test_layers.py 145.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from __future__ import print_function
Q
Qiao Longfei 已提交
16 17
import unittest

18 19
import contextlib
import numpy as np
20
from decorator_helper import prog_scope
21 22
import inspect
from six.moves import filter
23 24 25

import paddle
import paddle.fluid as fluid
26
from paddle.fluid.layers.device import get_places
27 28 29
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
30
from paddle.fluid import core
J
jerrywgz 已提交
31
from paddle.fluid.initializer import Constant
32 33
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
34 35
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
36
from paddle.fluid.dygraph import to_variable
37 38 39 40 41 42 43 44 45 46 47


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

48 49 50 51 52 53 54 55
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
56 57 58 59 60 61 62 63

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield

64 65 66 67 68 69
    def get_static_graph_result(self,
                                feed,
                                fetch_list,
                                with_lod=False,
                                force_to_use_cpu=False):
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
70 71 72
        exe.run(fluid.default_startup_program())
        return exe.run(fluid.default_main_program(),
                       feed=feed,
73 74
                       fetch_list=fetch_list,
                       return_numpy=(not with_lod))
75 76

    @contextlib.contextmanager
77
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
78
        with fluid.dygraph.guard(
79
                self._get_place(force_to_use_cpu=force_to_use_cpu)):
80 81 82 83 84 85
            fluid.default_startup_program().random_seed = self.seed
            fluid.default_main_program().random_seed = self.seed
            yield


class TestLayer(LayerTest):
86 87
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
88 89 90 91 92 93 94 95 96 97
            def __init__(self, input_size, linear1_size=4):
                super(CustomLayer, self).__init__()
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False)
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
98 99 100 101 102
                return ret

        with self.dynamic_graph():
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
103 104
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
105
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 2]))
106
            ret = custom(x, do_linear2=True)
107 108
            self.assertTrue(np.array_equal(ret.numpy().shape, [3, 1]))

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False)
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2])
        with self.dynamic_graph():
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False)
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

        self.assertTrue(np.array_equal(static_ret, static_ret2))
        self.assertTrue(np.array_equal(dy_ret_value, dy_ret2_value))
        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

S
songyouwei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            ret = linear(t)
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
            t = base.to_variable(inp)
            linear = nn.Linear(
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1))
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

        self.assertTrue(np.array_equal(static_ret, dy_ret_value))

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
                linear = nn.Linear(
                    32,
                    4,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1))
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

183 184 185 186 187 188 189 190
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
191 192 193 194
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
195 196 197 198 199 200 201 202
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False)
203
            lm = nn.LayerNorm(
204
                normalized_shape=[32, 32],
205 206
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
207 208 209 210
            ret = lm(t)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret])[0]
        with self.dynamic_graph():
211
            lm = nn.LayerNorm(
212
                normalized_shape=[32, 32],
213 214
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
215
            dy_ret = lm(base.to_variable(inp))
216
            dy_ret_value = dy_ret.numpy()
217 218
        with self.dynamic_graph():
            lm = nn.LayerNorm(
219
                normalized_shape=[32, 32],
220 221 222 223 224 225 226 227 228
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
229

230
        self.assertTrue(np.array_equal(static_ret, static_ret2))
231
        self.assertTrue(np.array_equal(dy_ret_value, static_ret2))
232

233 234 235 236 237 238 239 240
        with self.dynamic_graph():
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

241 242 243 244 245 246 247 248 249 250 251
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
252
            dy_ret_value = dy_ret.numpy()
253

254
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones(
                        [3, 3], dtype='float32'),
                    't2': np.ones(
                        [3, 3], dtype='float32')
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
273
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
274
            dy_ret_value = dy_ret.numpy()
275

276
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
277

278 279 280 281 282 283 284 285 286 287 288
    def test_conv2d(self):
        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
            ret = layers.conv2d(input=images, num_filters=3, filter_size=[2, 2])
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(name='pixel', shape=[3, 5, 5], dtype='float32')
289 290
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
291 292 293 294 295 296 297 298
            ret = conv2d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 5, 5], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
299 300
            conv2d = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
301
            dy_ret = conv2d(base.to_variable(images))
302
            dy_ret_value = dy_ret.numpy()
303

