test_layers.py 167.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36
from paddle.tensor import random
37
import paddle.nn.functional as F
38 39 40 41 42 43 44 45 46 47 48


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

49 50 51 52 53 54 55 56
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
57 58 59 60

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
61
            paddle.seed(self.seed)
L
Leo Chen 已提交
62
            paddle.framework.random._manual_program_seed(self.seed)
63 64
            yield

65 66 67
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
68
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
69
        exe.run(fluid.default_startup_program())
70 71 72 73 74 75
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
76 77

    @contextlib.contextmanager
78
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
79
        with fluid.dygraph.guard(
80 81
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
82
            paddle.seed(self.seed)
L
Leo Chen 已提交
83
            paddle.framework.random._manual_program_seed(self.seed)
84 85 86 87
            yield


class TestLayer(LayerTest):
88 89
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
90
            def __init__(self, input_size, linear1_size=4):
91
                super().__init__()
92 93 94
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
95 96 97 98 99 100
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
101 102 103
                return ret

        with self.dynamic_graph():
104 105 106 107 108
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
109
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
110
                ret = custom(x, do_linear2=True)
111
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
112 113
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
114 115
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
116
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
117
            ret = custom(x, do_linear2=True)
118
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
119

120 121 122
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
123 124 125 126 127 128
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
129 130
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
131 132 133
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
134
            static_ret, static_ret2 = self.get_static_graph_result(
135 136
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
137
        with self.dynamic_graph():
138 139 140 141
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
142 143 144
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
145 146 147
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

148 149 150
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
151 152 153
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
154 155 156
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

157 158
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
159

160 161 162
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
163

S
songyouwei 已提交
164 165 166
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
167 168 169 170 171 172
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
173
            linear = nn.Linear(
174 175
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
176
            ret = linear(t)
177 178 179
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
180
        with self.dynamic_graph():
181 182 183 184 185
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
186 187
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
188 189 190
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
191 192
            t = base.to_variable(inp)
            linear = nn.Linear(
193 194
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
195 196 197
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

198 199
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
200

201 202 203 204 205 206 207 208
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
209 210
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
211 212 213 214 215 216 217 218
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
219 220 221
                linear = nn.Linear(
                    32,
                    4,
222 223
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
224 225 226 227 228 229 230
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
231 232 233 234 235 236
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
237 238
            flatten = nn.Flatten()
            ret = flatten(t)
239 240 241
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
242
        with self.dynamic_graph():
243 244 245 246 247 248
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

249 250 251 252 253
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

254 255
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
256 257 258 259 260 261 262 263 264

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
265 266
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
267 268 269 270 271 272 273 274
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
275 276 277
                linear = nn.Linear(
                    32,
                    4,
278 279
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
280 281 282 283
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

284 285 286
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
287 288 289 290 291 292
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
293 294 295
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
296 297 298 299 300
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
301
        with self.static_graph():
302 303 304 305 306 307
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
308
            lm = nn.LayerNorm(
309
                normalized_shape=[32, 32],
310
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
311 312
                act='sigmoid',
            )
313
            ret = lm(t)
314 315 316
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
317
        with self.dynamic_graph():
318 319 320 321
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
322 323
                    act='sigmoid',
                )
324 325 326
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

327
            lm = nn.LayerNorm(
328
                normalized_shape=[32, 32],
329
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
330 331
                act='sigmoid',
            )
332
            dy_ret = lm(base.to_variable(inp))
333
            dy_ret_value = dy_ret.numpy()
334

335
        with self.dynamic_graph():
336 337 338 339 340 341 342
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
343 344
                    act='sigmoid',
                )
345 346 347 348 349
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

350
            lm = nn.LayerNorm(
351
                normalized_shape=[32, 32],
352 353 354 355
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
356 357
                act='sigmoid',
            )
358 359 360 361
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
362

363 364 365
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
366

367
        with self.dynamic_graph():
368 369 370 371
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
372 373
                    act='sigmoid',
                )
374 375 376
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

377 378 379
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
380 381
                act='sigmoid',
            )
382 383 384
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
385 386 387 388
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
389
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
390 391
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
392
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
393 394
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
395 396

            with self.dynamic_graph():
397 398 399 400 401 402
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
403 404 405 406
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
407 408
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
409

410 411 412 413 414
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
415 416
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
417 418

        with self.dynamic_graph():
419 420 421 422 423
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

424 425
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
426
            dy_ret_value = dy_ret.numpy()
427

428 429
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
430

431 432 433 434 435
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
436 437 438 439 440 441 442
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
443 444

        with self.dynamic_graph():
445 446 447
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
448 449 450
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
451 452
                dy_eager_ret_value = dy_eager_ret.numpy()

453 454
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
455
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
456
            dy_ret_value = dy_ret.numpy()
457

458 459
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
460

M
minqiyang 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
474 475
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
476
            static_ret = self.get_static_graph_result(
477 478 479
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
480 481 482 483 484

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
485 486
                input=x, hidden=hidden, size=D * 3
            )
487
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
488 489 490
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
491 492 493
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
494 495

        with self.dynamic_graph():
496 497
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
498 499 500
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
501 502 503 504
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

505
            gru = nn.GRUUnit(size=D * 3)
506 507 508
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
509 510 511
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
512 513

        for i in range(len(static_ret)):
514 515 516 517 518 519 520 521 522
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
523

