Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d980ba19
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d980ba19
编写于
3月 28, 2019
作者:
L
lujun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add some dygraph op, test=develop
上级
ed61d67c
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
707 addition
and
5 deletion
+707
-5
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+431
-5
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+276
-0
未找到文件。
python/paddle/fluid/imperative/nn.py
浏览文件 @
d980ba19
...
...
@@ -15,19 +15,20 @@
from
__future__
import
print_function
from
six.moves
import
reduce
import
numpy
as
np
from
..
import
core
from
..layers
import
utils
from
.
import
layers
from
..framework
import
Variable
,
OpProtoHolder
from
..layers
import
layer_function_generator
from
..framework
import
Variable
from
..param_attr
import
ParamAttr
from
..initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
import
numpy
as
np
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
,
'GRUUnit'
,
'LayerNorm'
,
'NCE'
,
'PRelu'
,
'BilinearTensorProduct'
,
'Conv2DTranspose'
,
'SequenceConv'
'Conv2D'
,
'Conv3D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
,
'GRUUnit'
,
'LayerNorm'
,
'NCE'
,
'PRelu'
,
'BilinearTensorProduct'
,
'Conv2DTranspose'
,
'Conv3DTranspose'
,
'SequenceConv'
,
'RowConv'
,
'GroupNorm'
,
'SpectralNorm'
,
'TreeConv'
]
...
...
@@ -137,6 +138,200 @@ class Conv2D(layers.Layer):
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
class
Conv3D
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
assert
param_attr
is
not
False
,
"param_attr should not be False here."
super
(
Conv3D
,
self
).
__init__
(
name_scope
)
self
.
_groups
=
groups
self
.
_stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
self
.
_padding
=
utils
.
convert_to_list
(
padding
,
3
,
'padding'
)
self
.
_dilation
=
utils
.
convert_to_list
(
dilation
,
4
,
'dilation'
)
self
.
_act
=
act
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
self
.
_use_cudnn
=
use_cudnn
self
.
_l_type
=
'conv3d'
self
.
_dtype
=
dtype
if
groups
is
None
:
num_filter_channels
=
num_channels
else
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
//
groups
filter_size
=
utils
.
convert_to_list
(
filter_size
,
3
,
'filter_size'
)
filter_shape
=
[
num_filters
,
num_filter_channels
]
+
filter_size
def
_get_default_param_initializer
():
filter_elem_num
=
filter_size
[
0
]
*
filter_size
[
1
]
*
filter_size
[
2
]
*
num_channels
std
=
(
2.0
/
filter_elem_num
)
**
0.5
return
Normal
(
0.0
,
std
,
0
)
self
.
_filter_param
=
self
.
create_parameter
(
attr
=
param_attr
,
shape
=
filter_shape
,
dtype
=
self
.
_dtype
,
default_initializer
=
_get_default_param_initializer
())
self
.
_bias_param
=
self
.
create_parameter
(
attr
=
bias_attr
,
shape
=
[
num_filters
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
def
forward
(
self
,
input
):
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
self
.
_l_type
,
inputs
=
{
'Input'
:
input
,
'Filter'
:
self
.
_filter_param
,
},
outputs
=
{
"Output"
:
pre_bias
},
attrs
=
{
'strides'
:
self
.
_stride
,
'paddings'
:
self
.
_padding
,
'dilations'
:
self
.
_dilation
,
'groups'
:
self
.
_groups
if
self
.
_groups
else
1
,
'use_cudnn'
:
self
.
_use_cudnn
,
'use_mkldnn'
:
False
})
pre_act
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_bias_param
]},
outputs
=
{
'Out'
:
[
pre_act
]},
attrs
=
{
'axis'
:
1
})
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
class
Conv3DTranspose
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_filters
,
output_size
=
None
,
filter_size
=
None
,
padding
=
0
,
stride
=
1
,
dilation
=
1
,
groups
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
name
=
None
):
super
(
Conv3DTranspose
,
self
).
__init__
(
name_scope
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
assert
param_attr
is
not
False
,
"param_attr should not be False in conv3d_transpose."
self
.
_padding
=
utils
.
convert_to_list
(
padding
,
3
,
'padding'
)
self
.
_stride
=
utils
.
convert_to_list
(
stride
,
3
,
'stride'
)
self
.
_dilation
=
utils
.
convert_to_list
(
dilation
,
3
,
'dilation'
)
self
.
_param_attr
=
param_attr
self
.
_filter_size
=
filter_size
self
.
_output_size
=
output_size
self
.