304 305 306
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            conv2d = nn.Conv2D(
307 308 309 310
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                bias_attr=False)
311
            dy_ret = conv2d(base.to_variable(images))
312
            self.assertTrue(conv2d.bias is None)
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        with self.static_graph():
            # the input of Conv2D must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                conv2d = nn.Conv2D(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2D must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32')
                conv2d = nn.Conv2D(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

335
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
336
        self.assertTrue(np.allclose(static_ret, static_ret2))
Y
Yu Yang 已提交
337

338 339 340 341 342 343
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
344 345
            conv2d1 = nn.Conv2D(
                num_channels=3, num_filters=3, filter_size=[2, 2])
346
            conv2d2 = nn.Conv2D(
347
                num_channels=3,
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

M
minqiyang 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
            static_ret = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
                input=x, hidden=hidden, size=D * 3)
398
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
399 400 401 402 403 404 405 406
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
                feed={'x': input,
                      'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate])

        with self.dynamic_graph():
407
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
408 409
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))
410 411 412
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
413 414 415

        for i in range(len(static_ret)):
            self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
416
            self.assertTrue(np.allclose(static_ret[i], dy_ret_value[i]))
M
minqiyang 已提交
417

418 419 420 421 422
        with self.dynamic_graph():
            custom_weight = np.random.randn(D, D * 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
423 424
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            self.assertFalse(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input))
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input))
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertTrue(np.array_equal(o1.numpy(), o2.numpy()))

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
            self.assertTrue(
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy()))
            self.assertTrue(
                np.array_equal(gru1.bias.numpy(), gru2.bias.numpy()))

X
Xin Pan 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
            ret = layers.elementwise_pow(ret, t3)
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

            static_ret = self.get_static_graph_result(
                feed={
                    't': n,
                    't2': n2,
                    't3': n3,
                    't4': n4,
                    't5': n5,
                    't6': n6
                },
                fetch_list=[ret])[0]

        with self.dynamic_graph():
483 484 485 486 487
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
            ret = layers.elementwise_pow(ret, to_variable(n3))
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
488 489
            dy_ret_value = dy_ret.numpy()
        self.assertTrue(np.allclose(static_ret, dy_ret_value))
X
Xin Pan 已提交
490 491 492 493 494 495

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
496 497
            min_ret = layers.elementwise_min(to_variable(n), to_variable(n2))
            max_ret = layers.elementwise_max(to_variable(n), to_variable(n2))
498 499
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
500

501 502
        self.assertTrue(np.allclose(n, min_ret_value))
        self.assertTrue(np.allclose(n2, max_ret_value))
X
Xin Pan 已提交
503

504 505 506 507 508 509 510 511 512 513 514 515 516
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
517
            out = layers.sequence_conv(seq, 2, act='sigmoid')
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]

        with self.static_graph():
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
535
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
536 537 538 539 540 541 542 543 544 545 546
            out = seq_conv(seq)
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np,
                        recursive_seq_lens=[[1, 1, 1]],
                        place=place)
                },
                fetch_list=[out],
                with_lod=True)[0]
        self.assertTrue(
547
            np.array_equal(np.array(static_rlt), np.array(static_rlt2)))
548 549 550 551 552 553

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
554 555
                input=img,
                num_filters=10,
556
                filter_size=27,
557 558
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
559 560 561 562 563
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
564
                num_channels=3,
565
                num_filters=10,
566
                filter_size=27,
567 568
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
569 570 571 572 573
            out = conv2d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv2d_transpose = nn.Conv2DTranspose(
574
                num_channels=3,
575
                num_filters=10,
576
                filter_size=27,
577 578
                act='sigmoid',
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
579
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
580
            dy_rlt_value = dy_rlt.numpy()
581
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
582
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt2))
583

