weights)

1594 1595 1596
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1597 1598 1599 1600
            self.assertFalse(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1601 1602
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1603
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1604 1605 1606

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1607 1608 1609
            np.testing.assert_array_equal(nce1.weight.numpy(),
                                          nce2.weight.numpy())
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1610

S
songyouwei 已提交
1611 1612
    def test_one_hot(self):
        with self.dynamic_graph():
1613
            with _test_eager_guard():
1614 1615
                label = fluid.dygraph.to_variable(np.array([[1], [1], [3],
                                                            [0]]))
1616 1617
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1618
                    input=label, depth=fluid.dygraph.to_variable(np.array([4])))
1619 1620
                np.testing.assert_array_equal(one_hot_label1.numpy(),
                                              one_hot_label2.numpy())
1621

S
songyouwei 已提交
1622 1623 1624 1625
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
                input=label, depth=fluid.dygraph.to_variable(np.array([4])))
1626 1627
            np.testing.assert_array_equal(one_hot_label1.numpy(),
                                          one_hot_label2.numpy())
S
songyouwei 已提交
1628 1629 1630

    def test_split(self):
        with self.dynamic_graph():
1631 1632 1633
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1634 1635 1636 1637
                x00, x11 = fluid.layers.split(input,
                                              num_or_sections=2,
                                              dim=fluid.dygraph.to_variable(
                                                  np.array([1])))
1638 1639
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1640

S
songyouwei 已提交
1641 1642
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1643 1644 1645 1646
            x00, x11 = fluid.layers.split(input,
                                          num_or_sections=2,
                                          dim=fluid.dygraph.to_variable(
                                              np.array([1])))
1647 1648
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1649 1650 1651

    def test_topk(self):
        with self.dynamic_graph():
1652 1653 1654 1655 1656
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
                    input, k=fluid.dygraph.to_variable(np.array([5])))
1657 1658 1659 1660
                np.testing.assert_array_equal(top5_values1.numpy(),
                                              top5_values2.numpy())
                np.testing.assert_array_equal(top5_indices1.numpy(),
                                              top5_indices2.numpy())
1661

S
songyouwei 已提交
1662 1663 1664 1665
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
                input, k=fluid.dygraph.to_variable(np.array([5])))
1666 1667 1668 1669
            np.testing.assert_array_equal(top5_values1.numpy(),
                                          top5_values2.numpy())
            np.testing.assert_array_equal(top5_indices1.numpy(),
                                          top5_indices2.numpy())
S
songyouwei 已提交
1670

L
lujun 已提交
1671 1672
    def test_conv3d(self):
        with self.static_graph():
1673 1674 1675
            images = layers.data(name='pixel',
                                 shape=[3, 6, 6, 6],
                                 dtype='float32')
1676
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1677
            static_ret = self.get_static_graph_result(
1678
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
L
lujun 已提交
1679 1680 1681
                fetch_list=[ret])[0]

        with self.static_graph():
1682 1683 1684
            images = layers.data(name='pixel',
                                 shape=[3, 6, 6, 6],
                                 dtype='float32')
1685
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1686 1687
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1688
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
L
lujun 已提交
1689 1690 1691
                fetch_list=[ret])[0]

        with self.dynamic_graph():
1692 1693 1694 1695 1696 1697
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1698
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1699
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1700
            dy_ret = conv3d(base.to_variable(images))
1701
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1702

1703 1704 1705
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1706

1707
        with self.dynamic_graph():
1708 1709 1710 1711 1712 1713
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
1714 1715 1716 1717 1718 1719 1720
                conv3d1 = nn.Conv3D(num_channels=3,
                                    num_filters=3,
                                    filter_size=2)
                conv3d2 = nn.Conv3D(num_channels=3,
                                    num_filters=3,
                                    filter_size=2,
                                    param_attr=weight_attr)
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d2.weight.set_value(conv3d1_weight_np)
1731 1732
                np.testing.assert_array_equal(conv3d1_weight_np,
                                              conv3d2.weight.numpy())
1733 1734 1735
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1736
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1737 1738 1739

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1740 1741 1742 1743
                np.testing.assert_array_equal(conv3d1.weight.numpy(),
                                              conv3d2.weight.numpy())
                np.testing.assert_array_equal(conv3d1.bias.numpy(),
                                              conv3d2.bias.numpy())
1744

1745 1746
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1747 1748
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
1749
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1750 1751 1752 1753
            conv3d2 = nn.Conv3D(num_channels=3,
                                num_filters=3,
                                filter_size=2,
                                param_attr=weight_attr)
1754 1755 1756 1757 1758 1759 1760 1761 1762
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
1763 1764
            np.testing.assert_array_equal(conv3d1_weight_np,
                                          conv3d2.weight.numpy())
1765 1766 1767
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1768
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1769 1770 1771

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1772 1773 1774 1775
            np.testing.assert_array_equal(conv3d1.weight.numpy(),
                                          conv3d2.weight.numpy())
            np.testing.assert_array_equal(conv3d1.bias.numpy(),
                                          conv3d2.bias.numpy())
1776

L
lujun 已提交
1777 1778 1779 1780 1781 1782 1783 1784
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1785 1786 1787 1788 1789
            x = layers.data(name='X',
                            shape=[3, 5],
                            dtype='float32',
                            lod_level=1,
                            append_batch_size=False)
L
lujun 已提交
1790
            ret = layers.row_conv(input=x, future_context_size=2)
1791 1792 1793 1794 1795 1796 1797 1798
            static_ret = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                      fetch_list=[ret],
                                                      with_lod=True)[0]
L
lujun 已提交
1799 1800

        with self.static_graph():
1801 1802 1803 1804 1805
            x = layers.data(name='X',
                            shape=[3, 5],
                            dtype='float32',
                            lod_level=1,
                            append_batch_size=False)
L
lujun 已提交
1806 1807
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1808 1809 1810 1811 1812 1813 1814 1815
            static_ret2 = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1, 1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=True)[0]
L
lujun 已提交
1816

1817
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1818

1819
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1820

1821
    def func_group_norm(self):
L
lujun 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1832 1833 1834 1835 1836
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  lod_level=1,
                                  append_batch_size=False)
1837 1838 1839
            ret = layers.group_norm(
                input=X,
                groups=2,
1840
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1841
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
1842 1843 1844 1845 1846 1847 1848 1849
            static_ret = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place)
            },
                                                      fetch_list=[ret],
                                                      with_lod=True)[0]
L
lujun 已提交
1850 1851

        with self.static_graph():
1852 1853 1854 1855 1856
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  lod_level=1,
                                  append_batch_size=False)
1857 1858 1859
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1860
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1861
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1862
            ret = groupNorm(X)
1863 1864 1865 1866 1867 1868 1869 1870
            static_ret2 = self.get_static_graph_result(feed={
                'X':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=True)[0]
L
lujun 已提交
1871 1872

        with self.dynamic_graph():
1873 1874 1875
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1876
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1877
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1878
            dy_ret = groupNorm(base.to_variable(input))
1879
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1880

1881 1882
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1883

1884 1885 1886 1887 1888
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1900 1901 1902 1903
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  append_batch_size=False)
1904
            ret = layers.instance_norm(input=X)
1905 1906
            static_ret = self.get_static_graph_result(feed={'X': input},
                                                      fetch_list=[ret])[0]
1907 1908

        with self.static_graph():
1909 1910 1911 1912
            X = fluid.layers.data(name='X',
                                  shape=shape,
                                  dtype='float32',
                                  append_batch_size=False)
1913 1914
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1915 1916
            static_ret2 = self.get_static_graph_result(feed={'X': input},
                                                       fetch_list=[ret])[0]
1917 1918

        with self.dynamic_graph():
1919 1920 1921 1922 1923
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1924 1925 1926 1927 1928
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1929 1930 1931 1932 1933
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1934
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1935 1936 1937
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1938 1939 1940 1941 1942
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1943 1944 1945 1946

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1947
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1948 1949 1950 1951 1952 1953 1954
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
1955
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1956 1957 1958 1959
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1971 1972 1973 1974 1975
            Weight = fluid.layers.data(name='Weight',
                                       shape=shape,
                                       dtype='float32',
                                       lod_level=1,
                                       append_batch_size=False)
L
lujun 已提交
1976
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
1977 1978 1979 1980 1981 1982 1983 1984
            static_ret = self.get_static_graph_result(feed={
                'Weight':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place),
            },
                                                      fetch_list=[ret],
                                                      with_lod=True)[0]
L
lujun 已提交
1985 1986

        with self.static_graph():
1987 1988 1989 1990 1991
            Weight = fluid.layers.data(name='Weight',
                                       shape=shape,
                                       dtype='float32',
                                       lod_level=1,
                                       append_batch_size=False)
1992
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1993
            ret = spectralNorm(Weight)
1994 1995 1996 1997 1998 1999 2000 2001
            static_ret2 = self.get_static_graph_result(feed={
                'Weight':
                fluid.create_lod_tensor(data=input,
                                        recursive_seq_lens=[[1, 1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=True)[0]
L
lujun 已提交
2002 2003

        with self.dynamic_graph():
2004 2005 2006 2007 2008
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2009
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2010
            dy_ret = spectralNorm(base.to_variable(input))
2011
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2012

