test_layers.py 168.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36
import paddle.nn.functional as F
37 38 39 40 41 42 43 44 45 46 47


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
60
            paddle.seed(self.seed)
L
Leo Chen 已提交
61
            paddle.framework.random._manual_program_seed(self.seed)
62 63
            yield

64 65 66
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
67
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
68
        exe.run(fluid.default_startup_program())
69 70 71 72 73 74
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79 80
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
81
            paddle.seed(self.seed)
L
Leo Chen 已提交
82
            paddle.framework.random._manual_program_seed(self.seed)
83 84 85 86
            yield


class TestLayer(LayerTest):
87 88
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
89
            def __init__(self, input_size, linear1_size=4):
90
                super().__init__()
91 92 93
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
94 95 96 97 98 99
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
100 101 102
                return ret

        with self.dynamic_graph():
103 104 105 106 107
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
108
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
109
                ret = custom(x, do_linear2=True)
110
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
111 112
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
113 114
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
115
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
116
            ret = custom(x, do_linear2=True)
117
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
118

119 120 121
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
122 123 124 125 126 127
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
128 129
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
130 131 132
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
133
            static_ret, static_ret2 = self.get_static_graph_result(
134 135
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
136
        with self.dynamic_graph():
137 138 139 140
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
141 142 143
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
144 145 146
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

147 148 149
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
150 151 152
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
153 154 155
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

156 157
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
158

159 160 161
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
162

S
songyouwei 已提交
163 164 165
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
166 167 168 169 170 171
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
172
            linear = nn.Linear(
173 174
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
175
            ret = linear(t)
176 177 178
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
179
        with self.dynamic_graph():
180 181 182 183 184
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
185 186
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
187 188 189
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
190 191
            t = base.to_variable(inp)
            linear = nn.Linear(
192 193
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
194 195 196
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

197 198
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
199

200 201 202 203 204 205 206 207
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
208 209
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
210 211 212 213 214 215 216 217
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
218 219 220
                linear = nn.Linear(
                    32,
                    4,
221 222
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
223 224 225 226 227 228 229
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
230 231 232 233 234 235
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
236 237
            flatten = nn.Flatten()
            ret = flatten(t)
238 239 240
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
241
        with self.dynamic_graph():
242 243 244 245 246 247
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

248 249 250 251 252
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

253 254
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
255 256 257 258 259 260 261 262 263

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
264 265
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
266 267 268 269 270 271 272 273
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
274 275 276
                linear = nn.Linear(
                    32,
                    4,
277 278
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
279 280 281 282
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

283 284 285
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
286 287 288 289 290 291
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
292 293 294
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
295 296 297 298 299
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
300
        with self.static_graph():
301 302 303 304 305 306
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
307
            lm = nn.LayerNorm(
308
                normalized_shape=[32, 32],
309
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
310 311
                act='sigmoid',
            )
312
            ret = lm(t)
313 314 315
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
316
        with self.dynamic_graph():
317 318 319 320
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
321 322
                    act='sigmoid',
                )
323 324 325
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

326
            lm = nn.LayerNorm(
327
                normalized_shape=[32, 32],
328
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
329 330
                act='sigmoid',
            )
331
            dy_ret = lm(base.to_variable(inp))
332
            dy_ret_value = dy_ret.numpy()
333

334
        with self.dynamic_graph():
335 336 337 338 339 340 341
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
342 343
                    act='sigmoid',
                )
344 345 346 347 348
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

349
            lm = nn.LayerNorm(
350
                normalized_shape=[32, 32],
351 352 353 354
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
355 356
                act='sigmoid',
            )
357 358 359 360
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
361

362 363 364
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
365

366
        with self.dynamic_graph():
367 368 369 370
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
371 372
                    act='sigmoid',
                )
373 374 375
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

376 377 378
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
379 380
                act='sigmoid',
            )
381 382 383
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
384 385 386 387
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
388
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
389 390
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
391
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
392 393
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
394 395

            with self.dynamic_graph():
396 397 398 399 400 401
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
402 403 404 405
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
406 407
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
408

409 410 411 412 413
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
414 415
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
416 417

        with self.dynamic_graph():
418 419 420 421 422
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

423 424
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
425
            dy_ret_value = dy_ret.numpy()
426

427 428
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
429

430 431 432 433 434
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
435 436 437 438 439 440 441
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
442 443

        with self.dynamic_graph():
444 445 446
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
447 448 449
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
450 451
                dy_eager_ret_value = dy_eager_ret.numpy()

452 453
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
454
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
455
            dy_ret_value = dy_ret.numpy()
456

457 458
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
459

M
minqiyang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
473 474
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
475
            static_ret = self.get_static_graph_result(
476 477 478
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
479 480 481 482 483

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
484 485
                input=x, hidden=hidden, size=D * 3
            )
486
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
487 488 489
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
490 491 492
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
493 494

        with self.dynamic_graph():
495 496
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
497 498 499
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
500 501 502 503
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

504
            gru = nn.GRUUnit(size=D * 3)
505 506 507
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
508 509 510
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
511 512

        for i in range(len(static_ret)):
513 514 515 516 517 518 519 520 521
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
522

523
        with self.dynamic_graph():
524 525 526 527
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
528 529 530
                        custom_weight
                    )
                )
531 532
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
533 534 535 536 537 538
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
539
                self.assertFalse(
540 541
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
542 543 544 545
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
546 547 548 549 550 551
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
552
                for o1, o2 in zip(dy_ret1, dy_ret2):
553
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
554 555 556

