Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
f8dbd7a2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f8dbd7a2
编写于
8月 24, 2020
作者:
C
ceci3
提交者:
GitHub
8月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix syncbn, test=develop (#26523)
* fix syncbn, test=develop * fix test,test=develop * fix unittest,test=develop
上级
dd3df693
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
230 addition
and
219 deletion
+230
-219
python/paddle/fluid/dygraph/nn.py
python/paddle/fluid/dygraph/nn.py
+1
-215
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+1
-1
python/paddle/fluid/tests/unittests/test_parallel_dygraph_sync_batch_norm.py
.../tests/unittests/test_parallel_dygraph_sync_batch_norm.py
+1
-1
python/paddle/fluid/tests/unittests/test_sync_batch_norm_op.py
...n/paddle/fluid/tests/unittests/test_sync_batch_norm_op.py
+2
-1
python/paddle/nn/layer/norm.py
python/paddle/nn/layer/norm.py
+225
-1
未找到文件。
python/paddle/fluid/dygraph/nn.py
浏览文件 @
f8dbd7a2
...
...
@@ -36,7 +36,7 @@ __all__ = [
'Conv2D'
,
'Conv3D'
,
'Pool2D'
,
'Linear'
,
'BatchNorm'
,
'Dropout'
,
'Embedding'
,
'GRUUnit'
,
'InstanceNorm'
,
'LayerNorm'
,
'NCE'
,
'PRelu'
,
'BilinearTensorProduct'
,
'Conv2DTranspose'
,
'Conv3DTranspose'
,
'GroupNorm'
,
'SpectralNorm'
,
'TreeConv'
,
'Flatten'
,
'SyncBatchNorm'
'SpectralNorm'
,
'TreeConv'
,
'Flatten'
]
...
...
@@ -3203,220 +3203,6 @@ class TreeConv(layers.Layer):
return
self
.
_helper
.
append_activation
(
pre_activation
,
act
=
self
.
_act
)
class
SyncBatchNorm
(
layers
.
Layer
):
"""
This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
be used as a normalizer function for other operations, such as conv2d and fully connected
operations.
The data is normalized by the mean and variance of the channel based on whole mini-batch
, which including data in all gpus.
Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
for more details.
When model in training mode, the :math:`
\\
mu_{
\\
beta}`
and :math:`
\\
sigma_{
\\
beta}^{2}` are the statistics of whole mini-batch data in all gpus.
Calculated as follows:
.. math::
\\
mu_{
\\
beta} &
\\
gets
\\
frac{1}{m}
\\
sum_{i=1}^{m} x_i
\\
qquad &//
\\
\ mini-batch\ mean
\\\\
\\
sigma_{
\\
beta}^{2} &
\\
gets
\\
frac{1}{m}
\\
sum_{i=1}^{m}(x_i -
\\
\\
mu_{
\\
beta})^2
\\
qquad &//\ mini-batch\ variance
\\\\
- :math:`x` : whole mini-batch data in all gpus
- :math:`m` : the size of the whole mini-batch data
When model in evaluation mode, the :math:`
\\
mu_{
\\
beta}`
and :math:`
\\
sigma_{
\\
beta}^{2}` are global statistics (moving_mean and moving_variance,
which usually got from the pre-trained model). Global statistics calculated as follows:
.. math::
moving\_mean = moving\_mean * momentum + \mu_{
\b
eta} * (1. - momentum) \quad &// global mean
\\
moving\_variance = moving\_variance * momentum + \sigma_{
\b
eta}^{2} * (1. - momentum) \quad &// global variance
\\
The formula of normalization is as follows:
.. math::
\\
hat{x_i} &
\\
gets
\\
frac{x_i -
\\
mu_
\\
beta} {
\\
sqrt{
\\
\\
sigma_{
\\
beta}^{2} +
\\
eps}}
\\
qquad &//\ normalize
\\\\
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
\\
qquad &//\ scale\ and\ shift
- :math:`
\\
eps` : add a smaller value to the variance to prevent division by zero
- :math:`
\\
gamma` : trainable scale parameter vector
- :math:`
\\
beta` : trainable shift parameter vector
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of this layer. If it is set to None or one attribute of ParamAttr, this layerr
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. If it is set to False,
this layer will not have trainable scale parameter. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
If it is set to None or one attribute of ParamAttr, this layer
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. If it is set to False, this layer will not
have trainable bias parameter. Default: None.
track_running_stats(bool, optional): Whether to compute global stats, which including running mean and
running variance. Default: True.