2013 2014 2015
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
            NodesVector = fluid.layers.data(name='NodesVector',
                                            shape=(1, 10, 5),
                                            dtype='float32',
                                            lod_level=1,
                                            append_batch_size=False)
            EdgeSet = fluid.layers.data(name='EdgeSet',
                                        shape=(1, 9, 2),
                                        dtype='int32',
                                        lod_level=1,
                                        append_batch_size=False)
            ret = fluid.contrib.layers.tree_conv(nodes_vector=NodesVector,
                                                 edge_set=EdgeSet,
                                                 output_size=6,
                                                 num_filters=1,
                                                 max_depth=2)
            static_ret = self.get_static_graph_result(feed={
                'NodesVector':
                fluid.create_lod_tensor(data=vectors,
                                        recursive_seq_lens=[[1]],
                                        place=place),
                'EdgeSet':
                fluid.create_lod_tensor(data=adj,
                                        recursive_seq_lens=[[1]],
                                        place=place)
            },
                                                      fetch_list=[ret],
                                                      with_lod=False)[0]
L
lujun 已提交
2054 2055

        with self.static_graph():
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
            NodesVector = fluid.layers.data(name='NodesVector',
                                            shape=(1, 10, 5),
                                            dtype='float32',
                                            lod_level=1,
                                            append_batch_size=False)
            EdgeSet = fluid.layers.data(name='EdgeSet',
                                        shape=(1, 9, 2),
                                        dtype='int32',
                                        lod_level=1,
                                        append_batch_size=False)
            treeConv = nn.TreeConv(feature_size=5,
                                   output_size=6,
                                   num_filters=1,
                                   max_depth=2)
L
lujun 已提交
2070
            ret = treeConv(NodesVector, EdgeSet)
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
            static_ret2 = self.get_static_graph_result(feed={
                'NodesVector':
                fluid.create_lod_tensor(data=vectors,
                                        recursive_seq_lens=[[1]],
                                        place=place),
                'EdgeSet':
                fluid.create_lod_tensor(data=adj,
                                        recursive_seq_lens=[[1]],
                                        place=place)
            },
                                                       fetch_list=[ret],
                                                       with_lod=False)[0]
L
lujun 已提交
2083 2084

        with self.dynamic_graph():
2085
            with _test_eager_guard():
2086 2087 2088 2089 2090 2091
                treeConv = nn.TreeConv(feature_size=5,
                                       output_size=6,
                                       num_filters=1,
                                       max_depth=2)
                dy_eager_ret = treeConv(base.to_variable(vectors),
                                        base.to_variable(adj))
2092 2093
                dy_eager_rlt_value = dy_eager_ret.numpy()

2094 2095 2096 2097
            treeConv = nn.TreeConv(feature_size=5,
                                   output_size=6,
                                   num_filters=1,
                                   max_depth=2)
L
lujun 已提交
2098
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2099
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2100

2101 2102 2103
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2104

2105
        with self.dynamic_graph():
2106 2107 2108 2109 2110
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
                treeConv1 = nn.TreeConv(feature_size=5,
                                        output_size=6,
                                        num_filters=1,
                                        max_depth=2,
                                        bias_attr='eager_tc1_b')
                treeConv2 = nn.TreeConv(feature_size=5,
                                        output_size=6,
                                        num_filters=1,
                                        max_depth=2,
                                        param_attr=weight_attr,
                                        bias_attr='eager_tc2_b')
                dy_ret1 = treeConv1(base.to_variable(vectors),
                                    base.to_variable(adj))
                dy_ret2 = treeConv2(base.to_variable(vectors),
                                    base.to_variable(adj))
2126 2127 2128 2129
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2130 2131 2132 2133
                dy_ret1 = treeConv1(base.to_variable(vectors),
                                    base.to_variable(adj))
                dy_ret2 = treeConv2(base.to_variable(vectors),
                                    base.to_variable(adj))
2134
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2135 2136 2137

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2138 2139 2140 2141
                np.testing.assert_array_equal(treeConv1.weight.numpy(),
                                              treeConv2.weight.numpy())
                np.testing.assert_array_equal(treeConv1.bias.numpy(),
                                              treeConv2.bias.numpy())
2142

2143
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            treeConv1 = nn.TreeConv(feature_size=5,
                                    output_size=6,
                                    num_filters=1,
                                    max_depth=2,
                                    bias_attr='tc1_b')
            treeConv2 = nn.TreeConv(feature_size=5,
                                    output_size=6,
                                    num_filters=1,
                                    max_depth=2,
                                    param_attr=weight_attr,
                                    bias_attr='tc2_b')
            dy_ret1 = treeConv1(base.to_variable(vectors),
                                base.to_variable(adj))
            dy_ret2 = treeConv2(base.to_variable(vectors),
                                base.to_variable(adj))
2161 2162 2163
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2164 2165 2166 2167
            dy_ret1 = treeConv1(base.to_variable(vectors),
                                base.to_variable(adj))
            dy_ret2 = treeConv2(base.to_variable(vectors),
                                base.to_variable(adj))
2168
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2169 2170 2171

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2172 2173 2174 2175
            np.testing.assert_array_equal(treeConv1.weight.numpy(),
                                          treeConv2.weight.numpy())
            np.testing.assert_array_equal(treeConv1.bias.numpy(),
                                          treeConv2.bias.numpy())
2176

L
lujun 已提交
2177
    def test_conv3d_transpose(self):
2178 2179
        input_array = np.arange(0, 48).reshape([2, 3, 2, 2,
                                                2]).astype('float32')
L
lujun 已提交
2180 2181 2182

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2183 2184 2185 2186
            out = layers.conv3d_transpose(input=img,
                                          num_filters=12,
                                          filter_size=12,
                                          use_cudnn=False)
L
lujun 已提交
2187 2188 2189 2190
            static_rlt = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2191 2192 2193 2194
            conv3d_transpose = nn.Conv3DTranspose(num_channels=3,
                                                  num_filters=12,
                                                  filter_size=12,
                                                  use_cudnn=False)
L
lujun 已提交
2195 2196 2197 2198
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.dynamic_graph():
2199
            with _test_eager_guard():
2200 2201 2202 2203
                conv3d_transpose = nn.Conv3DTranspose(num_channels=3,
                                                      num_filters=12,
                                                      filter_size=12,
                                                      use_cudnn=False)
2204 2205 2206
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2207 2208 2209 2210
            conv3d_transpose = nn.Conv3DTranspose(num_channels=3,
                                                  num_filters=12,
                                                  filter_size=12,
                                                  use_cudnn=False)
L
lujun 已提交
2211
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2212
            dy_rlt_value = dy_rlt.numpy()
2213 2214 2215
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2216

2217
        with self.dynamic_graph():
2218 2219 2220 2221 2222 2223
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
                        custom_weight))
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
                conv3d1 = nn.Conv3DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=2,
                                             bias_attr='eager_conv3d1_b',
                                             use_cudnn=False)
                conv3d2 = nn.Conv3DTranspose(num_channels=3,
                                             num_filters=3,
                                             filter_size=2,
                                             param_attr=weight_attr,
                                             bias_attr='eager_conv3d2_b',
                                             use_cudnn=False)
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
                conv3d2.weight.set_value(conv3d1_weight_np)
2245 2246
                np.testing.assert_array_equal(conv3d1_weight_np,
                                              conv3d2.weight.numpy())
2247 2248 2249
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2250
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2251 2252 2253

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2254 2255 2256 2257
                np.testing.assert_array_equal(conv3d1.weight.numpy(),
                                              conv3d2.weight.numpy())
                np.testing.assert_array_equal(conv3d1.bias.numpy(),
                                              conv3d2.bias.numpy())
2258

2259 2260
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
            weight_attr = fluid.ParamAttr(initializer=fluid.initializer.
                                          NumpyArrayInitializer(custom_weight))
            conv3d1 = nn.Conv3DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=2,
                                         bias_attr='conv3d1_b',
                                         use_cudnn=False)
            conv3d2 = nn.Conv3DTranspose(num_channels=3,
                                         num_filters=3,
                                         filter_size=2,
                                         param_attr=weight_attr,
                                         bias_attr='conv3d2_b',
                                         use_cudnn=False)
2274 2275 2276 2277 2278 2279 2280 2281 2282
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
2283 2284
            np.testing.assert_array_equal(conv3d1_weight_np,
                                          conv3d2.weight.numpy())
2285 2286 2287
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2288
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2289 2290 2291

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2292 2293 2294 2295
            np.testing.assert_array_equal(conv3d1.weight.numpy(),
                                          conv3d2.weight.numpy())
            np.testing.assert_array_equal(conv3d1.bias.numpy(),
                                          conv3d2.bias.numpy())
2296