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
557 558 559 560 561 562
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
563

564
            custom_weight = np.random.randn(D, D * 3).astype("float32")
565 566 567 568 569
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
570 571
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
572 573 574 575 576 577
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
578
            self.assertFalse(
579 580
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
581 582 583 584
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
585 586 587 588 589 590
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
591
            for o1, o2 in zip(dy_ret1, dy_ret2):
592
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
593 594 595

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
596 597 598
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
599
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
600

X
Xin Pan 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
618
            ret = paddle.pow(ret, t3)
X
Xin Pan 已提交
619 620 621 622
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

623 624 625 626
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
627 628

        with self.dynamic_graph():
629 630
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
631
                ret = paddle.pow(ret, to_variable(n3))
632 633 634 635 636
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

637
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
638
            ret = paddle.pow(ret, to_variable(n3))
639 640 641
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
642
            dy_ret_value = dy_ret.numpy()
643

644 645
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
646 647 648 649 650 651

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
652
            with _test_eager_guard():
653
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
654
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
655 656 657
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

658
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
659
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
660 661
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
662

663 664 665 666
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
667

668 669 670 671 672 673 674
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
675 676 677 678 679 680 681
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
682
            out = layers.sequence_conv(seq, 2, act='sigmoid')
683 684 685 686 687 688 689 690 691
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
692 693

        with self.static_graph():
694 695 696 697 698 699 700
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
701
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
702
            out = seq_conv(seq)
703 704 705 706 707 708 709 710 711 712 713 714
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
715 716 717 718 719

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
720
            out = paddle.static.nn.conv2d_transpose(
721 722
                input=img,
                num_filters=10,
723
                filter_size=27,
724
                act='sigmoid',
725 726 727 728 729
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
730 731 732
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
733
                num_channels=3,
734
                num_filters=10,
735
                filter_size=27,
736
                act='sigmoid',
737 738
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
739
            out = conv2d_transpose(img)
740 741 742
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
743
        with self.dynamic_graph():
744 745 746 747 748 749
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
750 751
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
752 753 754
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

755
            conv2d_transpose = nn.Conv2DTranspose(
756
                num_channels=3,
757
                num_filters=10,
758
                filter_size=27,
759
                act='sigmoid',
760 761
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
762
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
763
            dy_rlt_value = dy_rlt.numpy()
764 765 766
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
767

768
        with self.dynamic_graph():
769 770 771 772 773
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
774 775 776 777 778 779 780 781 782 783 784 785
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
786 787 788
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
789 790
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
791 792 793 794

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
795 796
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
797
                conv2d2.weight.set_value(conv2d1_weight_np)
798 799 800
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
801 802 803
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
804
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
805 806 807

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
808 809 810 811 812 813
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
814

815 816
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
817 818 819 820 821 822 823 824 825 826 827 828 829 830
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
831 832 833 834 835 836 837
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
838 839
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
840
            conv2d2.weight.set_value(conv2d1_weight_np)
841 842 843
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
844 845 846
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
847
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
848 849 850

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
851 852 853 854 855 856
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
857

858 859 860 861 862
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
863 864 865
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
866 867 868 869 870 871 872
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
873 874 875 876 877 878
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
879 880 881 882
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

883 884 885 886 887
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
888 889 890 891 892 893
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
894 895 896 897 898
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
899 900
                act='sigmoid',
            )
901

902 903 904
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
905

906
        with self.static_graph():
907 908 909 910 911 912
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
913
            btp = nn.BilinearTensorProduct(
914 915
                3,
                3,
916 917
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
918 919
                act='sigmoid',
            )
920
            out = btp(data_x, data_y)
921 922 923
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
924
        with self.dynamic_graph():
925 926 927 928 929 930
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
931 932 933 934 935
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
936 937
                dy_eager_rlt_value = dy_eager_rlt.numpy()

938
            btp = nn.BilinearTensorProduct(
939 940
                3,
                3,
941 942
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
943 944
                act='sigmoid',
            )
945
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
946
            dy_rlt_value = dy_rlt.numpy()
947

948
        with self.dynamic_graph():
949 950
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
951 952 953
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
954 955
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

956
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
957 958 959
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
960
            dy_rlt2_value = dy_rlt2.numpy()
961

962
        with self.static_graph():
963 964 965 966 967 968 969 970 971 972 973 974 975
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
976

977 978 979 980 981
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
982

983
        with self.dynamic_graph():
984 985 986 987
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
988 989 990
                        custom_weight
                    )
                )
991
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
992 993 994 995 996 997 998 999 1000
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1001
                self.assertFalse(
1002 1003
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1004 1005
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1006 1007 1008 1009 1010 1011
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1012
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1013 1014 1015

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1016 1017 1018 1019 1020 1021
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1022

1023
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1024 1025 1026 1027 1028
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1029
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1030 1031 1032 1033 1034 1035 1036 1037 1038
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1039 1040 1041
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1042 1043 1044 1045 1046 1047
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1048
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1049 1050 1051

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1052 1053 1054
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1055
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1056

1057
    def prelu_test(self, mode):
1058 1059
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1072 1073

        with self.static_graph():
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1086
            out = prelu(data_t)
1087 1088 1089
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1090 1091

        with self.dynamic_graph():
1092 1093 1094 1095 1096
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1097 1098
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1099 1100 1101
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1102 1103 1104 1105 1106 1107
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1108
            dy_rlt = prelu(base.to_variable(inp_np))
1109
            dy_rlt_value = dy_rlt.numpy()
1110