Returns:
None
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
paddle.disable_static()
x = paddle.to_tensor(x)
if paddle.fluid.is_compiled_with_cuda():
sync_batch_norm = nn.SyncBatchNorm(2)
hidden1 = sync_batch_norm(x)
print(hidden1.numpy())
# [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
"""
def
__init__
(
self
,
num_features
,
epsilon
=
1e-05
,
momentum
=
0.9
,
track_running_stats
=
True
,
weight_attr
=
None
,
bias_attr
=
None
,
data_format
=
'NCHW'
,
name
=
None
):
super
(
SyncBatchNorm
,
self
).
__init__
()
self
.
_weight_attr
=
weight_attr
self
.
_bias_attr
=
bias_attr
self
.
_num_features
=
num_features
self
.
_data_layout
=
data_format
self
.
_momentum
=
momentum
self
.
_epsilon
=
epsilon
self
.
_track_running_stats
=
track_running_stats
if
self
.
_track_running_stats
==
False
:
logging
.
warn
(
"moving mean and moving variance will be calculated whether `track_running_stats` is set to `True` or `False`, we will fix it in the next version."
)
param_shape
=
[
self
.
_num_features
]
# create parameter
if
weight_attr
==
False
:
self
.
weight
=
self
.
create_parameter
(
attr
=
None
,
shape
=
param_shape
,
default_initializer
=
Constant
(
1.0
))
self
.
weight
.
stop_gradient
=
True
else
:
self
.
weight
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
shape
=
param_shape
,
default_initializer
=
Constant
(
1.0
))
self
.
weight
.
stop_gradient
=
self
.
_weight_attr
!=
None
and
self
.
_weight_attr
.
learning_rate
==
0.
if
bias_attr
==
False
:
self
.
bias
=
self
.
create_parameter
(
attr
=
None
,
shape
=
param_shape
,
default_initializer
=
Constant
(
0.0
),
is_bias
=
True
)
self
.
bias
.
stop_gradient
=
True
else
:
self
.
bias
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
param_shape
,
is_bias
=
True
)
self
.
bias
.
stop_gradient
=
self
.
_weight_attr
!=
None
and
self
.
_weight_attr
.
learning_rate
==
0.
self
.
_mean
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
None
,
initializer
=
Constant
(
0.0
),
trainable
=
False
,
do_model_average
=
True
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_mean
.
stop_gradient
=
True
self
.
_variance
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
None
,
initializer
=
Constant
(
1.0
),
trainable
=
False
,
do_model_average
=
True
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_variance
.
stop_gradient
=
True
def
forward
(
self
,
x
):
# create output
# mean and mean_out share the same memory
mean_out
=
self
.
_mean
# variance and variance out share the same memory
variance_out
=
self
.
_variance
### train mode: use mini-batch stats, eval mode: use global stats
if
in_dygraph_mode
():
attrs
=
(
"momentum"
,
self
.
_momentum
,
"epsilon"
,
self
.
_epsilon
,
"is_test"
,
not
self
.
training
,
"data_layout"
,
self
.
_data_layout
,
"use_mkldnn"
,
False
,
"fuse_with_relu"
,
False
,
"use_global_stats"
,
not
self
.
training
,
'trainable_statistics'
,
False
)
sync_batch_norm_out
,
_
,
_
,
_
,
_
,
_
=
core
.
ops
.
sync_batch_norm
(
x
,
self
.
weight
,
self
.
bias
,
self
.
_mean
,
self
.