2297 2298 2299 2300 2301 2302 2303 2304
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
            with _test_eager_guard():
                eager_eye_tensor = layers.eye(num_rows=3, num_columns=2)
                eager_eye_tensor_rlt1 = layers.eye(num_rows=3,
                                                   num_columns=2,
                                                   batch_shape=[3])
                eager_eye_tensor_rlt2 = layers.eye(num_rows=3,
                                                   num_columns=2,
                                                   batch_shape=[4, 3])
                eager_diag_tensor = layers.eye(20)
                eager_eye_tensor_value = eager_eye_tensor.numpy()
                eager_eye_tensor_rlt1_value = eager_eye_tensor_rlt1.numpy()
                eager_eye_tensor_rlt2_value = eager_eye_tensor_rlt2.numpy()
                eager_diag_tensor_value = eager_diag_tensor.numpy()

2319 2320 2321 2322 2323 2324 2325 2326
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
            eye_tensor_rlt1 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[3])
            eye_tensor_rlt2 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[4, 3])
            diag_tensor = layers.eye(20)
2327 2328 2329 2330
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
        np.testing.assert_allclose(eager_eye_tensor_value, np_eye, rtol=1e-05)
        np.testing.assert_allclose(eager_eye_tensor_rlt1_value,
                                   stack_rlt1,
                                   rtol=1e-05)
        np.testing.assert_allclose(eager_eye_tensor_rlt2_value,
                                   stack_rlt2,
                                   rtol=1e-05)
        np.testing.assert_allclose(eager_diag_tensor_value,
                                   np.eye(20),
                                   rtol=1e-05)

        np.testing.assert_allclose(eye_tensor_value, np_eye, rtol=1e-05)
        np.testing.assert_allclose(eye_tensor_rlt1_value,
                                   stack_rlt1,
                                   rtol=1e-05)
        np.testing.assert_allclose(eye_tensor_rlt2_value,
                                   stack_rlt2,
                                   rtol=1e-05)
        np.testing.assert_allclose(diag_tensor_value, np.eye(20), rtol=1e-05)
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

2361
    def func_while_loop(self):
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2379
            def cond1(i):
2380 2381
                return layers.less_than(i, ten)

2382
            def body1(i):
2383 2384
                return i + 1

2385
            dy_ret = layers.while_loop(cond1, body1, [i])
2386 2387 2388 2389 2390 2391
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2392
                layers.while_loop(cond1, body2, [j])
2393

2394
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2395

2396 2397 2398 2399 2400
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2401 2402 2403 2404 2405 2406 2407 2408
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2409 2410 2411 2412 2413
            static_ret = self.get_static_graph_result(feed={
                "a": value_a,
                "b": value_b
            },
                                                      fetch_list=[cond])[0]
2414
        with self.dynamic_graph():
2415 2416 2417 2418 2419 2420 2421 2422
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2423 2424 2425 2426
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2427 2428
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2429 2430 2431 2432 2433 2434

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2435 2436 2437 2438 2439
            static_ret1 = self.get_static_graph_result(feed={
                "a1": value_a,
                "b1": value_b
            },
                                                       fetch_list=[cond1])[0]
2440
        with self.dynamic_graph():
2441 2442 2443 2444 2445 2446 2447 2448
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

        #greater than
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2461 2462 2463 2464 2465
            static_ret2 = self.get_static_graph_result(feed={
                "a2": value_a,
                "b2": value_b
            },
                                                       fetch_list=[cond2])[0]
2466
        with self.dynamic_graph():
2467 2468 2469 2470 2471 2472 2473 2474
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

        #greater equal
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2487 2488 2489 2490 2491
            static_ret3 = self.get_static_graph_result(feed={
                "a3": value_a,
                "b3": value_b
            },
                                                       fetch_list=[cond3])[0]
2492
        with self.dynamic_graph():
2493 2494 2495 2496 2497 2498 2499 2500
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2513 2514 2515 2516 2517
            static_ret4 = self.get_static_graph_result(feed={
                "a4": value_a,
                "b4": value_b
            },
                                                       fetch_list=[cond4])[0]
2518
        with self.dynamic_graph():
2519 2520 2521 2522 2523 2524 2525 2526
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2539 2540 2541 2542 2543
            static_ret5 = self.get_static_graph_result(feed={
                "a5": value_a,
                "b5": value_b
            },
                                                       fetch_list=[cond5])[0]
2544
        with self.dynamic_graph():
2545 2546 2547 2548 2549 2550 2551 2552
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2553 2554 2555 2556 2557 2558 2559
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2560
    def test_cond(self):
2561

2562 2563 2564 2565 2566 2567 2568
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2569 2570 2571 2572 2573 2574
            a = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=0.1)
            b = fluid.layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=0.23)
2575 2576
            out = fluid.layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                                    lambda: less_than_branch(a, b))
2577 2578
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
2579 2580 2581 2582 2583
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
                    np.array([0.23]).astype('float32'))
                out = layers.cond(a < b, lambda: less_than_branch(a, b),
                                  lambda: greater_equal_branch(a, b))
                out2 = layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                                   lambda: less_than_branch(a, b))
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2594 2595
                np.testing.assert_array_equal(eager_dynamic_res,
                                              eager_dynamic_res2)
2596 2597 2598 2599 2600
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2601 2602 2603 2604 2605 2606 2607 2608
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
            out = layers.cond(a < b, lambda: less_than_branch(a, b),
                              lambda: greater_equal_branch(a, b))
            out2 = layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                               lambda: less_than_branch(a, b))
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2609
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2610 2611 2612 2613 2614
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2615 2616
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2617

2618
    def test_case(self):
2619

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2638 2639
            out_1 = layers.case(pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)],
                                default=fn_3)
2640 2641
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2642 2643
            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
2644 2645 2646 2647
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2648 2649 2650 2651 2652 2653 2654 2655 2656
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2657 2658 2659 2660 2661
                out_1 = layers.case(pred_fn_pairs=[(pred_1, fn_1),
                                                   (pred_2, fn_2)],
                                    default=fn_3)
                out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3,
                                                                    fn_3)])
2662 2663 2664
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2665 2666 2667 2668 2669 2670 2671 2672
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2673 2674
            out_1 = layers.case(pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)],
                                default=fn_3)
2675 2676 2677 2678
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2679 2680 2681 2682
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2683 2684

    def test_switch_case(self):
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
            out_1 = layers.switch_case(branch_index=index_1,
                                       branch_fns={
                                           1: fn_1,
                                           2: fn_2
                                       },
                                       default=fn_3)
            out_2 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(1, fn_1), (2, fn_2)],
                                       default=fn_3)
            out_3 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(0, fn_1), (4, fn_2),
                                                   (7, fn_3)])

            place = fluid.CUDAPlace(
                0) if core.is_compiled_with_cuda() else fluid.CPUPlace()
2714 2715 2716 2717 2718
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
                fetch_list=[out_1, out_2, out_3])

        with self.dynamic_graph():
2719
            with _test_eager_guard():
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
                index_1 = layers.fill_constant(shape=[1],
                                               dtype='int32',
                                               value=1)
                index_2 = layers.fill_constant(shape=[1],
                                               dtype='int32',
                                               value=2)

                out_1 = layers.switch_case(branch_index=index_1,
                                           branch_fns={
                                               1: fn_1,
                                               2: fn_2
                                           },
                                           default=fn_3)
                out_2 = layers.switch_case(branch_index=index_2,
                                           branch_fns=[(1, fn_1), (2, fn_2)],
                                           default=fn_3)
                out_3 = layers.switch_case(branch_index=index_2,
                                           branch_fns=[(0, fn_1), (4, fn_2),
                                                       (7, fn_3)])
2739 2740 2741 2742 2743

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2744 2745 2746
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
            out_1 = layers.switch_case(branch_index=index_1,
                                       branch_fns={
                                           1: fn_1,
                                           2: fn_2
                                       },
                                       default=fn_3)
            out_2 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(1, fn_1), (2, fn_2)],
                                       default=fn_3)
            out_3 = layers.switch_case(branch_index=index_2,
                                       branch_fns=[(0, fn_1), (4, fn_2),
                                                   (7, fn_3)])
2759 2760 2761 2762 2763

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2764 2765 2766 2767 2768 2769
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2770

2771 2772 2773 2774
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2775 2776 2777 2778 2779 2780
            dim1 = fluid.layers.data(name="dim1",
                                     shape=[1],
                                     append_batch_size=False)
            dim2 = fluid.layers.data(name="dim2",
                                     shape=[1],
                                     append_batch_size=False)
2781
            crop_shape1 = (1, 2, 4, 4)
2782 2783 2784
            crop_shape2 = fluid.layers.data(name="crop_shape",
                                            shape=[4],
                                            append_batch_size=False)
2785 2786
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2787 2788 2789
            crop_offsets2 = fluid.layers.data(name="crop_offset",
                                              shape=[4],
                                              append_batch_size=False)
2790 2791
            crop_offsets3 = [0, dim1, dim2, 0]

2792 2793 2794 2795 2796 2797 2798 2799 2800
            out1 = fluid.layers.crop_tensor(x,
                                            shape=crop_shape1,
                                            offsets=crop_offsets1)
            out2 = fluid.layers.crop_tensor(x,
                                            shape=crop_shape2,
                                            offsets=crop_offsets2)
            out3 = fluid.layers.crop_tensor(x,
                                            shape=crop_shape3,
                                            offsets=crop_offsets3)
2801 2802 2803 2804 2805