1111 1112 1113
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1114

1115
        with self.dynamic_graph():
1116 1117 1118 1119 1120 1121 1122
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1123 1124
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1125 1126 1127 1128
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1129 1130
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1131 1132 1133
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1134 1135
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1136
                self.assertFalse(
1137 1138
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1139 1140 1141
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1142
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1143 1144

                prelu2.weight = prelu1.weight
1145 1146 1147
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1148

1149 1150
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1163 1164 1165
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1166 1167
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1168 1169 1170 1171
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1172
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1173 1174

            prelu2.weight = prelu1.weight
1175 1176 1177
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1178

1179 1180 1181 1182 1183
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1184 1185 1186 1187 1188
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1189 1190 1191 1192 1193 1194 1195 1196 1197
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1198 1199
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1200 1201 1202
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1203
            emb_rlt = emb2(data_t)
1204 1205 1206
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1207
        with self.dynamic_graph():
1208
            with _test_eager_guard():
1209 1210 1211 1212 1213
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1214 1215 1216
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1217 1218 1219
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1220 1221
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1222 1223

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1224
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1225
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1226

1227
        with self.dynamic_graph():
1228 1229 1230 1231
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1232 1233 1234
                        custom_weight
                    )
                )
1235
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1236 1237 1238 1239 1240
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1241 1242 1243
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1244 1245 1246 1247 1248
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1249 1250 1251
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1252
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1253 1254

                emb2.weight = emb1.weight
1255 1256 1257
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1258

1259
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1260 1261 1262 1263 1264
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1265
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1266 1267 1268
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1269 1270 1271
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1272
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1273 1274 1275
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1276
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1277 1278

            emb2.weight = emb1.weight
1279 1280 1281
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1282

1283 1284 1285 1286
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1287
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1288 1289 1290 1291 1292 1293
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1294 1295 1296 1297 1298 1299 1300
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1301 1302 1303 1304 1305
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1306 1307 1308 1309 1310 1311
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1312 1313 1314
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1315
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
            nce_loss = layers.nce(
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1328 1329 1330
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1331 1332 1333
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1334

1335 1336 1337 1338
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1370

1371 1372
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1373 1374 1375 1376
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1377 1378 1379
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1380

L
Leo Chen 已提交
1381
        with self.dynamic_graph():
W
Weilong Wu 已提交
1382 1383 1384 1385
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1386 1387 1388 1389 1390 1391 1392 1393
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1417 1418 1419 1420 1421

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1422 1423 1424
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1425 1426 1427 1428 1429 1430
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1431 1432 1433 1434 1435 1436 1437 1438 1439

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1454

1455 1456
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1457
            dy_rlt_value = dy_rlt.numpy()
1458

1459 1460 1461
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1462

L
Leo Chen 已提交
1463
        with self.dynamic_graph():
W
Weilong Wu 已提交
1464
            with _test_eager_guard():
1465 1466 1467
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1468 1469
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1470 1471 1472
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1473 1474 1475 1476 1477 1478
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1479 1480 1481 1482 1483 1484 1485
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1519 1520 1521 1522 1523

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1524 1525
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1526 1527 1528 1529
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1530 1531 1532
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1533 1534 1535

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1536 1537 1538 1539 1540 1541
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1542

1543
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1544 1545 1546 1547 1548
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1549 1550 1551 1552
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1553 1554
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1555 1556 1557 1558 1559
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1593

1594 1595 1596
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1597
            self.assertFalse(
1598 1599
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1600 1601
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1602 1603
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1604
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1605 1606 1607

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1608 1609 1610
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1611
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1612

S
songyouwei 已提交
1613 1614
    def test_one_hot(self):
        with self.dynamic_graph():
1615
            with _test_eager_guard():
1616 1617 1618
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1619 1620
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1621 1622 1623 1624 1625
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1626

S
songyouwei 已提交
1627 1628 1629
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1630 1631 1632 1633 1634
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1635 1636 1637

    def test_split(self):
        with self.dynamic_graph():
1638 1639 1640
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1641 1642 1643 1644 1645
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1646 1647
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1648

S
songyouwei 已提交
1649 1650
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1651 1652 1653 1654 1655
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1656 1657
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1658 1659 1660

    def test_topk(self):
        with self.dynamic_graph():
1661 1662 1663 1664
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1665 1666 1667 1668 1669 1670 1671 1672
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1673

S
songyouwei 已提交
1674 1675 1676
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1677 1678 1679 1680 1681 1682 1683 1684
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1685

L
lujun 已提交
1686 1687
    def test_conv3d(self):
        with self.static_graph():
1688 1689 1690
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1691 1692 1693
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
1694
            static_ret = self.get_static_graph_result(
1695
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1696 1697
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1698 1699

        with self.static_graph():
1700 1701 1702
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1703
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1704 1705
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1706
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1707 1708
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1709 1710

        with self.dynamic_graph():
1711 1712 1713 1714 1715 1716
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1717
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1718
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1719
            dy_ret = conv3d(base.to_variable(images))
1720
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1721

1722 1723 1724
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1725

1726
        with self.dynamic_graph():
1727 1728 1729 1730 1731
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1744 1745 1746
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1747 1748
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1749 1750 1751 1752