584 585 586 587 588 589 590
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv2d1 = nn.Conv2DTranspose(
591
                num_channels=3, num_filters=3, filter_size=[2, 2])
592
            conv2d2 = nn.Conv2DTranspose(
593
                num_channels=3,
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.weight.set_value(conv2d1_weight_np)
            self.assertTrue(
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy()))
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
            self.assertTrue(
                np.array_equal(conv2d1.weight.numpy(), conv2d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv2d1.bias.numpy(), conv2d2.bias.numpy()))

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32')
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2])
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
657 658 659 660 661 662
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
663 664 665 666

            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
667

668 669 670 671 672 673 674 675 676 677 678
        with self.static_graph():
            data_x = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
679
            btp = nn.BilinearTensorProduct(
680 681
                3,
                3,
682 683 684
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
685 686 687 688 689
            out = btp(data_x, data_y)
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out])[0]
        with self.dynamic_graph():
690
            btp = nn.BilinearTensorProduct(
691 692
                3,
                3,
693 694 695
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
                act='sigmoid')
696
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
697
            dy_rlt_value = dy_rlt.numpy()
698
        with self.dynamic_graph():
699
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
700 701
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
702
            dy_rlt2_value = dy_rlt2.numpy()
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
        with self.static_graph():
            data_x2 = layers.data(
                name='x',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            data_y2 = layers.data(
                name='y',
                shape=[1, 3],
                dtype="float32",
                append_batch_size=False)
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid')

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x,
                      'y': inp_np_y}, fetch_list=[out2])[0]

721
        self.assertTrue(np.array_equal(dy_rlt2_value, static_rlt3))
722
        self.assertTrue(np.array_equal(static_rlt2, static_rlt))
723
        self.assertTrue(np.array_equal(dy_rlt_value, static_rlt))
724

725 726 727 728 729
        with self.dynamic_graph():
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
730
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
731
            btp2 = nn.BilinearTensorProduct(
732
                3, 3, 6, act='sigmoid', param_attr=weight_attr)
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y))
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
            self.assertTrue(
                np.array_equal(btp1.weight.numpy(), btp2.weight.numpy()))
            self.assertTrue(
                np.array_equal(btp1.bias.numpy(), btp2.bias.numpy()))

753
    def prelu_test(self, mode):
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0)))
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.static_graph():
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False)
            prelu = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
774
                channel=inp_np.shape[1],
775
                input_shape=data_t.shape,
776 777 778 779 780 781 782 783
                param_attr=ParamAttr(initializer=Constant(1.0)))
            out = prelu(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out])[0]

        with self.dynamic_graph():
            prelu = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
784
                channel=inp_np.shape[1],
785
                input_shape=inp_np.shape,
786 787
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt = prelu(base.to_variable(inp_np))
788
            dy_rlt_value = dy_rlt.numpy()
789 790

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
791
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
792

793 794 795 796 797
        with self.dynamic_graph():
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
            prelu1 = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
798
                channel=inp_np.shape[1],
799
                input_shape=inp_np.shape,
800 801 802
                param_attr=ParamAttr(initializer=Constant(2.0)))
            prelu2 = nn.PRelu(
                mode=mode,
S
songyouwei 已提交
803
                channel=inp_np.shape[1],
804
                input_shape=inp_np.shape,
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
                param_attr=ParamAttr(initializer=Constant(1.0)))
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertTrue(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))

            prelu2.weight = prelu1.weight
            self.assertTrue(
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy()))

820 821 822 823 824
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False)
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb])[0]
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
            emb2 = nn.Embedding(
840
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
841 842 843 844 845
            emb_rlt = emb2(data_t)
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt])[0]
        with self.dynamic_graph():
            emb2 = nn.Embedding(
846
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
847 848
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
849 850

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
851
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
852