_groups
=
1
if
groups
is
None
else
groups
self
.
_num_filters
=
num_filters
self
.
_use_cudnn
=
use_cudnn
self
.
_bias_attr
=
bias_attr
self
.
_act
=
act
def
_build_once
(
self
,
input
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
self
.
_input_channel
=
input
.
shape
[
1
]
if
self
.
_filter_size
is
None
:
if
self
.
_output_size
is
None
:
raise
ValueError
(
"output_size must be set when filter_size is None"
)
if
isinstance
(
self
.
_output_size
,
int
):
self
.
_output_size
=
[
self
.
_output_size
,
self
.
_output_size
]
d_in
=
input
.
shape
[
2
]
h_in
=
input
.
shape
[
3
]
w_in
=
input
.
shape
[
4
]
filter_size_d
=
(
self
.
_output_size
[
0
]
-
(
d_in
-
1
)
*
self
.
_stride
[
0
]
+
2
*
self
.
_padding
[
0
]
-
1
)
//
self
.
_dilation
[
0
]
+
1
filter_size_h
=
(
self
.
_output_size
[
1
]
-
(
h_in
-
1
)
*
self
.
_stride
[
1
]
+
2
*
self
.
_padding
[
1
]
-
1
)
//
self
.
_dilation
[
1
]
+
1
filter_size_w
=
(
self
.
_output_size
[
2
]
-
(
w_in
-
1
)
*
self
.
_stride
[
2
]
+
2
*
self
.
_padding
[
2
]
-
1
)
//
self
.
_dilation
[
2
]
+
1
self
.
_filter_size
=
[
filter_size_d
,
filter_size_h
,
filter_size_w
]
else
:
self
.
_filter_size
=
utils
.
convert_to_list
(
self
.
_filter_size
,
3
,
'conv3d_transpose.filter_size'
)
filter_shape
=
[
self
.
_input_channel
,
self
.
_num_filters
//
self
.
_groups
]
+
self
.
_filter_size
self
.
_img_filter
=
self
.
create_parameter
(
dtype
=
self
.
_dtype
,
shape
=
filter_shape
,
attr
=
self
.
_param_attr
)
if
self
.
_bias_attr
:
self
.
_bias_param
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
[
self
.
_num_filters
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
def
forward
(
self
,
input
):
pre_bias
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"conv3d_transpose"
,
inputs
=
{
'Input'
:
[
input
],
'Filter'
:
[
self
.
_img_filter
]},
outputs
=
{
'Output'
:
pre_bias
},
attrs
=
{
'strides'
:
self
.
_stride
,
'paddings'
:
self
.
_padding
,
'dilations'
:
self
.
_dilation
,
'groups'
:
self
.
_groups
if
self
.
_groups
else
1
,
'use_cudnn'
:
self
.
_use_cudnn
})
if
self
.
_bias_attr
:
pre_act
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
pre_bias
],
'Y'
:
[
self
.
_bias_param
]},
outputs
=
{
'Out'
:
[
pre_act
]},
attrs
=
{
'axis'
:
1
})
else
:
pre_act
=
pre_bias
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
pre_act
,
act
=
self
.
_act
)
class
Pool2D
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
...
...
@@ -1397,3 +1592,234 @@ class SequenceConv(layers.Layer):
})
pre_act
=
self
.
_helper
.
append_bias_op
(
pre_bias
)
return
self
.
_helper
.
append_activation
(
pre_act
)
class
RowConv
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
future_context_size
,
param_attr
=
None
,
act
=
None
):
super
(
RowConv
,
self
).
__init__
(
name_scope
)
self
.
_act
=
act
self
.
_param_attr
=
param_attr
self
.
_future_context_size
=
future_context_size
def
_buils_once
(
self
,
input
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
filter_shape
=
[
self
.
_future_context_size
+
1
,
input
.
shape
[
1
]]
self
.
_f
=
self
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
filter_shape
,
dtype
=
self
.
_dtype
)
def
forward
(
self
,
input
):
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'row_conv'
,
inputs
=
{
'X'
:
[
input
],
'Filter'
:
[
self
.
_f
]},
outputs
=
{
'Out'
:
[
out
]})
return
self
.
_helper
.
append_activation
(
out
,
act
=
self
.
_act
)
class
GroupNorm
(
layers
.
Layer
):
"""
**Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
name_scope (str): See base class.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the learnable
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
act(str): Activation to be applied to the output of group normalizaiton.
data_layout(string|NCHW): Only NCHW is supported.