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1753 1754
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1755
                conv3d2.weight.set_value(conv3d1_weight_np)
1756 1757 1758
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1759 1760 1761
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1762
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1763 1764 1765

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1766 1767 1768 1769 1770 1771
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1772

1773 1774
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1775 1776 1777 1778 1779
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1780
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1781 1782 1783 1784 1785 1786
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1787 1788 1789 1790 1791 1792 1793
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1794 1795
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1796
            conv3d2.weight.set_value(conv3d1_weight_np)
1797 1798 1799
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1800 1801 1802
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1803
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1804 1805 1806

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1807 1808 1809 1810 1811 1812
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1813

L
lujun 已提交
1814 1815 1816 1817 1818 1819 1820 1821
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1822 1823 1824 1825 1826 1827 1828
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1829
            ret = layers.row_conv(input=x, future_context_size=2)
1830 1831 1832 1833 1834 1835 1836 1837 1838
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1839 1840

        with self.static_graph():
1841 1842 1843 1844 1845 1846 1847
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1848 1849
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1850 1851 1852 1853 1854 1855 1856 1857 1858
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1859

1860
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1861

1862
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1863

1864
    def func_group_norm(self):
L
lujun 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1875 1876 1877 1878 1879 1880 1881
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1882 1883 1884
            ret = layers.group_norm(
                input=X,
                groups=2,
1885
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1897 1898

        with self.static_graph():
1899 1900 1901 1902 1903 1904 1905
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1906 1907 1908
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1909
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1910 1911
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1912
            ret = groupNorm(X)
1913 1914 1915 1916 1917 1918 1919 1920 1921
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1922 1923

        with self.dynamic_graph():
1924 1925 1926
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1927
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1928 1929
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1930
            dy_ret = groupNorm(base.to_variable(input))
1931
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1932

1933 1934
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1935

1936 1937 1938 1939 1940
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1952 1953 1954
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1955
            ret = layers.instance_norm(input=X)
1956 1957 1958
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1959 1960

        with self.static_graph():
1961 1962 1963
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1964 1965
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1966 1967 1968
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1969 1970

        with self.dynamic_graph():
1971 1972 1973 1974 1975
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1976 1977 1978 1979 1980
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1981 1982 1983 1984 1985
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1986
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1987 1988 1989
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1990 1991 1992 1993 1994
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1995 1996 1997 1998

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1999
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2000 2001 2002 2003 2004 2005 2006
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2007
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2008 2009 2010 2011
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2023 2024 2025 2026 2027 2028 2029
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2030
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2031 2032 2033 2034 2035 2036 2037 2038 2039
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2040 2041

        with self.static_graph():
2042 2043 2044 2045 2046 2047 2048
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2049
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2050
            ret = spectralNorm(Weight)
2051 2052 2053 2054 2055 2056 2057 2058 2059
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2060 2061

        with self.dynamic_graph():
2062 2063 2064 2065 2066
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2067
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2068
            dy_ret = spectralNorm(base.to_variable(input))
2069
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2070

2071 2072 2073
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2118 2119

        with self.static_graph():
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2137
            ret = treeConv(NodesVector, EdgeSet)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2150 2151

        with self.dynamic_graph():
2152
            with _test_eager_guard():
2153 2154 2155 2156 2157 2158
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2159 2160
                dy_eager_rlt_value = dy_eager_ret.numpy()

2161 2162 2163
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2164
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2165
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2166

2167 2168 2169
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2170

2171
        with self.dynamic_graph():
2172 2173 2174 2175
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2200
                self.assertFalse(
2201 2202
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2203 2204
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2205 2206 2207 2208 2209 2210
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2211
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2212 2213 2214

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2215 2216 2217 2218 2219 2220
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2221

2222
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2249 2250 2251
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2252 2253 2254 2255 2256 2257
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2258
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2259 2260 2261

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2262 2263 2264 2265 2266 2267
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2268

L
lujun 已提交
2269
    def test_conv3d_transpose(self):
2270 2271 2272
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2273 2274 2275

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2276
            out = paddle.static.nn.conv3d_transpose(
2277 2278
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2279
            static_rlt = self.get_static_graph_result(
2280 2281
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2282 2283
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2284 2285 2286
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2287 2288
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2289 2290
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2291
        with self.dynamic_graph():
2292
            with _test_eager_guard():
2293 2294 2295 2296 2297 2298
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2299 2300 2301
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2302 2303 2304
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2305
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2306
            dy_rlt_value = dy_rlt.numpy()
2307 2308 2309
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2310

2311
        with self.dynamic_graph():
2312 2313 2314 2315 2316
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2335 2336 2337
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2338 2339
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2340 2341 2342 2343

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2344 2345
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2346
                conv3d2.weight.set_value(conv3d1_weight_np)
2347 2348 2349
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2350 2351 2352
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2353
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2354 2355 2356

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2357 2358 2359 2360 2361 2362
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2363

2364 2365
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2386 2387 2388 2389 2390 2391 2392
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2393 2394
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2395
            conv3d2.weight.set_value(conv3d1_weight_np)
2396 2397 2398
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2399 2400 2401
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2402
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2403 2404 2405

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2406 2407 2408 2409 2410 2411
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2412

2413
    def func_while_loop(self):
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2431
            def cond1(i):
2432 2433
                return layers.less_than(i, ten)