853 854 855 856 857
        with self.dynamic_graph():
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
858
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
859
            emb2 = nn.Embedding(
860
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False)
861 862 863 864 865 866 867 868 869 870 871 872 873
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
            self.assertTrue(np.array_equal(emb2.weight.numpy(), custom_weight))
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
            self.assertTrue(np.array_equal(rep1.numpy(), rep2.numpy()))

            emb2.weight = emb1.weight
            self.assertTrue(
                np.array_equal(emb1.weight.numpy(), emb2.weight.numpy()))

874 875 876 877
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
878
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
879 880 881 882 883 884 885
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
886
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
887 888
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
889 890 891 892 893
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

894
                emb = fluid.embedding(
895 896 897 898 899 900 901
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
902
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
903
            nce_loss = layers.nce(input=embs,
904
                                  label=wl,
905 906 907 908 909 910
                                  num_total_classes=dict_size,
                                  num_neg_samples=2,
                                  sampler="custom_dist",
                                  custom_dist=nid_freq_arr.tolist(),
                                  seed=seed,
                                  param_attr='nce.w',
911 912
                                  bias_attr='nce.b',
                                  sample_weight=sample_weights)
913 914 915 916 917 918 919 920 921 922
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss])[0]
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
                    layers.data(
923
                        name='word_{0}'.format(i), shape=[None], dtype='int64'))
924 925
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
926
            emb = nn.Embedding(
927
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
928 929 930 931 932 933 934 935 936 937

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
938 939
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs2.shape[1],
940 941 942 943 944
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
945 946
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
947

948 949
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
950 951 952 953 954 955 956 957 958 959 960
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2])[0]

        with self.dynamic_graph(force_to_use_cpu=True):
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
961 962
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1)
963
            emb = nn.Embedding(
964
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
965 966 967 968 969 970 971 972 973

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

S
songyouwei 已提交
974 975
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1])))
976 977
            nce = nn.NCE(num_total_classes=dict_size,
                         dim=embs3.shape[1],
978 979 980 981 982
                         num_neg_samples=2,
                         sampler="custom_dist",
                         custom_dist=nid_freq_arr.tolist(),
                         seed=seed,
                         param_attr='nce.w',
983 984
                         bias_attr='nce.b',
                         sample_weight=sample_weights)
985

986 987
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
988
            dy_rlt_value = dy_rlt.numpy()
989 990

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
991
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
992

993 994 995 996 997 998 999 1000 1001
        with self.dynamic_graph(force_to_use_cpu=True):
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1002 1003 1004
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
                value=1)
1005
            emb = nn.Embedding(
1006
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False)
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1017 1018
            nce1 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1019 1020 1021 1022 1023 1024 1025 1026
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
                          param_attr='nce1.w',
                          bias_attr='nce1.b',
                          sample_weight=sample_weights)

1027 1028
            nce2 = nn.NCE(num_total_classes=dict_size,
                          dim=embs3.shape[1],
1029 1030 1031 1032
                          num_neg_samples=2,
                          sampler="custom_dist",
                          custom_dist=nid_freq_arr.tolist(),
                          seed=seed,
1033
                          param_attr=weight_attr,
1034 1035 1036
                          bias_attr='nce2.b',
                          sample_weight=sample_weights)

1037 1038 1039
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1040 1041 1042 1043
            self.assertFalse(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1044 1045
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
            self.assertTrue(
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy()))

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
            self.assertTrue(
                np.array_equal(nce1.weight.numpy(), nce2.weight.numpy()))
            self.assertTrue(
                np.array_equal(nce1.bias.numpy(), nce2.bias.numpy()))

S
songyouwei 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    def test_one_hot(self):
        with self.dynamic_graph():
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
                input=label, depth=fluid.dygraph.to_variable(np.array([4])))
            self.assertTrue(
                np.array_equal(one_hot_label1.numpy(), one_hot_label2.numpy()))

    def test_split(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])))
            self.assertTrue(np.array_equal(x0.numpy(), x00.numpy()))
            self.assertTrue(np.array_equal(x1.numpy(), x11.numpy()))

    def test_topk(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
                input, k=fluid.dygraph.to_variable(np.array([5])))
            self.assertTrue(
                np.array_equal(top5_values1.numpy(), top5_values2.numpy()))
            self.assertTrue(
                np.array_equal(top5_indices1.numpy(), top5_indices2.numpy()))