524
        with self.dynamic_graph():
525 526 527 528
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
529 530 531
                        custom_weight
                    )
                )
532 533
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
534 535 536 537 538 539
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
540
                self.assertFalse(
541 542
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
543 544 545 546
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
547 548 549 550 551 552
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
553
                for o1, o2 in zip(dy_ret1, dy_ret2):
554
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
555 556 557

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
558 559 560 561 562 563
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
564

565
            custom_weight = np.random.randn(D, D * 3).astype("float32")
566 567 568 569 570
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
571 572
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
573 574 575 576 577 578
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
579
            self.assertFalse(
580 581
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
582 583 584 585
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
586 587 588 589 590 591
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
592
            for o1, o2 in zip(dy_ret1, dy_ret2):
593
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
594 595 596

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
597 598 599
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
600
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
601

X
Xin Pan 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
619
            ret = paddle.pow(ret, t3)
X
Xin Pan 已提交
620 621 622 623
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

624 625 626 627
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
628 629

        with self.dynamic_graph():
630 631
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
632
                ret = paddle.pow(ret, to_variable(n3))
633 634 635 636 637
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

638
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
639
            ret = paddle.pow(ret, to_variable(n3))
640 641 642
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
643
            dy_ret_value = dy_ret.numpy()
644

645 646
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
647 648 649 650 651 652

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
653
            with _test_eager_guard():
654
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
655
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
656 657 658
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

659
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
660
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
661 662
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
663

664 665 666 667
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
668

669 670 671 672 673 674 675
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
676 677 678 679 680 681 682
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
683
            out = layers.sequence_conv(seq, 2, act='sigmoid')
684 685 686 687 688 689 690 691 692
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
693 694

        with self.static_graph():
695 696 697 698 699 700 701
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
702
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
703
            out = seq_conv(seq)
704 705 706 707 708 709 710 711 712 713 714 715
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
716 717 718 719 720

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
721
            out = paddle.static.nn.conv2d_transpose(
722 723
                input=img,
                num_filters=10,
724
                filter_size=27,
725
                act='sigmoid',
726 727 728 729 730
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
731 732 733
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
734
                num_channels=3,
735
                num_filters=10,
736
                filter_size=27,
737
                act='sigmoid',
738 739
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
740
            out = conv2d_transpose(img)
741 742 743
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
744
        with self.dynamic_graph():
745 746 747 748 749 750
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
751 752
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
753 754 755
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

756
            conv2d_transpose = nn.Conv2DTranspose(
757
                num_channels=3,
758
                num_filters=10,
759
                filter_size=27,
760
                act='sigmoid',
761 762
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
763
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
764
            dy_rlt_value = dy_rlt.numpy()
765 766 767
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
768

769
        with self.dynamic_graph():
770 771 772 773 774
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
775 776 777 778 779 780 781 782 783 784 785 786
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
787 788 789
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
790 791
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
792 793 794 795

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
796 797
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
798
                conv2d2.weight.set_value(conv2d1_weight_np)
799 800 801
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
802 803 804
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
805
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
806 807 808

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
809 810 811 812 813 814
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
815

816 817
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
818 819 820 821 822 823 824 825 826 827 828 829 830 831
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
832 833 834 835 836 837 838
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
839 840
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
841
            conv2d2.weight.set_value(conv2d1_weight_np)
842 843 844
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
845 846 847
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
848
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
849 850 851

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
852 853 854 855 856 857
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
858

859 860 861 862 863
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
864 865 866
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
867 868 869 870 871 872 873
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
874 875 876 877 878 879
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
880 881 882 883
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

884 885 886 887 888
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
889 890 891 892 893 894
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
895 896 897 898 899
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
900 901
                act='sigmoid',
            )
902

903 904 905
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
906

907
        with self.static_graph():
908 909 910 911 912 913
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
914
            btp = nn.BilinearTensorProduct(
915 916
                3,
                3,
917 918
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
919 920
                act='sigmoid',
            )
921
            out = btp(data_x, data_y)
922 923 924
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
925
        with self.dynamic_graph():
926 927 928 929 930 931
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
932 933 934 935 936
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
937 938
                dy_eager_rlt_value = dy_eager_rlt.numpy()

939
            btp = nn.BilinearTensorProduct(
940 941
                3,
                3,
942 943
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
944 945
                act='sigmoid',
            )
946
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
947
            dy_rlt_value = dy_rlt.numpy()
948

949
        with self.dynamic_graph():
950 951
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
952 953 954
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
955 956
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

957
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
958 959 960
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
961
            dy_rlt2_value = dy_rlt2.numpy()
962

963
        with self.static_graph():
964 965 966 967 968 969 970 971 972 973 974 975 976
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
977

978 979 980 981 982
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
983

984
        with self.dynamic_graph():
985 986 987 988
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
989 990 991
                        custom_weight
                    )
                )
992
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
993 994 995 996 997 998 999 1000 1001
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1002
                self.assertFalse(
1003 1004
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1005 1006
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1007 1008 1009 1010 1011 1012
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1013
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1014 1015 1016

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1017 1018 1019 1020 1021 1022
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1023

1024
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1025 1026 1027 1028 1029
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1030
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1031 1032 1033 1034 1035 1036 1037 1038 1039
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1040 1041 1042
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1043 1044 1045 1046 1047 1048
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1049
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1050 1051 1052

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1053 1054 1055
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1056
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1057