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2806 2807 2808
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2809 2810 2811 2812
            shard_label = fluid.layers.shard_index(input=x,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
2813 2814 2815

        self.assertIsNotNone(shard_label)

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2829 2830
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2831 2832 2833 2834
            static_out = exe.run(feed={
                "input": x,
                "label": y
            },
2835 2836
                                 fetch_list=result[0])

L
Leo Chen 已提交
2837
        with self.dynamic_graph(force_to_use_cpu=True):
2838 2839 2840 2841 2842 2843
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2844
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2845

Y
Yu Yang 已提交
2846

2847
class TestBook(LayerTest):
2848

H
hong 已提交
2849 2850 2851 2852 2853 2854 2855 2856
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
        self.not_compare_static_dygraph_set = set({
            "make_gaussian_random", "make_gaussian_random_batch_size_like",
            "make_kldiv_loss", "make_prelu",
            "make_sampled_softmax_with_cross_entropy", "make_sampling_id",
            "make_uniform_random_batch_size_like"
        })
2857
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2858

2859
    def func_all_layers(self):
2860 2861 2862 2863 2864
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2865 2866 2867
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
                        force_to_use_cpu=self._force_to_use_cpu)
H
hong 已提交
2881

2882 2883 2884
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2885 2886
            if method.__name__ in self.only_static_set:
                continue
2887 2888 2889 2890 2891

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2892
                dy_result_value = dy_result.numpy()
2893

2894
            if method.__name__ in self.all_close_compare:
2895 2896 2897 2898 2899 2900
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2901 2902 2903
                        method.__name__))
                continue

H
hong 已提交
2904
            if method.__name__ not in self.not_compare_static_dygraph_set:
2905 2906 2907 2908 2909
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
                        method.__name__))
2910

2911 2912 2913 2914 2915
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2916 2917 2918
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2919
            shape = [self._batch_size] + shape
2920 2921 2922 2923 2924
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
M
minqiyang 已提交
2925 2926
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2927
        elif dtype == 'int64':
M
minqiyang 已提交
2928 2929
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2930 2931 2932 2933 2934 2935 2936 2937

    def _get_data(self,
                  name,
                  shape,
                  dtype,
                  set_feed_dict=True,
                  append_batch_size=True):
        if base.enabled():
2938 2939 2940 2941
            return base.to_variable(value=self._get_np_data(
                shape, dtype, append_batch_size),
                                    name=name,
                                    zero_copy=False)
2942 2943
        else:
            if set_feed_dict:
2944 2945 2946 2947 2948 2949
                self._feed_dict[name] = self._get_np_data(
                    shape, dtype, append_batch_size)
            return layers.data(name=name,
                               shape=shape,
                               dtype=dtype,
                               append_batch_size=append_batch_size)
2950 2951 2952 2953

    def make_sampled_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2954
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
2955
            label = self._get_data(name='Label', shape=[1], dtype='int64')
2956
            num_samples = 25
2957 2958
            output = layers.sampled_softmax_with_cross_entropy(
                logits, label, num_samples)
2959 2960 2961
            return (output)

    def make_fit_a_line(self):
2962 2963
        with program_guard(fluid.default_main_program(),
                           startup_program=fluid.default_startup_program()):
2964
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
2965
            y_predict = layers.fc(input=x, size=1, act=None)
2966
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
2967
            cost = layers.square_error_cost(input=y_predict, label=y)
2968
            avg_cost = paddle.mean(cost)
2969
            return (avg_cost)
Y
Yu Yang 已提交
2970

2971 2972 2973
    def make_recognize_digits_mlp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
2974
            # Change g_program, so the rest layers use `g_program`
2975 2976
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2977 2978
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
2979 2980 2981 2982
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
2983
            cost = layers.cross_entropy(input=predict, label=label)
2984
            avg_cost = paddle.mean(cost)
2985
            return (avg_cost)
Y
Yu Yang 已提交
2986

2987 2988 2989 2990
    def make_conv2d_transpose(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
2991 2992 2993
            return layers.conv2d_transpose(input=img,
                                           num_filters=10,
                                           output_size=28)
2994

2995 2996 2997
    def make_recognize_digits_conv(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
2998 2999 3000
            images = self._get_data(name='pixel',
                                    shape=[1, 28, 28],
                                    dtype='float32')
3001
            label = self._get_data(name='label', shape=[1], dtype='int64')
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
            conv_pool_1 = nets.simple_img_conv_pool(input=images,
                                                    filter_size=5,
                                                    num_filters=2,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(input=conv_pool_1,
                                                    filter_size=5,
                                                    num_filters=4,
                                                    pool_size=2,
                                                    pool_stride=2,
                                                    act="relu")
Y
Yu Yang 已提交
3014 3015 3016

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3017
            avg_cost = paddle.mean(cost)
3018
            return avg_cost
Y
Yu Yang 已提交
3019

3020 3021 3022
    def make_word_embedding(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
3023 3024
            dict_size = 10000
            embed_size = 32
3025
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3026 3027 3028
            second_word = self._get_data(name='secondw',
                                         shape=[1],
                                         dtype='int64')
3029 3030 3031
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
            embed_first = layers.embedding(input=first_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
            embed_second = layers.embedding(input=second_word,
                                            size=[dict_size, embed_size],
                                            dtype='float32',
                                            param_attr='shared_w')

            embed_third = layers.embedding(input=third_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
            embed_forth = layers.embedding(input=forth_word,
                                           size=[dict_size, embed_size],
                                           dtype='float32',
                                           param_attr='shared_w')
Y
Yu Yang 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3060
            avg_cost = paddle.mean(cost)
3061
            return (avg_cost)
Y
Yu Yang 已提交
3062

3063 3064 3065 3066 3067
    def make_sigmoid_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3068
            ignore_index = -1
3069 3070 3071 3072 3073 3074 3075 3076 3077
            return (layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index))

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
            return (layers.hsigmoid(input=x, label=y, num_classes=2))
W
weixing02 已提交
3078

J
JiabinYang 已提交
3079
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
3080 3081
        program2 = Program()
        with program_guard(program2):
3082 3083
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
            path_table = self._get_data(name='path_table',
                                        shape=[4, 6],
                                        dtype='int64')
            path_code = self._get_data(name='path_code',
                                       shape=[4, 6],
                                       dtype='int64')
            return (layers.hsigmoid(input=x2,
                                    label=y2,
                                    num_classes=6,
                                    path_table=path_table,
                                    path_code=path_code,
                                    is_custom=True))
J
JiabinYang 已提交
3096

3097 3098 3099 3100
    def make_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3101 3102 3103 3104
            return (layers.pool2d(x,
                                  pool_size=[5, 3],
                                  pool_stride=[1, 2],
                                  pool_padding=(2, 1)))
3105

K
Kaipeng Deng 已提交
3106 3107 3108 3109 3110
    def make_pool2d_infershape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
3111 3112 3113 3114
            return (layers.pool2d(x,
                                  pool_size=[5, 3],
                                  pool_stride=[1, 2],
                                  pool_padding=(2, 1)))
K
Kaipeng Deng 已提交
3115 3116 3117 3118

    def make_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3119 3120 3121 3122 3123 3124 3125
            x = self._get_data(name='x',
                               shape=[3, 244, 244, 244],
                               dtype='float32')
            return (layers.pool3d(x,
                                  pool_size=[5, 3, 2],
                                  pool_stride=[1, 2, 3],
                                  pool_padding=(2, 1, 1)))
K
Kaipeng Deng 已提交
3126

3127 3128 3129 3130 3131
    def make_adaptive_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
3132
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
3133 3134 3135
            return (pool)
            return (mask)
            return (layers.adaptive_pool2d(x, 3, pool_type='avg'))
3136
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
3137 3138 3139 3140 3141 3142
            return (pool)
            return (mask)

    def make_adaptive_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3143 3144 3145
            x = self._get_data(name='x',
                               shape=[3, 244, 224, 224],
                               dtype='float32')
3146
            return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg'))
3147 3148
            pool, mask = layers.adaptive_pool3d(x, [3, 3, 3],
                                                require_index=True)
3149 3150 3151
            return (pool)
            return (mask)
            return (layers.adaptive_pool3d(x, 3, pool_type='avg'))
3152
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
3153 3154
            return (pool)
            return (mask)
3155

3156 3157 3158
    def make_lstm_unit(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3159 3160 3161
            x_t_data = self._get_data(name='x_t_data',
                                      shape=[10, 10],
                                      dtype='float32')
Y
yangyaming 已提交
3162
            x_t = layers.fc(input=x_t_data, size=10)
3163 3164 3165
            prev_hidden_data = self._get_data(name='prev_hidden_data',
                                              shape=[10, 30],
                                              dtype='float32')
Y
yangyaming 已提交
3166
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3167 3168 3169
            prev_cell_data = self._get_data(name='prev_cell',
                                            shape=[10, 30],
                                            dtype='float32')
Y
yangyaming 已提交
3170
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3171 3172 3173
            return (layers.lstm_unit(x_t=x_t,
                                     hidden_t_prev=prev_hidden,
                                     cell_t_prev=prev_cell))
3174