2434
            def body1(i):
2435 2436
                return i + 1

2437
            dy_ret = layers.while_loop(cond1, body1, [i])
2438 2439 2440 2441 2442 2443
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2444
                layers.while_loop(cond1, body2, [j])
2445

2446
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2447

2448 2449 2450 2451 2452
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2453 2454 2455 2456 2457 2458 2459 2460
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2461 2462 2463
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2464
        with self.dynamic_graph():
2465 2466 2467 2468 2469 2470 2471 2472
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2473 2474 2475 2476
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2477 2478
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2479 2480 2481 2482 2483 2484

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2485 2486 2487
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2488
        with self.dynamic_graph():
2489 2490 2491 2492 2493 2494 2495 2496
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2497 2498 2499 2500 2501 2502 2503
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2504
        # greater than
2505 2506 2507 2508
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2509 2510 2511
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2512
        with self.dynamic_graph():
2513 2514 2515 2516 2517 2518 2519 2520
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2521 2522 2523 2524 2525 2526 2527
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2528
        # greater equal
2529 2530 2531 2532
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2533 2534 2535
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2536
        with self.dynamic_graph():
2537 2538 2539 2540 2541 2542 2543 2544
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2557 2558 2559
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2560
        with self.dynamic_graph():
2561 2562 2563 2564 2565 2566 2567 2568
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2581 2582 2583
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2584
        with self.dynamic_graph():
2585 2586 2587 2588 2589 2590 2591 2592
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2593 2594 2595 2596 2597 2598 2599
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2600 2601 2602 2603 2604 2605 2606 2607
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2624 2625 2626 2627 2628
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2629 2630 2631
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2644 2645
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2646 2647 2648
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2649 2650 2651 2652 2653
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2654 2655
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2666 2667
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2668
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2669 2670 2671 2672 2673
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2674 2675
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2676

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2696 2697 2698
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2699 2700
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2701 2702 2703 2704 2705
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2706 2707 2708 2709
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2710 2711 2712 2713 2714 2715 2716 2717 2718
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2719 2720 2721 2722 2723 2724
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2725 2726 2727
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2728 2729 2730 2731 2732 2733 2734 2735
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2736 2737 2738
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2739 2740 2741 2742
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2743 2744 2745 2746
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2782 2783
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2784 2785
                fetch_list=[out_1, out_2, out_3]
            )
2786 2787

        with self.dynamic_graph():
2788
            with _test_eager_guard():
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2810 2811 2812 2813 2814

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2815 2816 2817
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2832 2833 2834 2835 2836

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2837 2838 2839 2840 2841 2842
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2843

2844 2845 2846 2847
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2848 2849 2850 2851 2852 2853
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2854
            crop_shape1 = (1, 2, 4, 4)
2855 2856 2857
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2858 2859
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2860 2861 2862
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2863 2864
            crop_offsets3 = [0, dim1, dim2, 0]

2865 2866 2867 2868 2869 2870 2871 2872 2873
            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1
            )
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2
            )
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3
            )
2874 2875 2876 2877 2878

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2879 2880 2881
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2882 2883 2884
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2885 2886 2887

        self.assertIsNotNone(shard_label)

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2901 2902
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2903 2904 2905
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2906

L
Leo Chen 已提交
2907
        with self.dynamic_graph(force_to_use_cpu=True):
2908 2909 2910 2911 2912 2913
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2914
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2915

Y
Yu Yang 已提交
2916

2917
class TestBook(LayerTest):
H
hong 已提交
2918 2919
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_gaussian_random_batch_size_like",
                "make_kldiv_loss",
                "make_prelu",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2930
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2931

2932
    def func_all_layers(self):
2933 2934 2935 2936 2937
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2938 2939 2940
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2953 2954
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2955

2956 2957 2958
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2959 2960
            if method.__name__ in self.only_static_set:
                continue
2961 2962 2963 2964 2965

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2966
                dy_result_value = dy_result.numpy()
2967

2968
            if method.__name__ in self.all_close_compare:
2969 2970 2971 2972 2973 2974
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2975 2976 2977
                        method.__name__
                    ),
                )
2978 2979
                continue

H
hong 已提交
2980
            if method.__name__ not in self.not_compare_static_dygraph_set:
2981 2982 2983 2984
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2985 2986 2987
                        method.__name__
                    ),
                )
2988

2989 2990 2991 2992 2993
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2994 2995 2996
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2997
            shape = [self._batch_size] + shape
2998 2999 3000 3001 3002
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3003 3004 3005
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3006
        elif dtype == 'int64':
3007 3008 3009 3010 3011 3012 3013
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3014
        if base.enabled():
3015 3016 3017 3018 3019
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3020 3021
        else:
            if set_feed_dict:
3022
                self._feed_dict[name] = self._get_np_data(
3023 3024 3025 3026 3027 3028 3029 3030
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3031 3032

    def make_fit_a_line(self):
3033 3034 3035 3036
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3037
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3038
            y_predict = layers.fc(input=x, size=1, act=None)
3039
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3040
            cost = layers.square_error_cost(input=y_predict, label=y)
3041
            avg_cost = paddle.mean(cost)
3042
            return avg_cost
Y
Yu Yang 已提交
3043

3044
    def make_recognize_digits_mlp(self):
3045 3046 3047
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3048
            # Change g_program, so the rest layers use `g_program`
3049 3050
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3051 3052
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3053 3054 3055 3056 3057 3058
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3059
            cost = layers.cross_entropy(input=predict, label=label)
3060
            avg_cost = paddle.mean(cost)
3061
            return avg_cost
Y
Yu Yang 已提交
3062