1058
    def prelu_test(self, mode):
1059 1060
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1073 1074

        with self.static_graph():
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1087
            out = prelu(data_t)
1088 1089 1090
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1091 1092

        with self.dynamic_graph():
1093 1094 1095 1096 1097
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1098 1099
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1100 1101 1102
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1103 1104 1105 1106 1107 1108
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1109
            dy_rlt = prelu(base.to_variable(inp_np))
1110
            dy_rlt_value = dy_rlt.numpy()
1111

1112 1113 1114
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1115

1116
        with self.dynamic_graph():
1117 1118 1119 1120 1121 1122 1123
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1124 1125
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1126 1127 1128 1129
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1130 1131
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1132 1133 1134
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1135 1136
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1137
                self.assertFalse(
1138 1139
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1140 1141 1142
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1143
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1144 1145

                prelu2.weight = prelu1.weight
1146 1147 1148
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1149

1150 1151
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1164 1165 1166
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1167 1168
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1169 1170 1171 1172
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1173
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1174 1175

            prelu2.weight = prelu1.weight
1176 1177 1178
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1179

1180 1181 1182 1183 1184
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1185 1186 1187 1188 1189
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1190 1191 1192 1193 1194 1195 1196 1197 1198
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1199 1200
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1201 1202 1203
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1204
            emb_rlt = emb2(data_t)
1205 1206 1207
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1208
        with self.dynamic_graph():
1209
            with _test_eager_guard():
1210 1211 1212 1213 1214
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1215 1216 1217
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1218 1219 1220
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1221 1222
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1223 1224

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1225
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1226
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1227

1228
        with self.dynamic_graph():
1229 1230 1231 1232
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1233 1234 1235
                        custom_weight
                    )
                )
1236
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1237 1238 1239 1240 1241
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1242 1243 1244
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1245 1246 1247 1248 1249
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1250 1251 1252
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1253
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1254 1255

                emb2.weight = emb1.weight
1256 1257 1258
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1259

1260
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1261 1262 1263 1264 1265
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1266
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1267 1268 1269
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1270 1271 1272
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1273
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1274 1275 1276
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1277
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1278 1279

            emb2.weight = emb1.weight
1280 1281 1282
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1283

1284 1285 1286 1287
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1288
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1289 1290 1291 1292 1293 1294
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1295 1296 1297 1298 1299 1300 1301
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1302 1303 1304 1305 1306
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1307 1308 1309 1310 1311 1312
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1313 1314 1315
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1316
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1317
            nce_loss = paddle.static.nn.nce(
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1329 1330 1331
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1332 1333 1334
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1335

1336 1337 1338 1339
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1371

1372 1373
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1374 1375 1376 1377
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1378 1379 1380
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1381

L
Leo Chen 已提交
1382
        with self.dynamic_graph():
W
Weilong Wu 已提交
1383 1384 1385 1386
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1387 1388 1389 1390 1391 1392 1393 1394
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1418 1419 1420 1421 1422

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1423 1424 1425
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1426 1427 1428 1429 1430 1431
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1432 1433 1434 1435 1436 1437 1438 1439 1440

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1455

1456 1457
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1458
            dy_rlt_value = dy_rlt.numpy()
1459

1460 1461 1462
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1463

L
Leo Chen 已提交
1464
        with self.dynamic_graph():
W
Weilong Wu 已提交
1465
            with _test_eager_guard():
1466 1467 1468
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1469 1470
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1471 1472 1473
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1474 1475 1476 1477 1478 1479
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1480 1481 1482 1483 1484 1485 1486
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1520 1521 1522 1523 1524

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1525 1526
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1527 1528 1529 1530
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1531 1532 1533
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1534 1535 1536

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1537 1538 1539 1540 1541 1542
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1543

1544
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1545 1546 1547 1548 1549
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1550 1551 1552 1553
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1554 1555
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1556 1557 1558 1559 1560
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1594

1595 1596 1597
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1598
            self.assertFalse(
1599 1600
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1601 1602
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1603 1604
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1605
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1606 1607 1608

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1609 1610 1611
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1612
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1613

S
songyouwei 已提交
1614 1615
    def test_one_hot(self):
        with self.dynamic_graph():
1616
            with _test_eager_guard():
1617 1618 1619
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1620 1621
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1622 1623 1624 1625 1626
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1627

S
songyouwei 已提交
1628 1629 1630
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1631 1632 1633 1634 1635
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1636 1637 1638

    def test_split(self):
        with self.dynamic_graph():
1639 1640 1641
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1642 1643 1644 1645 1646
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1647 1648
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1649

S
songyouwei 已提交
1650 1651
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1652 1653 1654 1655 1656
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1657 1658
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1659 1660 1661

    def test_topk(self):
        with self.dynamic_graph():
1662 1663 1664 1665
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1666 1667 1668 1669 1670 1671 1672 1673
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1674

S
songyouwei 已提交
1675 1676 1677
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1678 1679 1680 1681 1682 1683 1684 1685
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1686

L
lujun 已提交
1687 1688
    def test_conv3d(self):
        with self.static_graph():
1689 1690 1691
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1692 1693 1694
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
1695
            static_ret = self.get_static_graph_result(
1696
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1697 1698
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1699 1700

        with self.static_graph():
1701 1702 1703
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1704
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1705 1706
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1707
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1708 1709
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1710 1711

        with self.dynamic_graph():
1712 1713 1714 1715 1716 1717
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1718
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1719
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1720
            dy_ret = conv3d(base.to_variable(images))
1721
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1722

1723 1724 1725
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1726

1727
        with self.dynamic_graph():
1728 1729 1730 1731 1732
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1745 1746 1747
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1748 1749
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1750 1751 1752 1753