3175 3176 3177 3178
    def make_softmax(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3179
            hid = layers.fc(input=data, size=20)
3180
            return (layers.softmax(hid, axis=1))
D
dangqingqing 已提交
3181

3182 3183 3184
    def make_space_to_depth(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3185 3186 3187 3188
            data = self._get_data(name='data',
                                  shape=[32, 9, 6, 6],
                                  append_batch_size=False,
                                  dtype='float32')
3189
            return (layers.space_to_depth(data, 3))
J
JiabinYang 已提交
3190

3191 3192 3193 3194 3195
    def make_lrn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
            return (layers.lrn(data))
3196

3197 3198 3199 3200
    def make_get_places(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            get_places(device_count=1)
X
xuezhong 已提交
3201

3202
    @prog_scope()
3203
    def make_nce(self):
Y
Yang Yu 已提交
3204 3205
        window_size = 5
        words = []
3206
        for i in range(window_size):
Y
Yang Yu 已提交
3207
            words.append(
3208 3209 3210
                self._get_data(name='word_{0}'.format(i),
                               shape=[1],
                               dtype='int64'))
Y
Yang Yu 已提交
3211 3212

        dict_size = 10000
M
minqiyang 已提交
3213
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3214 3215

        embs = []
3216
        for i in range(window_size):
Y
Yang Yu 已提交
3217 3218 3219
            if i == label_word:
                continue

3220 3221 3222 3223
            emb = layers.embedding(input=words[i],
                                   size=[dict_size, 32],
                                   param_attr='emb.w',
                                   is_sparse=True)
Y
Yang Yu 已提交
3224 3225 3226 3227 3228 3229 3230 3231 3232

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
3233
        avg_loss = paddle.mean(loss)
3234
        return (avg_loss)
Y
Yang Yu 已提交
3235

3236 3237 3238 3239 3240 3241
    def make_multiplex(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3242
            out = layers.multiplex(inputs=[x1, x2], index=index)
3243 3244 3245 3246 3247 3248 3249
            return (out)

    def make_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3250 3251
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
3252 3253 3254
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3255
            loss = layers.softmax_with_cross_entropy(x, y)
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
            return (loss4)
3271 3272 3273 3274 3275 3276

    def make_smooth_l1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3277
            loss = layers.smooth_l1(x, y)
3278
            return (loss)
3279

3280 3281 3282
    def make_scatter(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
            x = self._get_data(name='x',
                               shape=[3, 3],
                               append_batch_size=False,
                               dtype='float32')
            idx = self._get_data(name='idx',
                                 shape=[2],
                                 append_batch_size=False,
                                 dtype='int32')
            updates = self._get_data(name='updates',
                                     shape=[2, 3],
                                     append_batch_size=False,
                                     dtype='float32')
3295
            out = layers.scatter(input=x, index=idx, updates=updates)
3296
            return (out)
Y
yangyaming 已提交
3297

3298 3299 3300 3301 3302 3303
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            return (one_hot_label)

3304 3305 3306 3307 3308
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3309
            one_hot_label = layers.one_hot(input=label, depth=10)
3310 3311 3312
            smooth_label = layers.label_smooth(label=one_hot_label,
                                               epsilon=0.1,
                                               dtype="int32")
3313
            return (smooth_label)
3314

3315 3316 3317 3318 3319 3320 3321
    def make_topk(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            return (values)
            return (indices)
J
jerrywgz 已提交
3322

3323 3324 3325 3326
    def make_resize_bilinear(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3327
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3328
            return (output)
K
Kaipeng Deng 已提交
3329 3330 3331 3332 3333 3334

    def make_resize_bilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3335
            return (output)
3336

3337
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
3349 3350 3351
                x = self._get_data(name='x2',
                                   shape=[3, 9, 6, 7],
                                   dtype="float32")
K
Kaipeng Deng 已提交
3352 3353 3354 3355
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3356 3357 3358
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3359
            output = layers.resize_nearest(x, out_shape=[12, 12])
3360
            return (output)
K
Kaipeng Deng 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380

    def make_resize_nearest_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
            return (output)

    def make_resize_trilinear(self):
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
3381 3382 3383
                x = self._get_data(name='x',
                                   shape=[3, 9, 6, 7],
                                   dtype="float32")
K
Kaipeng Deng 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
            return (output)

    def make_resize_trilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3399
            return (output)
3400

3401 3402 3403 3404
    def make_polygon_box_transform(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3405
            output = layers.polygon_box_transform(input=x)
3406
            return (output)
3407

3408 3409 3410 3411
    def make_l2_normalize(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3412
            output = layers.l2_normalize(x, axis=1)
3413
            return output
3414

3415 3416 3417 3418 3419
    def make_crop(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
3420
            output = layers.crop(x, shape=y)
3421 3422 3423 3424 3425
            return (output)

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
3426 3427
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
3428
            return (iou)
W
whs 已提交
3429

3430 3431 3432 3433
    def make_argsort(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3434
            out, ids = layers.argsort(input=data, axis=1)
3435 3436 3437 3438 3439 3440
            return (out)
            return (ids)

    def make_rank_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
            label = self._get_data(name='label',
                                   append_batch_size=False,
                                   shape=[16, 1],
                                   dtype="float32")
            left = self._get_data(name='left',
                                  append_batch_size=False,
                                  shape=[16, 1],
                                  dtype="float32")
            right = self._get_data(name='right',
                                   append_batch_size=False,
                                   shape=[16, 1],
                                   dtype="float32")
3453
            out = layers.rank_loss(label, left, right, name="rank_loss")
3454
            return (out)
3455

3456 3457 3458
    def make_shape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3459 3460 3461
            input = self._get_data(name="input",
                                   shape=[3, 100, 100],
                                   dtype="float32")
G
fix  
gongweibao 已提交
3462
            out = layers.shape(input)
3463
            return (out)
B
Bai Yifan 已提交
3464

3465 3466 3467
    def make_pad2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3468 3469 3470
            input = self._get_data(name="input",
                                   shape=[3, 100, 100],
                                   dtype="float32")
3471
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
            out = layers.pad2d(input,
                               paddings=[1, 2, 3, 4],
                               mode='reflect',
                               data_format='NCHW',
                               name="shape")
            out_1 = layers.pad2d(input,
                                 paddings=paddings,
                                 mode='reflect',
                                 data_format='NCHW',
                                 name="shape")
3482 3483
            return (out)
            return (out_1)
W
whs 已提交
3484

3485 3486 3487
    def make_prelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3488 3489 3490
            input = self._get_data(name="input",
                                   shape=[5, 200, 100, 100],
                                   dtype="float32")
J
jerrywgz 已提交
3491
            mode = 'channel'
3492 3493 3494 3495
            out = layers.prelu(input,
                               mode,
                               param_attr=ParamAttr(initializer=Constant(1.0)),
                               name='prelu')
3496
            return (out)
J
jerrywgz 已提交
3497

3498 3499 3500 3501
    def make_soft_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3502
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
3503
            return (out)
T
tensor-tang 已提交
3504

3505 3506 3507 3508
    def make_sigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3509
            out = layers.sigmoid(input, name='sigmoid')
3510
            return (out)
T
tensor-tang 已提交
3511

3512 3513 3514 3515
    def make_exp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3516
            out = layers.exp(input, name='exp')
3517
            return (out)
T
tensor-tang 已提交
3518

3519 3520 3521 3522
    def make_tanh(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3523
            out = layers.tanh(input, name='tanh')
3524
            return (out)
T
tensor-tang 已提交
3525

3526 3527 3528 3529
    def make_tanh_shrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3530
            out = layers.tanh_shrink(input, name='tanh_shrink')
3531
            return (out)
T
tensor-tang 已提交
3532

3533 3534 3535 3536
    def make_sqrt(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3537
            out = layers.sqrt(input, name='sqrt')
3538
            return (out)
T
tensor-tang 已提交
3539

3540 3541 3542 3543
    def make_abs(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3544
            out = layers.abs(input, name='abs')
3545
            return (out)
T
tensor-tang 已提交
3546

3547 3548 3549 3550
    def make_ceil(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3551
            out = layers.ceil(input, name='ceil')
3552
            return (out)
T
tensor-tang 已提交
3553

3554 3555 3556 3557
    def make_floor(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3558
            out = layers.floor(input, name='floor')
3559
            return (out)
T
tensor-tang 已提交
3560

3561 3562 3563 3564
    def make_cos(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3565
            out = layers.cos(input, name='cos')
3566
            return (out)
T
tensor-tang 已提交
3567

3568 3569 3570 3571
    def make_sin(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3572
            out = layers.sin(input, name='sin')
3573
            return (out)
T
tensor-tang 已提交
3574

3575 3576 3577 3578
    def make_round(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3579
            out = layers.round(input, name='round')
3580
            return (out)
T
tensor-tang 已提交
3581