L
lujun 已提交
1087 1088 1089 1090
    def test_conv3d(self):
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
1091
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1092 1093 1094 1095 1096 1097 1098 1099
            static_ret = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32')
1100
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1101 1102 1103 1104 1105 1106 1107 1108
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
                feed={'pixel': np.ones(
                    [2, 3, 6, 6, 6], dtype='float32')},
                fetch_list=[ret])[0]

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1109
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1110
            dy_ret = conv3d(base.to_variable(images))
1111
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1112

1113
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1114 1115
        self.assertTrue(np.allclose(static_ret, static_ret2))

1116 1117 1118 1119 1120 1121
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
1122
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1123
            conv3d2 = nn.Conv3D(
1124 1125 1126 1127
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr)
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

L
lujun 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.row_conv(input=x, future_context_size=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
1186
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place)
L
lujun 已提交
1187
                },
1188 1189
                fetch_list=[ret],
                with_lod=True)[0]
L
lujun 已提交
1190

1191
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_group_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1212 1213 1214 1215 1216 1217
            ret = layers.group_norm(
                input=X,
                groups=2,
                param_attr=fluid.initializer.Uniform(
                    low=-0.5, high=0.5),
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1233 1234 1235 1236 1237 1238
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
                param_attr=fluid.initializer.Uniform(
                    low=-0.5, high=0.5),
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
            ret = groupNorm(X)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1249 1250 1251 1252 1253 1254
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
                param_attr=fluid.initializer.Uniform(
                    low=-0.5, high=0.5),
                bias_attr=fluid.initializer.ConstantInitializer(value=1))
L
lujun 已提交
1255
            dy_ret = groupNorm(base.to_variable(input))
1256
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1257

1258
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1259 1260
        self.assertTrue(np.allclose(static_ret, static_ret2))

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False)
            ret = layers.instance_norm(input=X)
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret])[0]

        with self.static_graph():
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False)
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
            instanceNorm = paddle.nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
        self.assertTrue(np.allclose(static_ret, dy_rlt_value2))
        self.assertTrue(np.allclose(static_ret, static_ret2))

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
                instanceNorm = paddle.nn.InstanceNorm(num_channels=shape[1])
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
                instanceNorm = paddle.nn.InstanceNorm(num_channels=shape[1])
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place),
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.static_graph():
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
1349
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            ret = spectralNorm(Weight)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place)
                },
                fetch_list=[ret],
                with_lod=True)[0]

        with self.dynamic_graph():
1360
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
1361
            dy_ret = spectralNorm(base.to_variable(input))
1362
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1363

1364
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        self.assertTrue(np.allclose(static_ret, static_ret2))

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
1389
            ret = fluid.contrib.layers.tree_conv(
L
lujun 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2)
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.static_graph():
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False)
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False)
            treeConv = nn.TreeConv(
1419
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
            ret = treeConv(NodesVector, EdgeSet)
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place)
                },
                fetch_list=[ret],
                with_lod=False)[0]

        with self.dynamic_graph():
            treeConv = nn.TreeConv(
1433
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
L
lujun 已提交
1434
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
1435
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1436 1437

        self.assertTrue(np.allclose(static_ret, static_ret2))
1438
        self.assertTrue(np.allclose(static_ret, dy_rlt_value))
L
lujun 已提交
1439

1440 1441 1442 1443 1444 1445
        with self.dynamic_graph():
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            treeConv1 = nn.TreeConv(
1446
                feature_size=5,
1447 1448 1449 1450 1451
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b')
            treeConv2 = nn.TreeConv(
1452
                feature_size=5,
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b')
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj))
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
            self.assertTrue(
                np.array_equal(treeConv1.weight.numpy(),
                               treeConv2.weight.numpy()))
            self.assertTrue(
                np.array_equal(treeConv1.bias.numpy(), treeConv2.bias.numpy()))