_variance
,
mean_out
,
variance_out
,
*
attrs
)
return
sync_batch_norm_out
check_variable_and_dtype
(
x
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'BatchNorm'
)
attrs
=
{
"momentum"
:
self
.
_momentum
,
"epsilon"
:
self
.
_epsilon
,
"is_test"
:
not
self
.
training
,
"data_layout"
:
self
.
_data_layout
,
"use_mkldnn"
:
False
,
"fuse_with_relu"
:
False
,
"use_global_stats"
:
not
self
.
training
,
"trainable_statistics"
:
False
,
}
inputs
=
{
"X"
:
[
x
],
"Scale"
:
[
self
.
weight
],
"Bias"
:
[
self
.
bias
],
"Mean"
:
[
self
.
_mean
],
"Variance"
:
[
self
.
_variance
]
}
saved_mean
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
saved_variance
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
sync_batch_norm_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
outputs
=
{
"Y"
:
[
sync_batch_norm_out
],
"MeanOut"
:
[
mean_out
],
"VarianceOut"
:
[
variance_out
],
"SavedMean"
:
[
saved_mean
],
"SavedVariance"
:
[
saved_variance
]
}
self
.
_helper
.
append_op
(
type
=
"sync_batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
return
sync_batch_norm_out
class
Flatten
(
layers
.
Layer
):
"""
:alias_main: paddle.nn.Flatten
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
f8dbd7a2
...
...
@@ -287,7 +287,7 @@ class TestLayer(LayerTest):
if
core
.
is_compiled_with_cuda
():
with
self
.
static_graph
():
t
=
layers
.
data
(
name
=
't'
,
shape
=
[
-
1
,
3
,
5
,
5
],
dtype
=
'float32'
)
my_sync_bn
=
nn
.
SyncBatchNorm
(
3
)
my_sync_bn
=
paddle
.
nn
.
SyncBatchNorm
(
3
)
ret
=
my_sync_bn
(
t
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
't'
:
np
.
ones
(
...
...
python/paddle/fluid/tests/unittests/test_parallel_dygraph_sync_batch_norm.py
浏览文件 @
f8dbd7a2
...
...
@@ -25,7 +25,7 @@ class TestParallelDygraphMnist(TestDistBase):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_nccl2_mode
=
True
self
.
_dygraph
=
False
#
True
self
.
_dygraph
=
True
def
test_mnist
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
...
...
python/paddle/fluid/tests/unittests/test_sync_batch_norm_op.py
浏览文件 @
f8dbd7a2
...
...
@@ -22,6 +22,7 @@ import unittest
import
numpy
as
np
import
os
import
six
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
...
...
@@ -209,7 +210,7 @@ class TestDygraphSyncBatchNormAPIError(unittest.TestCase):
return
with
program_guard
(
Program
(),
Program
()):
my_sync_batch_norm
=
fluid
.
dygraph
.
SyncBatchNorm
(
10
)
my_sync_batch_norm
=
paddle
.
nn
.
SyncBatchNorm
(
10
)
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CUDAPlace
(
0
))
self
.
assertRaises
(
TypeError
,
my_sync_batch_norm
,
x1
)
...
...
python/paddle/nn/layer/norm.py
浏览文件 @
f8dbd7a2
...
...
@@ -14,15 +14,239 @@
# TODO: define normalization api
import
warnings
from
...fluid.dygraph.nn
import
InstanceNorm
from
...fluid.dygraph
import
BatchNorm
#DEFINE_ALIAS
from
...fluid.dygraph
import
GroupNorm
#DEFINE_ALIAS
from
...fluid.dygraph
import
LayerNorm
#DEFINE_ALIAS
from
...fluid.dygraph
import
SpectralNorm
#DEFINE_ALIAS
from
...fluid.dygraph
import
SyncBatchNorm
#DEFINE_ALIAS
from
...fluid.dygraph
import
layers
from
...fluid.framework
import
in_dygraph_mode
from
...fluid.initializer
import
Constant
from
...fluid.param_attr
import
ParamAttr
from
...fluid.data_feeder
import
check_variable_and_dtype
,
check_type
from
...fluid
import
core
__all__
=
[
'BatchNorm'
,
'GroupNorm'
,
'LayerNorm'
,
'SpectralNorm'
,
'InstanceNorm'
,
'SyncBatchNorm'
]
class
SyncBatchNorm
(
layers
.