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1754 1755
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1756
                conv3d2.weight.set_value(conv3d1_weight_np)
1757 1758 1759
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1760 1761 1762
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1763
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1764 1765 1766

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1767 1768 1769 1770 1771 1772
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1773

1774 1775
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1776 1777 1778 1779 1780
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1781
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1782 1783 1784 1785 1786 1787
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1788 1789 1790 1791 1792 1793 1794
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1795 1796
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1797
            conv3d2.weight.set_value(conv3d1_weight_np)
1798 1799 1800
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1801 1802 1803
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1804
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1805 1806 1807

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1808 1809 1810 1811 1812 1813
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1814

L
lujun 已提交
1815 1816 1817 1818 1819 1820 1821 1822
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1823 1824 1825 1826 1827 1828 1829
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1830
            ret = layers.row_conv(input=x, future_context_size=2)
1831 1832 1833 1834 1835 1836 1837 1838 1839
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1840 1841

        with self.static_graph():
1842 1843 1844 1845 1846 1847 1848
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1849 1850
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1851 1852 1853 1854 1855 1856 1857 1858 1859
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1860

1861
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1862

1863
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1864

1865
    def func_group_norm(self):
L
lujun 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1876 1877 1878 1879 1880 1881 1882
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1883 1884 1885
            ret = layers.group_norm(
                input=X,
                groups=2,
1886
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1898 1899

        with self.static_graph():
1900 1901 1902 1903 1904 1905 1906
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1907 1908 1909
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1910
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1911 1912
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1913
            ret = groupNorm(X)
1914 1915 1916 1917 1918 1919 1920 1921 1922
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1923 1924

        with self.dynamic_graph():
1925 1926 1927
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1928
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1929 1930
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1931
            dy_ret = groupNorm(base.to_variable(input))
1932
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1933

1934 1935
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1936

1937 1938 1939 1940 1941
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1953 1954 1955
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1956
            ret = layers.instance_norm(input=X)
1957 1958 1959
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1960 1961

        with self.static_graph():
1962 1963 1964
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1965 1966
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1967 1968 1969
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1970 1971

        with self.dynamic_graph():
1972 1973 1974 1975 1976
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1977 1978 1979 1980 1981
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1982 1983 1984 1985 1986
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1987
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1988 1989 1990
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1991 1992 1993 1994 1995
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1996 1997 1998 1999

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
2000
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2001 2002 2003 2004 2005 2006 2007
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2008
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2009 2010 2011 2012
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2024 2025 2026 2027 2028 2029 2030
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2031
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2032 2033 2034 2035 2036 2037 2038 2039 2040
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2041 2042

        with self.static_graph():
2043 2044 2045 2046 2047 2048 2049
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2050
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2051
            ret = spectralNorm(Weight)
2052 2053 2054 2055 2056 2057 2058 2059 2060
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2061 2062

        with self.dynamic_graph():
2063 2064 2065 2066 2067
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2068
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2069
            dy_ret = spectralNorm(base.to_variable(input))
2070
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2071

2072 2073 2074
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2119 2120

        with self.static_graph():
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2138
            ret = treeConv(NodesVector, EdgeSet)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2151 2152

        with self.dynamic_graph():
2153
            with _test_eager_guard():
2154 2155 2156 2157 2158 2159
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2160 2161
                dy_eager_rlt_value = dy_eager_ret.numpy()

2162 2163 2164
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2165
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2166
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2167

2168 2169 2170
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2171

2172
        with self.dynamic_graph():
2173 2174 2175 2176
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2201
                self.assertFalse(
2202 2203
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2204 2205
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2206 2207 2208 2209 2210 2211
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2212
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2213 2214 2215

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2216 2217 2218 2219 2220 2221
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2222

2223
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2250 2251 2252
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2253 2254 2255 2256 2257 2258
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2259
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2260 2261 2262

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2263 2264 2265 2266 2267 2268
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2269

L
lujun 已提交
2270
    def test_conv3d_transpose(self):
2271 2272 2273
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2274 2275 2276

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2277
            out = paddle.static.nn.conv3d_transpose(
2278 2279
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2280
            static_rlt = self.get_static_graph_result(
2281 2282
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2283 2284
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2285 2286 2287
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2288 2289
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2290 2291
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2292
        with self.dynamic_graph():
2293
            with _test_eager_guard():
2294 2295 2296 2297 2298 2299
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2300 2301 2302
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2303 2304 2305
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2306
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2307
            dy_rlt_value = dy_rlt.numpy()
2308 2309 2310
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2311

2312
        with self.dynamic_graph():
2313 2314 2315 2316 2317
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2336 2337 2338
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2339 2340
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2341 2342 2343 2344

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2345 2346
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2347
                conv3d2.weight.set_value(conv3d1_weight_np)
2348 2349 2350
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2351 2352 2353
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2354
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2355 2356 2357

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2358 2359 2360 2361 2362 2363
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2364

2365 2366
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2387 2388 2389 2390 2391 2392 2393
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2394 2395
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2396
            conv3d2.weight.set_value(conv3d1_weight_np)
2397 2398 2399
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2400 2401 2402
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2403
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2404 2405 2406

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2407 2408 2409 2410 2411 2412
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2413

2414
    def func_while_loop(self):
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2432
            def cond1(i):
2433 2434
                return layers.less_than(i, ten)