L
lujun 已提交
1479 1480 1481 1482 1483 1484 1485
    def test_conv3d_transpose(self):
        input_array = np.arange(0, 48).reshape(
            [2, 3, 2, 2, 2]).astype('float32')

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            out = layers.conv3d_transpose(
1486
                input=img, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1487 1488 1489 1490 1491
            static_rlt = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
            conv3d_transpose = nn.Conv3DTranspose(
1492
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1493 1494 1495 1496 1497
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': input_array}, fetch_list=[out])[0]
        with self.dynamic_graph():
            conv3d_transpose = nn.Conv3DTranspose(
1498
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False)
L
lujun 已提交
1499
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
1500
            dy_rlt_value = dy_rlt.numpy()
L
lujun 已提交
1501
        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1502
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
L
lujun 已提交
1503

1504 1505 1506 1507 1508 1509 1510
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight))
            conv3d1 = nn.Conv3DTranspose(
1511
                num_channels=3,
1512 1513 1514 1515 1516
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False)
            conv3d2 = nn.Conv3DTranspose(
1517
                num_channels=3,
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d2.weight.set_value(conv3d1_weight_np)
            self.assertTrue(
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy()))
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertTrue(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
            self.assertTrue(
                np.array_equal(conv3d1.weight.numpy(), conv3d2.weight.numpy()))
            self.assertTrue(
                np.array_equal(conv3d1.bias.numpy(), conv3d2.bias.numpy()))

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
            eye_tensor_rlt1 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[3])
            eye_tensor_rlt2 = layers.eye(num_rows=3,
                                         num_columns=2,
                                         batch_shape=[4, 3])
            diag_tensor = layers.eye(20)
1562 1563 1564 1565 1566 1567 1568 1569
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
        self.assertTrue(np.allclose(eye_tensor_value, np_eye))
        self.assertTrue(np.allclose(eye_tensor_rlt1_value, stack_rlt1))
        self.assertTrue(np.allclose(eye_tensor_rlt2_value, stack_rlt2))
        self.assertTrue(np.allclose(diag_tensor_value, np.eye(20)))
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

H
huangjun12 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    def test_hard_swish(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.hard_swish(t)
            static_ret = self.get_static_graph_result(
                feed={'t': np.ones(
                    [3, 3], dtype='float32')}, fetch_list=[ret])[0]

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.hard_swish(base.to_variable(t))
1591
            dy_ret_rlt = dy_ret.numpy()
H
huangjun12 已提交
1592

1593
        self.assertTrue(np.allclose(static_ret, dy_ret_rlt))
H
huangjun12 已提交
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    def test_while_loop(self):
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            dy_ret = layers.while_loop(cond, body, [i])
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

                layers.while_loop(cond, body2, [j])

        self.assertTrue(np.array_equal(static_ret[0], dy_ret[0].numpy()))

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
            static_ret = self.get_static_graph_result(
                feed={"a": value_a,
                      "b": value_b}, fetch_list=[cond])[0]
        with self.dynamic_graph():
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

1646 1647
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a,
                      "b1": value_b}, fetch_list=[cond1])[0]
        with self.dynamic_graph():
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

        #greater than
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a,
                      "b2": value_b}, fetch_list=[cond2])[0]
        with self.dynamic_graph():
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

        #greater equal
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a,
                      "b3": value_b}, fetch_list=[cond3])[0]
        with self.dynamic_graph():
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a,
                      "b4": value_b}, fetch_list=[cond4])[0]
        with self.dynamic_graph():
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a,
                      "b5": value_b}, fetch_list=[cond5])[0]
        with self.dynamic_graph():
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1)
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23)
            out = fluid.layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                                    lambda: less_than_branch(a, b))
            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
            out = layers.cond(a < b, lambda: less_than_branch(a, b),
                              lambda: greater_equal_branch(a, b))
            out2 = layers.cond(a >= b, lambda: greater_equal_branch(a, b),
                               lambda: less_than_branch(a, b))
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
            self.assertTrue(np.array_equal(dynamic_res, dynamic_res2))
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

        self.assertTrue(np.array_equal(static_res, dynamic_res))