3063
    def make_conv2d_transpose(self):
3064 3065 3066
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3067
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3068
            return paddle.static.nn.conv2d_transpose(
3069 3070
                input=img, num_filters=10, output_size=28
            )
3071

3072
    def make_recognize_digits_conv(self):
3073 3074 3075 3076 3077 3078
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3079
            label = self._get_data(name='label', shape=[1], dtype='int64')
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3096 3097 3098

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3099
            avg_cost = paddle.mean(cost)
3100
            return avg_cost
Y
Yu Yang 已提交
3101

3102
    def make_word_embedding(self):
3103 3104 3105
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3106 3107
            dict_size = 10000
            embed_size = 32
3108
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3109 3110 3111
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3112 3113 3114
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3141 3142 3143

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3144 3145
                axis=1,
            )
Y
Yu Yang 已提交
3146 3147

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3148 3149 3150
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3151
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3152
            avg_cost = paddle.mean(cost)
3153
            return avg_cost
Y
Yu Yang 已提交
3154

3155
    def make_sigmoid_cross_entropy(self):
3156 3157 3158
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3159 3160
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3161
            ignore_index = -1
3162 3163 3164
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3165 3166

    def make_pool2d(self):
3167 3168 3169
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3170
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3171 3172 3173
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3174

K
Kaipeng Deng 已提交
3175
    def make_pool2d_infershape(self):
3176 3177 3178
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3179
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3180 3181 3182
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3183 3184 3185
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3186 3187

    def make_pool3d(self):
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32'
            )
            return layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1),
            )
K
Kaipeng Deng 已提交
3200

3201
    def make_lstm_unit(self):
3202 3203 3204 3205 3206 3207
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3208
            x_t = layers.fc(input=x_t_data, size=10)
3209 3210 3211
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3212
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3213 3214 3215
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3216
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3217 3218 3219
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3220

3221
    def make_softmax(self):
3222 3223 3224
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3225
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3226
            hid = layers.fc(input=data, size=20)
3227
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3228

3229
    def make_space_to_depth(self):
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data',
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.space_to_depth(data, 3)
J
JiabinYang 已提交
3240

3241
    def make_get_places(self):
3242 3243 3244
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3245
            get_places(device_count=1)
X
xuezhong 已提交
3246

3247
    @prog_scope()
3248
    def make_nce(self):
Y
Yang Yu 已提交
3249 3250
        window_size = 5
        words = []
3251
        for i in range(window_size):
Y
Yang Yu 已提交
3252
            words.append(
3253 3254 3255 3256
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3257 3258

        dict_size = 10000
M
minqiyang 已提交
3259
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3260 3261

        embs = []
3262
        for i in range(window_size):
Y
Yang Yu 已提交
3263 3264 3265
            if i == label_word:
                continue

3266 3267 3268 3269 3270 3271
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3272 3273 3274 3275

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3276 3277 3278 3279 3280 3281 3282
        loss = layers.nce(
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3283
        avg_loss = paddle.mean(loss)
3284
        return avg_loss
Y
Yang Yu 已提交
3285

3286
    def make_multiplex(self):
3287 3288 3289
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3290 3291 3292
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3293
            out = layers.multiplex(inputs=[x1, x2], index=index)
3294
            return out
3295 3296

    def make_softmax_with_cross_entropy(self):
3297 3298 3299
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3300 3301
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3302
            loss, softmax = layers.softmax_with_cross_entropy(
3303 3304
                x, y, return_softmax=True
            )
3305 3306 3307
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3308
            loss = layers.softmax_with_cross_entropy(x, y)
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3323
            return loss4
3324 3325

    def make_smooth_l1(self):
3326 3327 3328
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3329 3330
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3331
            loss = layers.smooth_l1(x, y)
3332
            return loss
3333

3334
    def make_scatter(self):
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3350
            out = paddle.scatter(x, index=idx, updates=updates)
3351
            return out
Y
yangyaming 已提交
3352

3353 3354 3355 3356
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3357
            return one_hot_label
3358

3359 3360 3361 3362 3363
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3364
            one_hot_label = layers.one_hot(input=label, depth=10)
3365
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
3366
            return smooth_label
3367

3368
    def make_topk(self):
3369 3370 3371
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3372 3373
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3374 3375
            return values
            return indices
J
jerrywgz 已提交
3376

3377
    def make_resize_bilinear(self):
3378 3379 3380
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3381
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3382
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3383
            return output
K
Kaipeng Deng 已提交
3384 3385

    def make_resize_bilinear_by_scale(self):
3386 3387 3388
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3389 3390
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3391
            return output
3392

3393
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3394
        try:
3395 3396 3397
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3398 3399 3400 3401 3402 3403
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3404 3405 3406 3407 3408 3409
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3410 3411 3412 3413
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3414 3415 3416
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3417
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3418
            output = layers.resize_nearest(x, out_shape=[12, 12])
3419
            return output
K
Kaipeng Deng 已提交
3420 3421

    def make_resize_nearest_by_scale(self):
3422 3423 3424
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3425 3426
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3427
            return output
K
Kaipeng Deng 已提交
3428 3429 3430

    def make_resize_trilinear(self):
        try:
3431 3432 3433
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3434 3435 3436 3437 3438 3439
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3440 3441 3442 3443 3444 3445
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3446 3447 3448 3449
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3450 3451 3452
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3453 3454
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3455
            return output
K
Kaipeng Deng 已提交
3456 3457

    def make_resize_trilinear_by_scale(self):
3458 3459 3460
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3461 3462
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3463
            return output
3464