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: A tensor variable which is the result after applying group normalization on the input.
"""
def
__init__
(
self
,
name_scope
,
groups
,
epsilon
=
1e-05
,
param_attr
=
None
,
bias_attr
=
None
,
act
=
None
,
data_layout
=
'NCHW'
):
super
(
GroupNorm
,
self
).
__init__
(
name_scope
)
self
.
_param_attr
=
param_attr
self
.
_bias_attr
=
bias_attr
self
.
_epsilon
=
epsilon
self
.
_groups
=
groups
self
.
_act
=
act
if
data_layout
!=
'NCHW'
:
raise
ValueError
(
"unsupported data layout:"
+
data_layout
)
def
_buils_once
(
self
,
input
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
input
)
param_shape
=
[
input
.
shape
[
1
]]
if
self
.
_bias_attr
:
self
.
_bias
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
True
)
if
self
.
_param_attr
:
self
.
_scale
=
self
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
param_shape
,
dtype
=
self
.
_dtype
,
default_initializer
=
Constant
(
1.0
))
def
forward
(
self
,
input
):
inputs
=
{
'X'
:
input
}
if
self
.
_bias
:
inputs
[
'Bias'
]
=
self
.
_bias
if
self
.
_scale
:
inputs
[
'Scale'
]
=
self
.
_scale
# create output
mean_out
=
self
.
_helper
.
create_variable
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
self
.
create_variable
(
name
=
"mean_out"
,
persistable
=
True
,
type
=
self
.
_dtype
)
variance_out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
group_norm_out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"group_norm"
,
inputs
=
inputs
,
outputs
=
{
"Y"
:
group_norm_out
,
"Mean"
:
mean_out
,
"Variance"
:
variance_out
,
},
attrs
=
{
"epsilon"
:
self
.
_epsilon
,
"groups"
:
self
.
_groups
})
return
self
.
_helper
.
append_activation
(
group_norm_out
,
self
.
_act
)
class
SpectralNorm
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
dim
=
0
,
power_iters
=
1
,
eps
=
1e-12
,
name
=
None
):
super
(
SpectralNorm
,
self
).
__init__
(
name_scope
)
self
.
_power_iters
=
power_iters
self
.
_eps
=
eps
self
.
_dim
=
dim
def
_build_once
(
self
,
weight
):
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
weight
)
input_shape
=
weight
.
shape
h
=
input_shape
[
self
.
_dim
]
w
=
np
.
prod
(
input_shape
)
//
h
self
.
u
=
self
.
create_parameter
(
attr
=
ParamAttr
(),
shape
=
[
h
],
dtype
=
self
.
_dtype
,
default_initializer
=
Normal
(
0.
,
1.
))
self
.
u
.
stop_gradient
=
True
self
.
v
=
self
.
create_parameter
(
attr
=
ParamAttr
(),
shape
=
[
w
],
dtype
=
self
.
_dtype
,
default_initializer
=
Normal
(
0.
,
1.
))
self
.
v
.
stop_gradient
=
True
def
forward
(
self
,
weight
):
inputs
=
{
'Weight'
:
weight
,
'U'
:
self
.
u
,
'V'
:
self
.
v
}
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"spectral_norm"
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
,
},
attrs
=
{
"dim"
:
self
.
_dim
,
"power_iters"
:
self
.
_power_iters
,
"eps"
:
self
.
_eps
,
})
return
out
class
TreeConv
(
layers
.
Layer
):
def
__init__
(
self
,
name_scope
,
output_size
,
num_filters
=
1
,
max_depth
=
2
,
act
=
'tanh'
,
param_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
super
(
TreeConv
,
self
).
__init__
(
name_scope
)
self
.
_name
=
name
self
.
_output_size
=
output_size
self
.
_act
=
act
self
.
_max_depth
=
max_depth
self
.
_num_filters
=
num_filters
self
.
_bias_attr
=
bias_attr
self
.
_param_attr
=
param_attr
def
_build_once
(
self
,
nodes_vector
,
edge_set
):
assert
isinstance
(
nodes_vector
,
Variable
)
assert
isinstance
(
edge_set
,
Variable
)
self
.
_dtype
=
self
.
_helper
.
input_dtype
(
nodes_vector
)
feature_size
=
nodes_vector
.
shape
[
2
]
w_shape
=
[
feature_size
,
3
,
self
.
_output_size
,
self
.
_num_filters
]
if
self
.
_bias_attr
:
self
.
_bias_param
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
[
self
.
_num_filters
],
dtype
=
self
.