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

        self.assertTrue(np.array_equal(static_res1, dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, dynamic_res2))

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1,
                            2: fn_2},
                default=fn_3)
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3)
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
                fetch_list=[out_1, out_2, out_3])

        with self.dynamic_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1,
                            2: fn_2},
                default=fn_3)
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3)
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

        self.assertTrue(np.array_equal(static_res1, dynamic_res1))
        self.assertTrue(np.array_equal(static_res2, dynamic_res2))
        self.assertTrue(np.array_equal(static_res3, dynamic_res3))

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False)
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False)
            crop_shape1 = (1, 2, 4, 4)
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False)
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False)
            crop_offsets3 = [0, dim1, dim2, 0]

            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3)

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

1898 1899 1900 1901 1902 1903 1904 1905
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0)

        self.assertIsNotNone(shard_label)

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 32, 32).astype("float32")
            y = np.array([[1], [0], [1]])
            static_out = exe.run(feed={"input": x,
                                       "label": y},
                                 fetch_list=result[0])

        with self.dynamic_graph():
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

        self.assertTrue(np.array_equal(static_out[0], dynamic_out.numpy()))

Y
Yu Yang 已提交
1934

1935
class TestBook(LayerTest):
H
hong 已提交
1936 1937 1938 1939 1940 1941 1942 1943
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
        self.not_compare_static_dygraph_set = set({
            "make_gaussian_random", "make_gaussian_random_batch_size_like",
            "make_kldiv_loss", "make_prelu",
            "make_sampled_softmax_with_cross_entropy", "make_sampling_id",
            "make_uniform_random_batch_size_like"
        })
1944
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
1945

1946 1947 1948 1949 1950 1951
    def test_all_layers(self):
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1952 1953 1954
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
                        force_to_use_cpu=self._force_to_use_cpu)
H
hong 已提交
1968

1969 1970 1971
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
1972 1973
            if method.__name__ in self.only_static_set:
                continue
1974 1975 1976 1977 1978

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
1979
                dy_result_value = dy_result.numpy()
1980

1981 1982 1983 1984 1985 1986 1987 1988
            if method.__name__ in self.all_close_compare:
                self.assertTrue(
                    np.allclose(
                        static_result[0], dy_result_value, atol=0, rtol=1e-05),
                    "Result of function [{}] compare failed".format(
                        method.__name__))
                continue

H
hong 已提交
1989 1990
            if method.__name__ not in self.not_compare_static_dygraph_set:
                self.assertTrue(
1991 1992
                    np.array_equal(static_result[0], dy_result_value),
                    "Result of function [{}] not equal".format(method.__name__))
1993 1994 1995 1996

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
1997
            shape = [self._batch_size] + shape
1998 1999 2000 2001 2002
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
M
minqiyang 已提交
2003 2004
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2005
        elif dtype == 'int64':
M
minqiyang 已提交
2006 2007
            return np.random.randint(self._low_data_bound,
                                     self._high_data_bound, shape).astype(dtype)
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

    def _get_data(self,
                  name,
                  shape,
                  dtype,
                  set_feed_dict=True,
                  append_batch_size=True):
        if base.enabled():
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
2018 2019
                name=name,
                zero_copy=False)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        else:
            if set_feed_dict:
                self._feed_dict[name] = self._get_np_data(shape, dtype,
                                                          append_batch_size)
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size)

    def make_sampled_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2033
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
2034
            label = self._get_data(name='Label', shape=[1], dtype='int64')
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
            num_samples = 25
            output = layers.sampled_softmax_with_cross_entropy(logits, label,
                                                               num_samples)
            return (output)

    def make_fit_a_line(self):
        with program_guard(
                fluid.default_main_program(),
                startup_program=fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
2045
            y_predict = layers.fc(input=x, size=1, act=None)
2046
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
2047
            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
2048
            avg_cost = layers.mean(cost)
2049
            return (avg_cost)
Y
Yu Yang 已提交
2050