3465
    def make_polygon_box_transform(self):
3466 3467 3468
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3469
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3470
            output = layers.polygon_box_transform(input=x)
3471
            return output
3472

3473
    def make_l2_normalize(self):
3474 3475 3476
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3477
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3478
            output = layers.l2_normalize(x, axis=1)
3479
            return output
3480

3481
    def make_argsort(self):
3482 3483 3484
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3485
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3486
            out, ids = layers.argsort(input=data, axis=1)
3487 3488
            return out
            return ids
3489 3490

    def make_shape(self):
3491 3492 3493 3494 3495 3496
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3497
            out = layers.shape(input)
3498
            return out
B
Bai Yifan 已提交
3499

3500
    def make_pad2d(self):
3501 3502 3503 3504 3505 3506
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
3507 3508 3509

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
3510 3511 3512 3513
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
3514
            out = tmp_pad(input)
3515
            return out
W
whs 已提交
3516

3517
    def make_prelu(self):
3518 3519 3520 3521 3522 3523
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[5, 200, 100, 100], dtype="float32"
            )
J
jerrywgz 已提交
3524
            mode = 'channel'
3525 3526 3527 3528 3529 3530 3531
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu',
            )
            return out
J
jerrywgz 已提交
3532

K
Kaipeng Deng 已提交
3533
    def make_mish(self):
3534 3535 3536
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3537 3538
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3539
            return out
K
Kaipeng Deng 已提交
3540

3541
    def make_cross_entropy(self):
3542 3543 3544
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3545 3546
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3547 3548
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3549
            return out
3550

3551
    def make_uniform_random_batch_size_like(self):
3552 3553 3554 3555 3556 3557
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3558
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3559
            return out
G
fix  
gongweibao 已提交
3560

3561
    def make_gaussian_random(self):
3562 3563 3564
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3565
            out = layers.gaussian_random(shape=[20, 30])
3566
            return out
G
fix  
gongweibao 已提交
3567

3568
    def make_sampling_id(self):
3569 3570 3571 3572 3573 3574 3575 3576 3577
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3578 3579

            out = layers.sampling_id(x)
3580
            return out
G
fix  
gongweibao 已提交
3581

3582
    def make_gaussian_random_batch_size_like(self):
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0
            )
            return out
G
fix  
gongweibao 已提交
3594

3595
    def make_sum(self):
3596 3597 3598 3599 3600 3601
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3602 3603

            out = layers.sum(input)
3604
            return out
G
fix  
gongweibao 已提交
3605

3606
    def make_slice(self):
G
fix  
gongweibao 已提交
3607 3608 3609 3610
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3611 3612 3613 3614 3615 3616
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3617 3618

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3619
            return out
G
merge  
gongweibao 已提交
3620

3621
    def make_scale_variable(self):
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3634
            out = layers.scale(input, scale=scale_var)
3635 3636
            return out

M
minqiyang 已提交
3637
    def make_iou_similarity(self):
3638 3639 3640
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3641 3642
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3643
            out = layers.iou_similarity(x, y, name='iou_similarity')
3644
            return out
3645 3646

    def make_grid_sampler(self):
3647 3648 3649
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3650 3651
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3652
            out = layers.grid_sampler(x, grid)
3653
            return out
3654 3655

    def make_bilinear_tensor_product_layer(self):
3656 3657 3658
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3659 3660 3661 3662
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3663
            return out
3664 3665

    def make_batch_norm(self):
3666 3667 3668 3669 3670 3671
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3672
            out = layers.batch_norm(data)
3673
            return out
3674

3675
    def make_batch_norm_momentum_variable(self):
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3688
            out = layers.batch_norm(data, momentum=momentum)
3689
            return out
3690

3691
    def make_range(self):
3692 3693 3694
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
3695 3696 3697
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
3698 3699 3700
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
3701
            y = paddle.arange(start, end, step, 'float64')
3702 3703 3704
            return y

    def make_spectral_norm(self):
3705 3706 3707 3708 3709 3710 3711 3712 3713
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
3714
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
3715
            return out
3716 3717

    def make_kldiv_loss(self):
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
3733
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
3734
            return loss
3735 3736

    def make_temporal_shift(self):
3737 3738 3739
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3740 3741
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
3742
            return out
3743 3744

    def make_shuffle_channel(self):
3745 3746 3747
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3748 3749
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
3750
            return out
3751

M
minqiyang 已提交
3752
    def make_fsp_matrix(self):
3753 3754 3755
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3756 3757 3758
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
3759
            return out
3760

M
minqiyang 已提交
3761
    def make_pixel_shuffle(self):
3762 3763 3764
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3765 3766
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
3767
            return out
M
minqiyang 已提交
3768

R
ruri 已提交
3769
    def make_mse_loss(self):
3770 3771 3772
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
3773 3774 3775
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
3776
            return out
R
ruri 已提交
3777

3778
    def make_square_error_cost(self):
3779 3780 3781
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3782 3783 3784
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
3785
            return out
3786

3787 3788 3789 3790
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3791 3792 3793
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3794 3795
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3796 3797 3798 3799
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
3800 3801 3802 3803 3804 3805

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3806 3807 3808 3809 3810 3811 3812 3813
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
3814 3815 3816 3817