Layer
):
"""
This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
be used as a normalizer function for other operations, such as conv2d and fully connected
operations.
The data is normalized by the mean and variance of the channel based on whole mini-batch
, which including data in all gpus.
Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
for more details.
When model in training mode, the :math:`
\\
mu_{
\\
beta}`
and :math:`
\\
sigma_{
\\
beta}^{2}` are the statistics of whole mini-batch data in all gpus.
Calculated as follows:
.. math::
\\
mu_{
\\
beta} &
\\
gets
\\
frac{1}{m}
\\
sum_{i=1}^{m} x_i
\\
qquad &//
\\
\ mini-batch\ mean
\\\\
\\
sigma_{
\\
beta}^{2} &
\\
gets
\\
frac{1}{m}
\\
sum_{i=1}^{m}(x_i -
\\
\\
mu_{
\\
beta})^2
\\
qquad &//\ mini-batch\ variance
\\\\
- :math:`x` : whole mini-batch data in all gpus
- :math:`m` : the size of the whole mini-batch data
When model in evaluation mode, the :math:`
\\
mu_{
\\
beta}`
and :math:`
\\
sigma_{
\\
beta}^{2}` are global statistics (moving_mean and moving_variance,
which usually got from the pre-trained model). Global statistics calculated as follows:
.. math::
moving\_mean = moving\_mean * momentum + \mu_{
\b
eta} * (1. - momentum) \quad &// global mean
\\
moving\_variance = moving\_variance * momentum + \sigma_{
\b
eta}^{2} * (1. - momentum) \quad &// global variance
\\
The formula of normalization is as follows:
.. math::
\\
hat{x_i} &
\\
gets
\\
frac{x_i -
\\
mu_
\\
beta} {
\\
sqrt{
\\
\\
sigma_{
\\
beta}^{2} +
\\
eps}}
\\
qquad &//\ normalize
\\\\
y_i &
\\
gets
\\
gamma
\\
hat{x_i} +
\\
beta
\\
qquad &//\ scale\ and\ shift
- :math:`
\\
eps` : add a smaller value to the variance to prevent division by zero
- :math:`
\\
gamma` : trainable scale parameter vector
- :math:`
\\
beta` : trainable shift parameter vector
Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of this layer. If it is set to None or one attribute of ParamAttr, this layerr
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. If it is set to False,
this layer will not have trainable scale parameter. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
If it is set to None or one attribute of ParamAttr, this layer
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. If it is set to False, this layer will not
have trainable bias parameter. Default: None.
track_running_stats(bool, optional): Whether to compute global stats, which including running mean and
running variance. Default: True.
Shapes:
input: Tensor that the dimension from 2 to 5.
output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
import numpy as np
x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
paddle.disable_static()
x = paddle.to_tensor(x)
if paddle.fluid.is_compiled_with_cuda():
sync_batch_norm = nn.SyncBatchNorm(2)
hidden1 = sync_batch_norm(x)
print(hidden1.numpy())
# [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
"""
def
__init__
(
self
,
num_features
,
epsilon
=
1e-05
,
momentum
=
0.9
,
track_running_stats
=
True
,
weight_attr
=
None
,
bias_attr
=
None
,
data_format
=
'NCHW'
,
name
=
None
):
super
(
SyncBatchNorm
,
self
).
__init__
()
self
.
_weight_attr
=
weight_attr
self
.
_bias_attr
=
bias_attr
self
.
_num_features
=
num_features
self
.
_data_layout
=
data_format
self
.
_momentum
=
momentum
self
.
_epsilon
=
epsilon
self
.
_track_running_stats
=
track_running_stats
if
self
.