_dtype
,
is_bias
=
True
)
self
.
W
=
self
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
w_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
forward
(
self
,
nodes_vector
,
edge_set
):
if
self
.
_name
:
out
=
self
.
create_variable
(
name
=
self
.
_name
,
dtype
=
self
.
_dtype
,
persistable
=
False
)
else
:
out
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'tree_conv'
,
inputs
=
{
'NodesVector'
:
nodes_vector
,
'EdgeSet'
:
edge_set
,
'Filter'
:
self
.
W
},
outputs
=
{
'Out'
:
out
,
},
attrs
=
{
'max_depth'
:
self
.
_max_depth
})
if
self
.
_bias_attr
:
pre_activation
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
out
],
'Y'
:
[
self
.
_bias_param
]},
outputs
=
{
'Out'
:
[
pre_activation
]},
attrs
=
{
'axis'
:
1
})
else
:
pre_activation
=
out
return
self
.
_helper
.
append_activation
(
pre_activation
,
act
=
self
.
_act
)
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
d980ba19
...
...
@@ -560,6 +560,282 @@ class TestLayer(LayerTest):
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
nce_loss3
.
_numpy
(),
static_rlt
))
def
test_conv3d
(
self
):
with
self
.
static_graph
():
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
ret
=
layers
.
conv3d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
[
2
,
2
,
2
])
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
np
.
ones
(
[
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
static_graph
():
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
nn
.
Conv3D
(
'conv3d'
,
num_channels
=
3
,
num_filters
=
3
,
filter_size
=
[
2
,
2
,
2
])
ret
=
conv3d
(
images
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
np
.
ones
(
[
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
dynamic_graph
():
images
=
np
.
ones
([
2
,
3
,
6
,
6
,
6
],
dtype
=
'float32'
)
conv3d
=
nn
.
Conv3D
(
'conv3d'
,
num_channels
=
3
,
num_filters
=
3
,
filter_size
=
[
2
,
2
,
2
])
dy_ret
=
conv3d
(
base
.
to_variable
(
images
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_row_conv
(
self
):
input
=
np
.
arange
(
15
).
reshape
([
3
,
5
]).
astype
(
'float32'
)
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'X'
,
shape
=
[
3
,
5
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
row_conv
(
input
=
x
,
future_context_size
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
x
=
layers
.
data
(
name
=
'X'
,
shape
=
[
3
,
5
],
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
rowConv
=
nn
.
RowConv
(
'RowConv'
,
future_context_size
=
2
)
ret
=
rowConv
(
x
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
,
1
]],
place
=
place
,
with_lod
=
True
)
},
fetch_list
=
[
ret
])[
0
]
with
self
.
dynamic_graph
():
rowConv
=
nn
.
RowConv
(
'RowConv'
,
future_context_size
=
2
)
dy_ret
=
rowConv
(
base
.
to_variable
(
input
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_group_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
shape
=
(
2
,
4
,
3
,
3
)
input
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
with
self
.
static_graph
():
X
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
group_norm
(
input
=
X
,
groups
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
X
=
fluid
.
layers
.
data
(
name
=
'X'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
groupNorm
=
nn
.
GroupNorm
(
'GroupNorm'
,
groups
=
2
)
ret
=
groupNorm
(
X
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'X'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
dynamic_graph
():
groupNorm
=
nn
.
GroupNorm
(
'GroupNorm'
,
groups
=
2
)
dy_ret
=
groupNorm
(
base
.
to_variable
(
input
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_spectral_norm
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
shape
=
(
2
,
4
,
3
,
3
)
input
=
np
.
random
.
random
(
shape
).
astype
(
'float32'
)
with
self
.
static_graph
():
Weight
=
fluid
.
layers
.
data
(
name
=
'Weight'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
spectral_norm
(
weight
=
Weight
,
dim
=
1
,
power_iters
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'Weight'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
),
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
static_graph
():
Weight
=
fluid
.
layers
.
data
(
name
=
'Weight'
,
shape
=
shape
,
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
spectralNorm
=
nn
.
SpectralNorm
(
'SpectralNorm'
,
dim
=
1
,
power_iters
=
2
)
ret
=
spectralNorm
(
Weight
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'Weight'
:
fluid
.
create_lod_tensor
(
data
=
input
,
recursive_seq_lens
=
[[
1
,
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
True
)[
0
]
with
self
.
dynamic_graph
():
spectralNorm
=
nn
.