2435
            def body1(i):
2436 2437
                return i + 1

2438
            dy_ret = layers.while_loop(cond1, body1, [i])
2439 2440 2441 2442 2443 2444
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2445
                layers.while_loop(cond1, body2, [j])
2446

2447
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2448

2449 2450 2451 2452 2453
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2454 2455 2456 2457 2458 2459 2460 2461
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2462 2463 2464
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2465
        with self.dynamic_graph():
2466 2467 2468 2469 2470 2471 2472 2473
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2474 2475 2476 2477
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2478 2479
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2480 2481 2482 2483 2484 2485

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2486 2487 2488
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2489
        with self.dynamic_graph():
2490 2491 2492 2493 2494 2495 2496 2497
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2498 2499 2500 2501 2502 2503 2504
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2505
        # greater than
2506 2507 2508 2509
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2510 2511 2512
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2513
        with self.dynamic_graph():
2514 2515 2516 2517 2518 2519 2520 2521
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2522 2523 2524 2525 2526 2527 2528
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2529
        # greater equal
2530 2531 2532 2533
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2534 2535 2536
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2537
        with self.dynamic_graph():
2538 2539 2540 2541 2542 2543 2544 2545
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2558 2559 2560
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2561
        with self.dynamic_graph():
2562 2563 2564 2565 2566 2567 2568 2569
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2582 2583 2584
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2585
        with self.dynamic_graph():
2586 2587 2588 2589 2590 2591 2592 2593
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2594 2595 2596 2597 2598 2599 2600
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2601 2602 2603 2604 2605 2606 2607 2608
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2625 2626 2627 2628 2629
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2630 2631 2632
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2645 2646
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2647 2648 2649
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2650 2651 2652 2653 2654
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2655 2656
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2667 2668
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2669
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2670 2671 2672 2673 2674
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2675 2676
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2677

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2697 2698 2699
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2700 2701
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2702 2703 2704 2705 2706
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2707 2708 2709 2710
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2711 2712 2713 2714 2715 2716 2717 2718 2719
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2720 2721 2722 2723 2724 2725
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2726 2727 2728
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2729 2730 2731 2732 2733 2734 2735 2736
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2737 2738 2739
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2740 2741 2742 2743
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2744 2745 2746 2747
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2783 2784
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2785 2786
                fetch_list=[out_1, out_2, out_3]
            )
2787 2788

        with self.dynamic_graph():
2789
            with _test_eager_guard():
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2811 2812 2813 2814 2815

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2816 2817 2818
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2833 2834 2835 2836 2837

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2838 2839 2840 2841 2842 2843
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2844

2845 2846 2847 2848
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2849 2850 2851 2852 2853 2854
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2855
            crop_shape1 = (1, 2, 4, 4)
2856 2857 2858
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2859 2860
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2861 2862 2863
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2864 2865
            crop_offsets3 = [0, dim1, dim2, 0]

2866 2867 2868
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
2869 2870 2871 2872 2873

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2874 2875 2876
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2877 2878 2879
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2880 2881 2882

        self.assertIsNotNone(shard_label)

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2896 2897
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2898 2899 2900
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2901

L
Leo Chen 已提交
2902
        with self.dynamic_graph(force_to_use_cpu=True):
2903 2904 2905 2906 2907 2908
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2909
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2910

Y
Yu Yang 已提交
2911

2912
class TestBook(LayerTest):
H
hong 已提交
2913 2914
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2915 2916 2917 2918 2919 2920 2921 2922 2923
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_prelu",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2924
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2925

2926
    def func_all_layers(self):
2927 2928 2929 2930 2931
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
2932 2933 2934
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
2947 2948
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
2949

2950 2951 2952
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
2953 2954
            if method.__name__ in self.only_static_set:
                continue
2955 2956 2957 2958 2959

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
2960
                dy_result_value = dy_result.numpy()
2961

2962
            if method.__name__ in self.all_close_compare:
2963 2964 2965 2966 2967 2968
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
2969 2970 2971
                        method.__name__
                    ),
                )
2972 2973
                continue

H
hong 已提交
2974
            if method.__name__ not in self.not_compare_static_dygraph_set:
2975 2976 2977 2978
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
2979 2980 2981
                        method.__name__
                    ),
                )
2982

2983 2984 2985 2986 2987
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

2988 2989 2990
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
2991
            shape = [self._batch_size] + shape
2992 2993 2994 2995 2996
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
2997 2998 2999
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3000
        elif dtype == 'int64':
3001 3002 3003 3004 3005 3006 3007
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3008
        if base.enabled():
3009 3010 3011 3012 3013
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3014 3015
        else:
            if set_feed_dict:
3016
                self._feed_dict[name] = self._get_np_data(
3017 3018 3019 3020 3021 3022 3023 3024
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3025 3026

    def make_fit_a_line(self):
3027 3028 3029 3030
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3031
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3032
            y_predict = layers.fc(input=x, size=1, act=None)
3033
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3034
            cost = layers.square_error_cost(input=y_predict, label=y)
3035
            avg_cost = paddle.mean(cost)
3036
            return avg_cost
Y
Yu Yang 已提交
3037

3038
    def make_recognize_digits_mlp(self):
3039 3040 3041
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3042
            # Change g_program, so the rest layers use `g_program`
3043 3044
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3045 3046
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3047 3048 3049 3050 3051 3052
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3053
            cost = layers.cross_entropy(input=predict, label=label)
3054
            avg_cost = paddle.mean(cost)
3055
            return avg_cost
Y
Yu Yang 已提交
3056