3582 3583 3584 3585
    def make_reciprocal(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3586
            out = layers.reciprocal(input, name='reciprocal')
3587
            return (out)
T
tensor-tang 已提交
3588

3589 3590 3591 3592
    def make_square(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3593
            out = layers.square(input, name='square')
3594
            return (out)
T
tensor-tang 已提交
3595

3596 3597 3598 3599
    def make_softplus(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3600
            out = layers.softplus(input, name='softplus')
3601
            return (out)
T
tensor-tang 已提交
3602

3603 3604 3605 3606
    def make_softsign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3607
            out = layers.softsign(input, name='softsign')
3608
            return (out)
T
tensor-tang 已提交
3609

K
Kaipeng Deng 已提交
3610 3611 3612 3613 3614 3615 3616
    def make_mish(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
            return (out)

3617 3618 3619 3620 3621
    def make_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3622 3623
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3624
            return (out)
3625

3626 3627 3628 3629 3630
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3631
            out = layers.bpr_loss(x, label)
3632
            return (out)
3633

3634 3635 3636 3637
    def make_expand(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
3638
            out = layers.expand(x, [1, 2])
3639
            return out
W
whs 已提交
3640

3641 3642 3643
    def make_uniform_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3644 3645 3646
            input = self._get_data(name="input",
                                   shape=[13, 11],
                                   dtype='float32')
G
fix  
gongweibao 已提交
3647
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3648
            return (out)
G
fix  
gongweibao 已提交
3649

3650 3651 3652
    def make_gaussian_random(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
G
fix  
gongweibao 已提交
3653
            out = layers.gaussian_random(shape=[20, 30])
3654
            return (out)
G
fix  
gongweibao 已提交
3655

3656 3657 3658
    def make_sampling_id(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3659 3660 3661 3662
            x = self._get_data(name="X",
                               shape=[13, 11],
                               dtype='float32',
                               append_batch_size=False)
G
fix  
gongweibao 已提交
3663 3664

            out = layers.sampling_id(x)
3665
            return (out)
G
fix  
gongweibao 已提交
3666

3667 3668 3669
    def make_gaussian_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3670 3671 3672 3673 3674 3675 3676 3677
            input = self._get_data(name="input",
                                   shape=[13, 11],
                                   dtype='float32')

            out = layers.gaussian_random_batch_size_like(input,
                                                         shape=[-1, 11],
                                                         mean=1.0,
                                                         std=2.0)
3678
            return (out)
G
fix  
gongweibao 已提交
3679

3680 3681 3682
    def make_sum(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3683 3684 3685
            input = self._get_data(name="input",
                                   shape=[13, 11],
                                   dtype='float32')
G
fix  
gongweibao 已提交
3686 3687

            out = layers.sum(input)
3688
            return (out)
G
fix  
gongweibao 已提交
3689

3690
    def make_slice(self):
G
fix  
gongweibao 已提交
3691 3692 3693 3694
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3695 3696
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3697 3698 3699
            input = self._get_data(name="input",
                                   shape=[3, 4, 5, 6],
                                   dtype='float32')
G
fix  
gongweibao 已提交
3700 3701

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3702
            return out
G
merge  
gongweibao 已提交
3703

3704 3705 3706
    def make_scale_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3707 3708 3709 3710 3711 3712 3713
            input = self._get_data(name="input",
                                   shape=[3, 4, 5, 6],
                                   dtype='float32')
            scale_var = self._get_data(name="scale",
                                       shape=[1],
                                       dtype='float32',
                                       append_batch_size=False)
3714
            out = layers.scale(input, scale=scale_var)
3715 3716
            return out

3717 3718 3719 3720
    def make_softshrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
3721
            out = layers.softshrink(input, alpha=0.3)
3722
            return (out)
G
fix  
gongweibao 已提交
3723

M
minqiyang 已提交
3724
    def make_iou_similarity(self):
3725 3726
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
3727 3728
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3729
            out = layers.iou_similarity(x, y, name='iou_similarity')
3730 3731 3732 3733 3734 3735 3736
            return (out)

    def make_grid_sampler(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3737
            out = layers.grid_sampler(x, grid)
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
            return (out)

    def make_bilinear_tensor_product_layer(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
            return (out)

    def make_batch_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3752 3753 3754
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
3755 3756 3757
            out = layers.batch_norm(data)
            return (out)

3758 3759 3760
    def make_batch_norm_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3761 3762 3763 3764 3765 3766 3767
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
            momentum = self._get_data(name='momentum',
                                      shape=[1],
                                      dtype='float32',
                                      append_batch_size=False)
3768 3769 3770
            out = layers.batch_norm(data, momentum=momentum)
            return (out)

K
Kaipeng Deng 已提交
3771 3772 3773
    def make_inplace_abn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3774 3775 3776
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
K
Kaipeng Deng 已提交
3777 3778 3779 3780 3781 3782
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
            return (out)

    def make_inplace_abn_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
            data = self._get_data(name='data',
                                  shape=[32, 128, 128],
                                  dtype="float32")
            momentum = self._get_data(name='momentum',
                                      shape=[1],
                                      dtype='float32',
                                      append_batch_size=False)
            out = layers.inplace_abn(data,
                                     momentum=momentum,
                                     act='elu',
                                     act_alpha=2.0)
K
Kaipeng Deng 已提交
3794 3795
            return (out)

3796 3797 3798 3799
    def make_range(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            layers.range(0, 10, 2, 'int32')
3800 3801 3802 3803 3804 3805
            layers.range(0.1, 10.0, 0.2, 'float32')
            layers.range(0.1, 10.0, 0.2, 'float64')
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
            y = layers.range(start, end, step, 'float64')
3806 3807 3808 3809 3810
            return y

    def make_spectral_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3811 3812 3813 3814
            weight = self._get_data(name='weight',
                                    shape=[2, 3, 32, 32],
                                    dtype="float32",
                                    append_batch_size=False)
3815 3816 3817 3818 3819 3820
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            return (out)

    def make_kldiv_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
3821 3822 3823 3824 3825 3826 3827 3828
            x = self._get_data(name='x',
                               shape=[32, 128, 128],
                               dtype="float32",
                               append_batch_size=False)
            target = self._get_data(name='target',
                                    shape=[32, 128, 128],
                                    dtype="float32",
                                    append_batch_size=False)
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            return (loss)

    def make_temporal_shift(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
            return (out)

    def make_shuffle_channel(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
            return (out)

M
minqiyang 已提交
3846
    def make_fsp_matrix(self):
3847 3848 3849 3850 3851 3852 3853
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            return (out)

M
minqiyang 已提交
3854 3855 3856 3857 3858 3859 3860
    def make_pixel_shuffle(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
            return (out)

R
ruri 已提交
3861 3862 3863 3864 3865 3866 3867 3868
    def make_mse_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
            return (out)

3869 3870 3871 3872 3873 3874 3875 3876
    def make_square_error_cost(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
            return (out)

3877 3878 3879 3880
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3881 3882 3883 3884
            seq_data = layers.data(name='seq_data',
                                   shape=[10, 10],
                                   dtype='float32',
                                   lod_level=1)
3885 3886
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3887 3888 3889
                layers.dynamic_lstmp(input=fc_out,
                                     size=4 * hidden_dim,
                                     proj_size=proj_dim))
3890 3891 3892 3893

    def test_linear_chain_crf(self):
        with self.static_graph():
            label_dict_len = 10
3894 3895 3896
            feature = layers.data(name='feature', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10)
3897 3898 3899 3900 3901
            crf = layers.linear_chain_crf(input=emission,
                                          label=label,
                                          param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(input=emission,
                                             param_attr=ParamAttr(name="crfw"))
3902 3903
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
3904 3905 3906 3907
            return layers.chunk_eval(input=crf_decode,
                                     label=label,
                                     chunk_scheme="IOB",
                                     num_chunk_types=(label_dict_len - 1) // 2)
3908 3909 3910 3911

    def test_linear_chain_crf_padding(self):
        with self.static_graph():
            label_dict_len, max_len = 10, 20
3912 3913 3914
            feature = layers.data(name='feature',
                                  shape=[max_len, 784],
                                  dtype='float32')
3915 3916 3917
            label = layers.data(name='label', shape=[max_len], dtype='int64')
            length = layers.data(name='length', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
3918 3919 3920 3921 3922 3923 3924
            crf = layers.linear_chain_crf(input=emission,
                                          label=label,
                                          length=length,
                                          param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(input=emission,
                                             length=length,
                                             param_attr=ParamAttr(name="crfw"))
3925 3926
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
3927 3928 3929 3930 3931
            return layers.chunk_eval(input=crf_decode,
                                     label=label,
                                     seq_length=length,
                                     chunk_scheme="IOB",
                                     num_chunk_types=(label_dict_len - 1) // 2)
3932 3933 3934 3935 3936 3937

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3938 3939 3940 3941 3942
            output = layers.im2sequence(input=x,
                                        input_image_size=y,
                                        stride=[1, 1],
                                        filter_size=[2, 2],
                                        out_stride=[1, 1])
3943 3944 3945 3946 3947
            return (output)