_track_running_stats
==
False
:
warnings
.
warn
(
"moving mean and moving variance will be calculated whether `track_running_stats` is set to `True` or `False`, we will fix it in the next version."
)
param_shape
=
[
self
.
_num_features
]
# create parameter
if
weight_attr
==
False
:
self
.
weight
=
self
.
create_parameter
(
attr
=
None
,
shape
=
param_shape
,
default_initializer
=
Constant
(
1.0
))
self
.
weight
.
stop_gradient
=
True
else
:
self
.
weight
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
shape
=
param_shape
,
default_initializer
=
Constant
(
1.0
))
self
.
weight
.
stop_gradient
=
self
.
_weight_attr
!=
None
and
self
.
_weight_attr
.
learning_rate
==
0.
if
bias_attr
==
False
:
self
.
bias
=
self
.
create_parameter
(
attr
=
None
,
shape
=
param_shape
,
default_initializer
=
Constant
(
0.0
),
is_bias
=
True
)
self
.
bias
.
stop_gradient
=
True
else
:
self
.
bias
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
param_shape
,
is_bias
=
True
)
self
.
bias
.
stop_gradient
=
self
.
_weight_attr
!=
None
and
self
.
_weight_attr
.
learning_rate
==
0.
self
.
_mean
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
None
,
initializer
=
Constant
(
0.0
),
trainable
=
False
,
do_model_average
=
True
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_mean
.
stop_gradient
=
True
self
.
_variance
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
None
,
initializer
=
Constant
(
1.0
),
trainable
=
False
,
do_model_average
=
True
),
shape
=
param_shape
,
dtype
=
self
.
_dtype
)
self
.
_variance
.
stop_gradient
=
True
def
forward
(
self
,
x
):
# create output
# mean and mean_out share the same memory
mean_out
=
self
.
_mean
# variance and variance out share the same memory
variance_out
=
self
.
_variance
### train mode: use mini-batch stats, eval mode: use global stats
### use_global_stats only support False in sync_batch_norm
if
in_dygraph_mode
():
attrs
=
(
"momentum"
,
self
.
_momentum
,
"epsilon"
,
self
.
_epsilon
,
"is_test"
,
not
self
.
training
,
"data_layout"
,
self
.
_data_layout
,
"use_mkldnn"
,
False
,
"fuse_with_relu"
,
False
,
"use_global_stats"
,
False
,
'trainable_statistics'
,
False
)
sync_batch_norm_out
,
_
,
_
,
_
,
_
,
_
=
core
.
ops
.
sync_batch_norm
(
x
,
self
.
weight
,
self
.
bias
,
self
.
_mean
,
self
.
_variance
,
mean_out
,
variance_out
,
*
attrs
)
return
sync_batch_norm_out
check_variable_and_dtype
(
x
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'BatchNorm'
)
attrs
=
{
"momentum"
:
self
.
_momentum
,
"epsilon"
:
self
.
_epsilon
,
"is_test"
:
not
self
.
training
,
"data_layout"
:
self
.
_data_layout
,
"use_mkldnn"
:
False
,
"fuse_with_relu"
:
False
,
"use_global_stats"
:
False
,
"trainable_statistics"
:
False
,
}
inputs
=
{
"X"
:
[
x
],
"Scale"
:
[
self
.
weight
],
"Bias"
:
[
self
.
bias
],
"Mean"
:
[
self
.
_mean
],
"Variance"
:
[
self
.
_variance
]
}
saved_mean
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
saved_variance
=
self
.
_helper
.
create_variable_for_type_inference
(
dtype
=
self
.
_dtype
,
stop_gradient
=
True
)
sync_batch_norm_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
outputs
=
{
"Y"
:
[
sync_batch_norm_out
],
"MeanOut"
:
[
mean_out
],
"VarianceOut"
:
[
variance_out
],
"SavedMean"
:
[
saved_mean
],
"SavedVariance"
:
[
saved_variance
]
}
self
.
_helper
.
append_op
(
type
=
"sync_batch_norm"
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
return
sync_batch_norm_out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录