3057
    def make_conv2d_transpose(self):
3058 3059 3060
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3061
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3062
            return paddle.static.nn.conv2d_transpose(
3063 3064
                input=img, num_filters=10, output_size=28
            )
3065

3066
    def make_recognize_digits_conv(self):
3067 3068 3069 3070 3071 3072
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3073
            label = self._get_data(name='label', shape=[1], dtype='int64')
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3090 3091 3092

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3093
            avg_cost = paddle.mean(cost)
3094
            return avg_cost
Y
Yu Yang 已提交
3095

3096
    def make_word_embedding(self):
3097 3098 3099
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3100 3101
            dict_size = 10000
            embed_size = 32
3102
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3103 3104 3105
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3106 3107 3108
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3135 3136 3137

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3138 3139
                axis=1,
            )
Y
Yu Yang 已提交
3140 3141

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3142 3143 3144
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3145
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3146
            avg_cost = paddle.mean(cost)
3147
            return avg_cost
Y
Yu Yang 已提交
3148

3149
    def make_sigmoid_cross_entropy(self):
3150 3151 3152
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3153 3154
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3155
            ignore_index = -1
3156 3157 3158
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3159 3160

    def make_pool2d(self):
3161 3162 3163
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3164
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3165 3166 3167
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3168

K
Kaipeng Deng 已提交
3169
    def make_pool2d_infershape(self):
3170 3171 3172
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3173
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3174 3175 3176
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3177 3178 3179
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3180 3181

    def make_pool3d(self):
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32'
            )
            return layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1),
            )
K
Kaipeng Deng 已提交
3194

3195
    def make_lstm_unit(self):
3196 3197 3198 3199 3200 3201
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3202
            x_t = layers.fc(input=x_t_data, size=10)
3203 3204 3205
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3206
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3207 3208 3209
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3210
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3211 3212 3213
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3214

3215
    def make_softmax(self):
3216 3217 3218
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3219
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3220
            hid = layers.fc(input=data, size=20)
3221
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3222

3223
    def make_space_to_depth(self):
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data',
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.space_to_depth(data, 3)
J
JiabinYang 已提交
3234

3235
    def make_get_places(self):
3236 3237 3238
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3239
            get_places(device_count=1)
X
xuezhong 已提交
3240

3241
    @prog_scope()
3242
    def make_nce(self):
Y
Yang Yu 已提交
3243 3244
        window_size = 5
        words = []
3245
        for i in range(window_size):
Y
Yang Yu 已提交
3246
            words.append(
3247 3248 3249 3250
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3251 3252

        dict_size = 10000
M
minqiyang 已提交
3253
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3254 3255

        embs = []
3256
        for i in range(window_size):
Y
Yang Yu 已提交
3257 3258 3259
            if i == label_word:
                continue

3260 3261 3262 3263 3264 3265
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3266 3267 3268 3269

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3270
        loss = paddle.static.nn.nce(
3271 3272 3273 3274 3275 3276
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3277
        avg_loss = paddle.mean(loss)
3278
        return avg_loss
Y
Yang Yu 已提交
3279

3280
    def make_multiplex(self):
3281 3282 3283
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3284 3285 3286
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3287
            out = layers.multiplex(inputs=[x1, x2], index=index)
3288
            return out
3289 3290

    def make_softmax_with_cross_entropy(self):
3291 3292 3293
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3294 3295
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3296
            loss, softmax = layers.softmax_with_cross_entropy(
3297 3298
                x, y, return_softmax=True
            )
3299 3300 3301
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3302
            loss = layers.softmax_with_cross_entropy(x, y)
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3317
            return loss4
3318 3319

    def make_smooth_l1(self):
3320 3321 3322
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3323 3324
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3325
            loss = layers.smooth_l1(x, y)
3326
            return loss
3327

3328
    def make_scatter(self):
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3344
            out = paddle.scatter(x, index=idx, updates=updates)
3345
            return out
Y
yangyaming 已提交
3346

3347 3348 3349 3350
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3351
            return one_hot_label
3352

3353 3354 3355 3356 3357
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3358
            one_hot_label = layers.one_hot(input=label, depth=10)
3359
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
3360
            return smooth_label
3361

3362
    def make_topk(self):
3363 3364 3365
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3366 3367
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3368 3369
            return values
            return indices
J
jerrywgz 已提交
3370

3371
    def make_resize_bilinear(self):
3372 3373 3374
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3375
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3376
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3377
            return output
K
Kaipeng Deng 已提交
3378 3379

    def make_resize_bilinear_by_scale(self):
3380 3381 3382
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3383 3384
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3385
            return output
3386

3387
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3388
        try:
3389 3390 3391
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3392 3393 3394 3395 3396 3397
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3398 3399 3400 3401 3402 3403
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3404 3405 3406 3407
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3408 3409 3410
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3411
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3412
            output = layers.resize_nearest(x, out_shape=[12, 12])
3413
            return output
K
Kaipeng Deng 已提交
3414 3415

    def make_resize_nearest_by_scale(self):
3416 3417 3418
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3419 3420
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3421
            return output
K
Kaipeng Deng 已提交
3422 3423 3424

    def make_resize_trilinear(self):
        try:
3425 3426 3427
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3428 3429 3430 3431 3432 3433
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3434 3435 3436 3437 3438 3439
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3440 3441 3442 3443
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3444 3445 3446
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3447 3448
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3449
            return output
K
Kaipeng Deng 已提交
3450 3451

    def make_resize_trilinear_by_scale(self):
3452 3453 3454
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3455 3456
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3457
            return output
3458