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3948
            # case 1
3949
            x = layers.data(name='x', shape=[10], dtype='float32')
3950 3951 3952 3953
            y = layers.data(name='y',
                            shape=[10, 20],
                            dtype='float32',
                            lod_level=2)
3954 3955 3956
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3957
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3958 3959 3960 3961 3962 3963
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3964

W
whs 已提交
3965
    def test_affine_grid(self):
3966
        with self.static_graph():
W
whs 已提交
3967 3968 3969 3970
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3971
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
W
whs 已提交
3972 3973 3974 3975 3976
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3977

W
wangchaochaohu 已提交
3978 3979 3980 3981 3982 3983 3984
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3985 3986 3987 3988 3989
            out = layers.strided_slice(x,
                                       axes=axes,
                                       starts=starts,
                                       ends=ends,
                                       strides=strides)
W
wangchaochaohu 已提交
3990 3991
            return out

3992 3993
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3994 3995 3996 3997 3998 3999 4000
            like = fluid.layers.fill_constant(shape=[1, 200],
                                              value=10,
                                              dtype='int64')
            out = layers.fill_constant_batch_size_like(input=like,
                                                       shape=[2, 3300],
                                                       value=1315454564656,
                                                       dtype='int64')
4001 4002
            return out

4003 4004 4005 4006
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4007 4008 4009 4010
            rois = layers.data(name="rois",
                               shape=[4],
                               dtype="float32",
                               lod_level=1)
4011 4012
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            return (output)
4013

4014 4015 4016 4017
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
4018 4019 4020 4021
            y = layers.data(name='y',
                            shape=[10, 20],
                            dtype='float32',
                            lod_level=2)
4022
            return (layers.sequence_expand(x=x, y=y, ref_level=1))
4023

4024 4025 4026 4027 4028 4029
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            return (out)
4030

4031 4032 4033 4034
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
4035
            length = layers.data(name='length', shape=[], dtype='int64')
4036
            return (layers.sequence_unpad(x=x, length=length))
4037

4038 4039 4040
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4041 4042 4043 4044
            seq_data = layers.data(name='seq_data',
                                   shape=[10, 10],
                                   dtype='float32',
                                   lod_level=1)
4045 4046
            seq = layers.fc(input=seq_data, size=20)
            return (layers.sequence_softmax(seq))
4047

4048 4049 4050 4051 4052 4053
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
            return (out)
4054

4055 4056 4057
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
            x = layers.data(name='x',
                            shape=[3, 6],
                            append_batch_size=False,
                            dtype='float32')
            idx = layers.data(name='idx',
                              shape=[12, 1],
                              append_batch_size=False,
                              dtype='int32',
                              lod_level=1)
            updates = layers.data(name='updates',
                                  shape=[12, 1],
                                  append_batch_size=False,
                                  dtype='float32',
                                  lod_level=1)
4072 4073
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            return (out)
W
whs 已提交
4074

4075 4076 4077 4078
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
4079 4080 4081 4082
            seqs = layers.data(name='x',
                               shape=[10, 5],
                               dtype='float32',
                               lod_level=1)
4083 4084
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
4085 4086 4087
            out = layers.sequence_slice(input=seqs,
                                        offset=offset,
                                        length=length)
4088
            return (out)
W
whs 已提交
4089

J
Jiawei Wang 已提交
4090 4091 4092
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
            x1 = layers.data(name='Ins',
                             shape=[32, 1],
                             dtype='float32',
                             lod_level=0)
            x2 = layers.data(name='Ins_tag',
                             shape=[32, 1],
                             dtype='int64',
                             lod_level=0,
                             stop_gradient=True)
            x3 = layers.create_global_var(shape=[1, 1],
                                          value=20,
                                          dtype='int64',
                                          persistable=True,
                                          force_cpu=True,
                                          name='Filter_tag')
J
Jiawei Wang 已提交
4108 4109
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
4110 4111 4112
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4113 4114 4115 4116
            x = layers.data(name='X',
                            shape=[4, 50],
                            dtype='float32',
                            lod_level=0)
Z
zhoushiyu 已提交
4117 4118 4119 4120 4121 4122 4123
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            return (out1)

4124 4125 4126 4127
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4128 4129 4130
            sum = fluid.contrib.layers.partial_sum([x, y],
                                                   start_index=0,
                                                   length=2)
4131 4132
            return (sum)

S
ShenLiang 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                act="relu")
        return (out)

S
ShenLiang 已提交
4151 4152 4153
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4154 4155 4156
            rank_offset = fluid.data(name="rank_offset",
                                     shape=[None, 7],
                                     dtype="int32")
S
ShenLiang 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                max_rank=3)
            return (out)

4168
    def test_roi_pool(self):
4169 4170 4171 4172
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4173
        with self.static_graph():
4174 4175 4176 4177
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4178 4179 4180 4181 4182 4183
            static_res = self.get_static_graph_result(feed={
                'x': x_np,
                'rois': rois_np,
                'rois_num': rois_num_np
            },
                                                      fetch_list=[output])[0]
4184 4185

        with self.dynamic_graph():
4186 4187 4188 4189
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4190 4191 4192 4193 4194 4195
                dy_eager_res = layers.roi_pool(x_dy,
                                               rois_dy,
                                               4,
                                               4,
                                               0.5,
                                               rois_num=rois_num_dy)
4196 4197
                dy_eager_res_value = dy_eager_res[0].numpy()

4198 4199 4200
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4201 4202 4203 4204 4205 4206
            dy_res = layers.roi_pool(x_dy,
                                     rois_dy,
                                     4,
                                     4,
                                     0.5,
                                     rois_num=rois_num_dy)
4207
            dy_res_value = dy_res[0].numpy()
4208 4209
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4210 4211 4212 4213 4214 4215 4216 4217

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4218 4219 4220 4221
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4222
        with self.static_graph():
4223 4224 4225 4226
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4227 4228 4229 4230 4231 4232
            static_res = self.get_static_graph_result(feed={
                'x': x_np,
                'rois': rois_np,
                'rois_num': rois_num_np
            },
                                                      fetch_list=[output])[0]
4233 4234

        with self.dynamic_graph():
4235 4236 4237 4238
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4239 4240 4241 4242 4243 4244 4245
                dy_eager_res = layers.roi_align(x_dy,
                                                rois_dy,
                                                4,
                                                4,
                                                0.5,
                                                2,
                                                rois_num=rois_num_dy)
4246 4247
                dy_eager_res_value = dy_eager_res.numpy()

4248 4249 4250
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4251 4252 4253 4254 4255 4256 4257
            dy_res = layers.roi_align(x_dy,
                                      rois_dy,
                                      4,
                                      4,
                                      0.5,
                                      2,
                                      rois_num=rois_num_dy)
4258
            dy_res_value = dy_res.numpy()
4259 4260
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4261

4262 4263 4264 4265 4266 4267 4268
    def test_dice_loss(self):
        num_classes = 4
        eps = 1e-6
        input_np = np.random.rand(2, 3, num_classes).astype('float32')
        label_np = np.random.randint(0, num_classes, [2, 3, 1], dtype=np.int64)

        with self.static_graph():
4269 4270 4271 4272 4273 4274
            input_ = layers.data(name="input",
                                 shape=[None, 3, num_classes],
                                 dtype="float32")
            label_ = layers.data(name="label",
                                 shape=[None, 3, 1],
                                 dtype="int64")
4275
            output = layers.dice_loss(input_, label_, eps)
4276 4277 4278 4279 4280
            static_res = self.get_static_graph_result(feed={
                'input': input_np,
                'label': label_np
            },
                                                      fetch_list=[output])[0]
4281 4282

        with self.dynamic_graph():
4283 4284 4285 4286 4287 4288
            with _test_eager_guard():
                input_ = base.to_variable(input_np)
                label_ = base.to_variable(label_np)
                dy_eager_res = layers.dice_loss(input_, label_, eps)
                dy_eager_res_value = dy_eager_res.numpy()

4289 4290 4291 4292
            input_ = base.to_variable(input_np)
            label_ = base.to_variable(label_np)
            dy_res = layers.dice_loss(input_, label_, eps)
            dy_res_value = dy_res.numpy()
4293 4294
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4295

4296 4297 4298 4299
    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4300 4301 4302 4303
            rois = layers.data(name="rois",
                               shape=[8],
                               dtype="float32",
                               lod_level=1)
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            return (output)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            return (out)

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4317 4318 4319 4320 4321 4322
            images = layers.data(name='pixel',
                                 shape=[3, 48, 48],
                                 dtype='float32')
            return layers.conv2d(input=images,
                                 num_filters=3,
                                 filter_size=[4, 4])
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
            return (out)

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4334 4335 4336 4337
            x = layers.data(name='x',
                            append_batch_size=False,
                            shape=[4, 4, 3],
                            dtype="float32")
4338 4339
            out = layers.flatten(x, axis=1, name="flatten")
            return (out)
4340