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3818
            # case 1
3819
            x = layers.data(name='x', shape=[10], dtype='float32')
3820 3821 3822
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
3823 3824 3825
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3826
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3827 3828 3829 3830 3831 3832
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3833

W
whs 已提交
3834
    def test_affine_grid(self):
3835
        with self.static_graph():
W
whs 已提交
3836 3837 3838 3839
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3840
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
3841 3842
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3843 3844 3845

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3846

W
wangchaochaohu 已提交
3847 3848 3849 3850 3851 3852 3853
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3854 3855 3856
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3857 3858
            return out

3859 3860
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3861 3862 3863 3864 3865 3866
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3867 3868
            return out

3869 3870 3871 3872
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3873 3874 3875
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1
            )
3876
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
3877
            return output
3878

3879 3880 3881 3882
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3883 3884 3885 3886
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3887

3888 3889 3890 3891 3892
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3893
            return out
3894

3895 3896 3897 3898
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3899
            length = layers.data(name='length', shape=[], dtype='int64')
3900
            return layers.sequence_unpad(x=x, length=length)
3901

3902 3903 3904
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3905 3906 3907
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3908
            seq = layers.fc(input=seq_data, size=20)
3909
            return layers.sequence_softmax(seq)
3910

3911 3912 3913 3914 3915
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3916
            return out
3917

3918 3919 3920
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3938
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3939
            return out
W
whs 已提交
3940

3941 3942 3943 3944
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3945 3946 3947 3948

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3949 3950
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
3951 3952 3953 3954
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
3955

Z
zhoushiyu 已提交
3956 3957 3958
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3959 3960 3961
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
3962 3963 3964 3965 3966
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
3967
            return out1
Z
zhoushiyu 已提交
3968

3969 3970 3971 3972
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3973 3974 3975 3976
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
3977

S
ShenLiang 已提交
3978 3979 3980 3981 3982 3983 3984 3985 3986
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
3987 3988
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
3989 3990 3991 3992
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
3993 3994 3995 3996 3997
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
3998

S
ShenLiang 已提交
3999 4000 4001
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4002 4003 4004
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
4005 4006 4007 4008 4009 4010 4011
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
4012 4013 4014 4015 4016
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
4017

4018
    def test_roi_pool(self):
4019 4020 4021 4022
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4023
        with self.static_graph():
4024 4025 4026 4027
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4028 4029 4030 4031
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4032 4033

        with self.dynamic_graph():
4034 4035 4036 4037
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4038 4039 4040
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
                )
4041 4042
                dy_eager_res_value = dy_eager_res[0].numpy()

4043 4044 4045
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4046 4047 4048
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
            )
4049
            dy_res_value = dy_res[0].numpy()
4050 4051
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4052 4053 4054 4055 4056 4057 4058 4059

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4060 4061 4062 4063
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4064
        with self.static_graph():
4065 4066 4067 4068
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4069 4070 4071 4072
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4073 4074

        with self.dynamic_graph():
4075 4076 4077 4078
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4079 4080 4081
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
                )
4082 4083
                dy_eager_res_value = dy_eager_res.numpy()

4084 4085 4086
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4087 4088 4089
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
            )
4090
            dy_res_value = dy_res.numpy()
4091 4092
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4093 4094 4095 4096 4097

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4098 4099 4100
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
4101
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
4102
            return output
4103 4104 4105 4106 4107 4108

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
4109
            return out
4110 4111 4112 4113

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4114 4115 4116 4117 4118 4119
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
4120 4121 4122 4123 4124 4125

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
4126
            return out
4127 4128 4129 4130

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4131 4132 4133 4134 4135 4136
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
4137
            out = layers.flatten(x, axis=1, name="flatten")
4138
            return out
4139

Z
zhoukunsheng 已提交
4140 4141 4142 4143 4144 4145 4146
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4147 4148 4149 4150
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4151
            return out
4152

4153 4154 4155 4156
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4157 4158 4159 4160 4161 4162
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4163 4164
            return concat1, concat2

C
cjt222 已提交
4165
    def test_deform_roi_pooling(self):
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4198

4199
    def test_retinanet_target_assign(self):
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4262

4263
    def test_sigmoid_focal_loss(self):
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4286

4287
    def test_addmm(self):
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4303 4304

            out = paddle.addmm(input=input, x=x, y=y)
4305
            return out
4306

4307
    def test_retinanet_detection_output(self):
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4335 4336 4337 4338 4339 4340 4341 4342 4343
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4344 4345 4346
                nms_eta=1.0,
            )
            return nmsed_outs
4347

4348 4349 4350
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4351 4352 4353 4354 4355 4356
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64'
            )
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64'
            )
4357
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length,
            )
            return output
4368

4369 4370 4371 4372
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4373 4374 4375 4376 4377 4378 4379 4380 4381
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4393 4394
                        batch_first=batch_first,
                    )
4395

Y
Yu Yang 已提交
4396

4397 4398 4399 4400
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4422 4423 4424 4425 4426 4427
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4428 4429
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4430
        super().__init__()
4431
        self.weight = self.create_parameter(
4432 4433
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4464 4465
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4466
        super().__init__()
J
Jiabin Yang 已提交
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4478
        super().__init__()
J
Jiabin Yang 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4494
if __name__ == '__main__':
4495
    paddle.enable_static()
Y
Yu Yang 已提交
4496
    unittest.main()