3459
    def make_polygon_box_transform(self):
3460 3461 3462
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3463
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3464
            output = layers.polygon_box_transform(input=x)
3465
            return output
3466

3467
    def make_l2_normalize(self):
3468 3469 3470
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3471
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3472
            output = layers.l2_normalize(x, axis=1)
3473
            return output
3474

3475
    def make_argsort(self):
3476 3477 3478
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3479
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3480
            out, ids = layers.argsort(input=data, axis=1)
3481 3482
            return out
            return ids
3483 3484

    def make_shape(self):
3485 3486 3487 3488 3489 3490
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3491
            out = layers.shape(input)
3492
            return out
B
Bai Yifan 已提交
3493

3494
    def make_pad2d(self):
3495 3496 3497 3498 3499 3500
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
3501 3502 3503

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
3504 3505 3506 3507
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
3508
            out = tmp_pad(input)
3509
            return out
W
whs 已提交
3510

3511
    def make_prelu(self):
3512 3513 3514 3515 3516 3517
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[5, 200, 100, 100], dtype="float32"
            )
J
jerrywgz 已提交
3518
            mode = 'channel'
3519 3520 3521 3522 3523 3524 3525
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu',
            )
            return out
J
jerrywgz 已提交
3526

K
Kaipeng Deng 已提交
3527
    def make_mish(self):
3528 3529 3530
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3531 3532
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3533
            return out
K
Kaipeng Deng 已提交
3534

3535
    def make_cross_entropy(self):
3536 3537 3538
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3539 3540
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3541 3542
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3543
            return out
3544

3545
    def make_uniform_random_batch_size_like(self):
3546 3547 3548 3549 3550 3551
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
3552
            out = random.uniform_random_batch_size_like(input, [-1, 11])
3553
            return out
G
fix  
gongweibao 已提交
3554

3555
    def make_gaussian_random(self):
3556 3557 3558
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3559
            out = layers.gaussian_random(shape=[20, 30])
3560
            return out
G
fix  
gongweibao 已提交
3561

3562
    def make_sampling_id(self):
3563 3564 3565 3566 3567 3568 3569 3570 3571
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3572 3573

            out = layers.sampling_id(x)
3574
            return out
G
fix  
gongweibao 已提交
3575

3576
    def make_sum(self):
3577 3578 3579 3580 3581 3582
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3583 3584

            out = layers.sum(input)
3585
            return out
G
fix  
gongweibao 已提交
3586

3587
    def make_slice(self):
G
fix  
gongweibao 已提交
3588 3589 3590 3591
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3592 3593 3594 3595 3596 3597
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3598 3599

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3600
            return out
G
merge  
gongweibao 已提交
3601

3602
    def make_scale_variable(self):
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
3615
            out = paddle.scale(input, scale=scale_var)
3616 3617
            return out

M
minqiyang 已提交
3618
    def make_iou_similarity(self):
3619 3620 3621
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3622 3623
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3624
            out = layers.iou_similarity(x, y, name='iou_similarity')
3625
            return out
3626 3627

    def make_grid_sampler(self):
3628 3629 3630
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3631 3632
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3633
            out = layers.grid_sampler(x, grid)
3634
            return out
3635 3636

    def make_bilinear_tensor_product_layer(self):
3637 3638 3639
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3640 3641 3642 3643
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3644
            return out
3645 3646

    def make_batch_norm(self):
3647 3648 3649 3650 3651 3652
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3653
            out = layers.batch_norm(data)
3654
            return out
3655

3656
    def make_batch_norm_momentum_variable(self):
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3669
            out = layers.batch_norm(data, momentum=momentum)
3670
            return out
3671

3672
    def make_range(self):
3673 3674 3675
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
3676 3677 3678
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
3679 3680 3681
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
3682
            y = paddle.arange(start, end, step, 'float64')
3683 3684 3685
            return y

    def make_spectral_norm(self):
3686 3687 3688 3689 3690 3691 3692 3693 3694
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
3695
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
3696
            return out
3697 3698

    def make_kldiv_loss(self):
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
3714 3715 3716
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
3717
            return loss
3718 3719

    def make_temporal_shift(self):
3720 3721 3722
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3723 3724
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
3725
            return out
3726

M
minqiyang 已提交
3727
    def make_fsp_matrix(self):
3728 3729 3730
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3731 3732 3733
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
3734
            return out
3735

M
minqiyang 已提交
3736
    def make_pixel_shuffle(self):
3737 3738 3739
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3740 3741
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
3742
            return out
M
minqiyang 已提交
3743

R
ruri 已提交
3744
    def make_mse_loss(self):
3745 3746 3747
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
3748 3749
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
3750
            out = paddle.nn.functional.mse_loss(input=x, label=y)
3751
            return out
R
ruri 已提交
3752

3753
    def make_square_error_cost(self):
3754 3755 3756
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3757 3758 3759
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
3760
            return out
3761

3762 3763 3764 3765
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
3766 3767 3768
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3769 3770
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
3771 3772 3773 3774
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
3775 3776 3777 3778 3779 3780

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
3781 3782 3783 3784 3785 3786 3787 3788
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
3789 3790 3791 3792

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3793
            # case 1
3794
            x = layers.data(name='x', shape=[10], dtype='float32')
3795 3796 3797
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
3798 3799 3800
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3801
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3802 3803 3804 3805 3806 3807
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3808