SpectralNorm
(
'SpectralNorm'
,
dim
=
1
,
power_iters
=
2
)
dy_ret
=
spectralNorm
(
base
.
to_variable
(
input
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
def
test_tree_conv
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
adj_array
=
[
1
,
2
,
1
,
3
,
1
,
4
,
1
,
5
,
2
,
6
,
2
,
7
,
2
,
8
,
4
,
9
,
4
,
10
]
adj
=
np
.
array
(
adj_array
).
reshape
((
1
,
9
,
2
)).
astype
(
'int32'
)
adj
=
np
.
tile
(
adj
,
(
1
,
1
,
1
))
vectors
=
np
.
random
.
random
((
1
,
10
,
5
)).
astype
(
'float32'
)
with
self
.
static_graph
():
NodesVector
=
fluid
.
layers
.
data
(
name
=
'NodesVector'
,
shape
=
(
1
,
10
,
5
),
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
EdgeSet
=
fluid
.
layers
.
data
(
name
=
'EdgeSet'
,
shape
=
(
1
,
9
,
2
),
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
ret
=
layers
.
tree_conv
(
nodes_vector
=
NodesVector
,
edge_set
=
EdgeSet
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
'NodesVector'
:
fluid
.
create_lod_tensor
(
data
=
vectors
,
recursive_seq_lens
=
[[
1
]],
place
=
place
),
'EdgeSet'
:
fluid
.
create_lod_tensor
(
data
=
adj
,
recursive_seq_lens
=
[[
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
False
)[
0
]
with
self
.
static_graph
():
NodesVector
=
fluid
.
layers
.
data
(
name
=
'NodesVector'
,
shape
=
(
1
,
10
,
5
),
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
EdgeSet
=
fluid
.
layers
.
data
(
name
=
'EdgeSet'
,
shape
=
(
1
,
9
,
2
),
dtype
=
'int32'
,
lod_level
=
1
,
append_batch_size
=
False
)
treeConv
=
nn
.
TreeConv
(
'TreeConv'
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
ret
=
treeConv
(
NodesVector
,
EdgeSet
)
static_ret2
=
self
.
get_static_graph_result
(
feed
=
{
'NodesVector'
:
fluid
.
create_lod_tensor
(
data
=
vectors
,
recursive_seq_lens
=
[[
1
]],
place
=
place
),
'EdgeSet'
:
fluid
.
create_lod_tensor
(
data
=
adj
,
recursive_seq_lens
=
[[
1
]],
place
=
place
)
},
fetch_list
=
[
ret
],
with_lod
=
False
)[
0
]
with
self
.
dynamic_graph
():
treeConv
=
nn
.
TreeConv
(
'SpectralNorm'
,
output_size
=
6
,
num_filters
=
1
,
max_depth
=
2
)
dy_ret
=
treeConv
(
base
.
to_variable
(
vectors
),
base
.
to_variable
(
adj
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
static_ret2
))
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret
.
_numpy
()))
def
test_conv3d_transpose
(
self
):
input_array
=
np
.
arange
(
0
,
48
).
reshape
(
[
2
,
3
,
2
,
2
,
2
]).
astype
(
'float32'
)
with
self
.
static_graph
():
img
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
2
,
2
,
2
],
dtype
=
'float32'
)
out
=
layers
.
conv3d_transpose
(
input
=
img
,
num_filters
=
12
,
output_size
=
[
14
,
14
,
14
])
static_rlt
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
])[
0
]
with
self
.
static_graph
():
img
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
2
,
2
,
2
],
dtype
=
'float32'
)
conv3d_transpose
=
nn
.
Conv3DTranspose
(
'Conv3DTranspose'
,
num_filters
=
12
,
output_size
=
[
14
,
14
,
14
])
out
=
conv3d_transpose
(
img
)
static_rlt2
=
self
.
get_static_graph_result
(
feed
=
{
'pixel'
:
input_array
},
fetch_list
=
[
out
])[
0
]
with
self
.
dynamic_graph
():
conv3d_transpose
=
nn
.
Conv3DTranspose
(
'Conv3DTranspose'
,
num_filters
=
12
,
output_size
=
[
14
,
14
,
14
])
dy_rlt
=
conv3d_transpose
(
base
.
to_variable
(
input_array
))
self
.
assertTrue
(
np
.
allclose
(
static_rlt2
,
static_rlt
))
self
.
assertTrue
(
np
.
allclose
(
dy_rlt
.
_numpy
(),
static_rlt
))
class
TestBook
(
unittest
.
TestCase
):
def
test_fit_a_line
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录