Z
zhoukunsheng 已提交
4341 4342 4343 4344 4345 4346 4347
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4348
    def test_deformable_conv(self):
4349
        with self.static_graph():
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
            input = layers.data(name='input',
                                append_batch_size=False,
                                shape=[2, 3, 32, 32],
                                dtype="float32")
            offset = layers.data(name='offset',
                                 append_batch_size=False,
                                 shape=[2, 18, 32, 32],
                                 dtype="float32")
            mask = layers.data(name='mask',
                               append_batch_size=False,
                               shape=[2, 9, 32, 32],
                               dtype="float32")
            out = layers.deformable_conv(input=input,
                                         offset=offset,
                                         mask=mask,
                                         num_filters=2,
                                         filter_size=3,
                                         padding=1)
4368 4369 4370 4371
            return (out)

    def test_deformable_conv2(self):
        with self.static_graph():
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
            input = fluid.data(name='input',
                               shape=[None, 3, None, None],
                               dtype="float32")
            offset = fluid.data(name='offset',
                                shape=[None, 18, None, None],
                                dtype="float32")
            mask = fluid.data(name='mask',
                              shape=[None, 9, None, None],
                              dtype="float32")
            out = layers.deformable_conv(input=input,
                                         offset=offset,
                                         mask=mask,
                                         num_filters=2,
                                         filter_size=3,
                                         padding=1)
4387
            return (out)
4388

4389 4390 4391 4392 4393 4394
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
            return (out)

4395 4396 4397 4398
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4399 4400 4401 4402 4403 4404
            concat1 = fluid.contrib.layers.partial_concat([x, y],
                                                          start_index=0,
                                                          length=2)
            concat2 = fluid.contrib.layers.partial_concat(x,
                                                          start_index=0,
                                                          length=-1)
4405 4406
            return concat1, concat2

C
cjt222 已提交
4407 4408 4409
    def test_deform_roi_pooling(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
            input = layers.data(name='input',
                                shape=[2, 3, 32, 32],
                                dtype='float32',
                                append_batch_size=False)
            rois = layers.data(name="rois",
                               shape=[4],
                               dtype='float32',
                               lod_level=1)
            trans = layers.data(name="trans",
                                shape=[2, 3, 32, 32],
                                dtype='float32',
                                append_batch_size=False)
            out = layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
                                                no_trans=False,
                                                spatial_scale=1.0,
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4,
                                                trans_std=0.1)
C
cjt222 已提交
4433 4434
        return (out)

4435 4436 4437
    def test_deformable_conv_v1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
            input = layers.data(name='input',
                                append_batch_size=False,
                                shape=[2, 3, 32, 32],
                                dtype="float32")
            offset = layers.data(name='offset',
                                 append_batch_size=False,
                                 shape=[2, 18, 32, 32],
                                 dtype="float32")
            out = layers.deformable_conv(input=input,
                                         offset=offset,
                                         mask=None,
                                         num_filters=2,
                                         filter_size=3,
                                         padding=1,
                                         modulated=False)
4453 4454
            return (out)

4455 4456 4457
    def test_retinanet_target_assign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
            bbox_pred = layers.data(name='bbox_pred',
                                    shape=[1, 100, 4],
                                    append_batch_size=False,
                                    dtype='float32')
            cls_logits = layers.data(name='cls_logits',
                                     shape=[1, 100, 10],
                                     append_batch_size=False,
                                     dtype='float32')
            anchor_box = layers.data(name='anchor_box',
                                     shape=[100, 4],
                                     append_batch_size=False,
                                     dtype='float32')
            anchor_var = layers.data(name='anchor_var',
                                     shape=[100, 4],
                                     append_batch_size=False,
                                     dtype='float32')
            gt_boxes = layers.data(name='gt_boxes',
                                   shape=[10, 4],
                                   append_batch_size=False,
                                   dtype='float32')
            gt_labels = layers.data(name='gt_labels',
                                    shape=[10, 1],
                                    append_batch_size=False,
                                    dtype='int32')
            is_crowd = layers.data(name='is_crowd',
                                   shape=[1],
                                   append_batch_size=False,
                                   dtype='int32')
            im_info = layers.data(name='im_info',
                                  shape=[1, 3],
                                  append_batch_size=False,
                                  dtype='float32')
            return (layers.retinanet_target_assign(bbox_pred, cls_logits,
                                                   anchor_box, anchor_var,
                                                   gt_boxes, gt_labels,
                                                   is_crowd, im_info, 10))
4494

4495 4496 4497
    def test_sigmoid_focal_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
            input = layers.data(name='data',
                                shape=[10, 80],
                                append_batch_size=False,
                                dtype='float32')
            label = layers.data(name='label',
                                shape=[10, 1],
                                append_batch_size=False,
                                dtype='int32')
            fg_num = layers.data(name='fg_num',
                                 shape=[1],
                                 append_batch_size=False,
                                 dtype='int32')
            out = fluid.layers.sigmoid_focal_loss(x=input,
                                                  label=label,
                                                  fg_num=fg_num,
                                                  gamma=2.,
                                                  alpha=0.25)
4515 4516
            return (out)

4517 4518 4519
    def test_addmm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
            input = layers.data(name='input_data',
                                shape=[3, 3],
                                append_batch_size=False,
                                dtype='float32')
            x = layers.data(name='x',
                            shape=[3, 2],
                            append_batch_size=False,
                            dtype='float32')
            y = layers.data(name='y',
                            shape=[2, 3],
                            append_batch_size=False,
                            dtype='float32')
4532 4533 4534 4535

            out = paddle.addmm(input=input, x=x, y=y)
            return (out)

4536 4537 4538
    def test_retinanet_detection_output(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
            bboxes = layers.data(name='bboxes',
                                 shape=[1, 21, 4],
                                 append_batch_size=False,
                                 dtype='float32')
            scores = layers.data(name='scores',
                                 shape=[1, 21, 10],
                                 append_batch_size=False,
                                 dtype='float32')
            anchors = layers.data(name='anchors',
                                  shape=[21, 4],
                                  append_batch_size=False,
                                  dtype='float32')
            im_info = layers.data(name="im_info",
                                  shape=[1, 3],
                                  append_batch_size=False,
                                  dtype='float32')
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
                nms_eta=1.)
            return (nmsed_outs)

4567 4568 4569
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4570 4571 4572 4573 4574 4575
            input_length = layers.data(name='logits_length',
                                       shape=[11],
                                       dtype='int64')
            label_length = layers.data(name='labels_length',
                                       shape=[12],
                                       dtype='int64')
4576
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4577 4578 4579 4580 4581 4582 4583
            predict = layers.data(name='predict',
                                  shape=[4, 4, 8],
                                  dtype='float32')
            output = layers.warpctc(input=predict,
                                    label=label,
                                    input_length=input_length,
                                    label_length=label_length)
4584 4585
            return (output)

4586 4587
    def test_edit_distance(self):
        with self.static_graph():
4588 4589 4590 4591 4592 4593 4594 4595
            predict = layers.data(name='predict',
                                  shape=[-1, 1],
                                  dtype='int64',
                                  lod_level=1)
            label = layers.data(name='label',
                                shape=[-1, 1],
                                dtype='int64',
                                lod_level=1)
4596 4597 4598
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

4599 4600 4601 4602
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4603 4604 4605 4606 4607 4608 4609 4610 4611
            input = fluid.data(name="input",
                               shape=[None, None, input_size],
                               dtype='float32')
            pre_hidden = fluid.data(name="pre_hidden",
                                    shape=[None, hidden_size],
                                    dtype='float32')
            sequence_length = fluid.data(name="sequence_length",
                                         shape=[None],
                                         dtype='int32')
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
                        batch_first=batch_first)

Y
Yu Yang 已提交
4625

4626
class TestMetricsDetectionMap(unittest.TestCase):
4627

4628 4629 4630
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
            detect_res = fluid.layers.data(name='detect_res',
                                           shape=[10, 6],
                                           append_batch_size=False,
                                           dtype='float32')
            label = fluid.layers.data(name='label',
                                      shape=[10, 1],
                                      append_batch_size=False,
                                      dtype='float32')
            box = fluid.layers.data(name='bbox',
                                    shape=[10, 4],
                                    append_batch_size=False,
                                    dtype='float32')
            map_eval = fluid.metrics.DetectionMAP(detect_res,
                                                  label,
                                                  box,
                                                  class_num=21)
4647 4648 4649 4650 4651 4652
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4653
class ExampleNet(paddle.nn.Layer):
4654

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
    def __init__(self):
        super(ExampleNet, self).__init__()
        self.weight = self.create_parameter(
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False))

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
4666

4667 4668 4669 4670 4671 4672
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4673
class TestLayerTrainingAttribute(unittest.TestCase):
4674

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4691
class MyLayer(paddle.nn.Layer):
4692

J
Jiabin Yang 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
    def __init__(self):
        super(MyLayer, self).__init__()
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
4705

J
Jiabin Yang 已提交
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
    def __init__(self):
        super(MySuperLayer, self).__init__()
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
4716

J
Jiabin Yang 已提交
4717 4718 4719 4720 4721 4722 4723
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4724
if __name__ == '__main__':
4725
    paddle.enable_static()
Y
Yu Yang 已提交
4726
    unittest.main()