W
whs 已提交
3809
    def test_affine_grid(self):
3810
        with self.static_graph():
W
whs 已提交
3811 3812 3813 3814
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3815
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
3816 3817
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
3818 3819 3820

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3821

W
wangchaochaohu 已提交
3822 3823 3824 3825 3826 3827 3828
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
3829
            out = paddle.strided_slice(
3830 3831
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
3832 3833
            return out

3834 3835
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
3836 3837 3838 3839 3840 3841
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
3842 3843
            return out

3844 3845 3846 3847
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
3848 3849 3850
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1
            )
3851
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
3852
            return output
3853

3854 3855 3856 3857
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
3858 3859 3860 3861
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
3862

3863 3864 3865 3866 3867
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
3868
            return out
3869

3870 3871 3872 3873
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3874
            length = layers.data(name='length', shape=[], dtype='int64')
3875
            return layers.sequence_unpad(x=x, length=length)
3876

3877 3878 3879
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3880 3881 3882
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
3883
            seq = layers.fc(input=seq_data, size=20)
3884
            return layers.sequence_softmax(seq)
3885

3886 3887 3888 3889 3890
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
3891
            return out
3892

3893 3894 3895
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
3913
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
3914
            return out
W
whs 已提交
3915

3916 3917 3918 3919
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
3920 3921 3922 3923

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
3924 3925
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
3926 3927 3928 3929
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
3930

Z
zhoushiyu 已提交
3931 3932 3933
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3934 3935 3936
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
3937 3938 3939 3940 3941
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
3942
            return out1
Z
zhoushiyu 已提交
3943

3944 3945 3946 3947
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
3948 3949 3950 3951
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
3952

S
ShenLiang 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
3962 3963
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
3964 3965 3966 3967
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
3968 3969 3970 3971 3972
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
3973

S
ShenLiang 已提交
3974 3975 3976
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
3977 3978 3979
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
3980 3981 3982 3983 3984 3985 3986
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
3987 3988 3989 3990 3991
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
3992

3993
    def test_roi_pool(self):
3994 3995 3996 3997
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

3998
        with self.static_graph():
3999 4000 4001 4002
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4003 4004 4005 4006
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4007 4008

        with self.dynamic_graph():
4009 4010 4011 4012
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4013 4014 4015
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
                )
4016 4017
                dy_eager_res_value = dy_eager_res[0].numpy()

4018 4019 4020
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4021 4022 4023
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
            )
4024
            dy_res_value = dy_res[0].numpy()
4025 4026
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4027 4028 4029 4030 4031 4032 4033 4034

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4035 4036 4037 4038
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4039
        with self.static_graph():
4040 4041 4042 4043
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4044 4045 4046 4047
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4048 4049

        with self.dynamic_graph():
4050 4051 4052 4053
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4054 4055 4056
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
                )
4057 4058
                dy_eager_res_value = dy_eager_res.numpy()

4059 4060 4061
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4062 4063 4064
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
            )
4065
            dy_res_value = dy_res.numpy()
4066 4067
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4068 4069 4070 4071 4072

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4073 4074 4075
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
4076
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
4077
            return output
4078 4079 4080 4081 4082 4083

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
4084
            return out
4085 4086 4087 4088

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4089 4090 4091 4092 4093 4094
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
4095 4096 4097 4098 4099 4100

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
4101
            return out
4102 4103 4104 4105

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4106 4107 4108 4109 4110 4111
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
4112
            out = paddle.flatten(x, 1, -1, name="flatten")
4113
            return out
4114

Z
zhoukunsheng 已提交
4115 4116 4117 4118 4119 4120 4121
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4122 4123 4124 4125
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4126
            return out
4127

4128 4129 4130 4131
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4132 4133 4134 4135 4136 4137
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4138 4139
            return concat1, concat2

C
cjt222 已提交
4140
    def test_deform_roi_pooling(self):
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4173

4174
    def test_retinanet_target_assign(self):
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4237

4238
    def test_sigmoid_focal_loss(self):
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4261

4262
    def test_addmm(self):
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4278 4279

            out = paddle.addmm(input=input, x=x, y=y)
4280
            return out
4281

4282
    def test_retinanet_detection_output(self):
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4310 4311 4312 4313 4314 4315 4316 4317 4318
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4319 4320 4321
                nms_eta=1.0,
            )
            return nmsed_outs
4322

4323 4324 4325
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4326
            input_length = paddle.static.data(
4327 4328
                name='logits_length', shape=[11], dtype='int64'
            )
4329
            label_length = paddle.static.data(
4330 4331
                name='labels_length', shape=[12], dtype='int64'
            )
4332 4333 4334 4335
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
4336 4337
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
4338 4339 4340 4341 4342 4343
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
4344 4345
            )
            return output
4346

4347 4348 4349 4350
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4351 4352 4353 4354 4355 4356 4357 4358 4359
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4371 4372
                        batch_first=batch_first,
                    )
4373

Y
Yu Yang 已提交
4374

4375 4376 4377 4378
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4400 4401 4402 4403 4404 4405
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4406 4407
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4408
        super().__init__()
4409
        self.weight = self.create_parameter(
4410 4411
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4442 4443
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4444
        super().__init__()
J
Jiabin Yang 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4456
        super().__init__()
J
Jiabin Yang 已提交
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4472
if __name__ == '__main__':
4473
    paddle.enable_static()
Y
Yu Yang 已提交
4474
    unittest.main()