2051 2052 2053
    def make_recognize_digits_mlp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
2054
            # Change g_program, so the rest layers use `g_program`
2055 2056
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2057 2058
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
2059 2060 2061 2062
            predict = layers.fc(input=[hidden2, hidden1],
                                size=10,
                                act='softmax',
                                param_attr=["sftmax.w1", "sftmax.w2"])
Y
Yu Yang 已提交
2063
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
2064
            avg_cost = layers.mean(cost)
2065
            return (avg_cost)
Y
Yu Yang 已提交
2066

2067 2068 2069 2070 2071 2072
    def make_conv2d_transpose(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28)
2073

2074 2075 2076 2077
    def make_recognize_digits_conv(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            images = self._get_data(
Y
Yu Yang 已提交
2078
                name='pixel', shape=[1, 28, 28], dtype='float32')
2079
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu")
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu")

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
2097
            avg_cost = layers.mean(cost)
2098
            return avg_cost
Y
Yu Yang 已提交
2099

2100 2101 2102
    def make_word_embedding(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
Y
Yu Yang 已提交
2103 2104
            dict_size = 10000
            embed_size = 32
2105 2106 2107 2108 2109 2110
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64')
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w')

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
                axis=1)

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
            predict_word = layers.fc(input=hidden1,
                                     size=dict_size,
                                     act='softmax')
            cost = layers.cross_entropy(input=predict_word, label=next_word)
Y
Yu Yang 已提交
2143
            avg_cost = layers.mean(cost)
2144
            return (avg_cost)
Y
Yu Yang 已提交
2145

2146 2147 2148 2149 2150
    def make_sigmoid_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
2151
            ignore_index = -1
2152 2153 2154 2155 2156 2157 2158 2159 2160
            return (layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index))

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
            return (layers.hsigmoid(input=x, label=y, num_classes=2))
W
weixing02 已提交
2161

J
JiabinYang 已提交
2162
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
2163 2164
        program2 = Program()
        with program_guard(program2):
2165 2166 2167
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
            path_table = self._get_data(
2168
                name='path_table', shape=[4, 6], dtype='int64')
2169
            path_code = self._get_data(
2170
                name='path_code', shape=[4, 6], dtype='int64')
2171 2172 2173 2174 2175 2176 2177
            return (layers.hsigmoid(
                input=x2,
                label=y2,
                num_classes=6,
                path_table=path_table,
                path_code=path_code,
                is_custom=True))
J
JiabinYang 已提交
2178

2179 2180 2181 2182 2183 2184 2185
    def make_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

K
Kaipeng Deng 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
    def make_pool2d_infershape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
            x = fluid.layers.affine_grid(theta, out_shape=[2, 3, 244, 244])
            return (layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)))

    def make_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32')
            return (layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1)))

2205 2206 2207 2208 2209
    def make_adaptive_pool2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
            return (layers.adaptive_pool2d(x, [3, 3], pool_type='avg'))
D
dengkaipeng 已提交
2210
            pool, mask = layers.adaptive_pool2d(x, [3, 3], require_index=True)
2211 2212 2213
            return (pool)
            return (mask)
            return (layers.adaptive_pool2d(x, 3, pool_type='avg'))
2214
            pool, mask = layers.adaptive_pool2d(x, 3, require_index=True)
2215 2216 2217 2218 2219 2220 2221 2222 2223
            return (pool)
            return (mask)

    def make_adaptive_pool3d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
                name='x', shape=[3, 244, 224, 224], dtype='float32')
            return (layers.adaptive_pool3d(x, [3, 3, 3], pool_type='avg'))
D
dengkaipeng 已提交
2224 2225
            pool, mask = layers.adaptive_pool3d(
                x, [3, 3, 3], require_index=True)
2226 2227 2228
            return (pool)
            return (mask)
            return (layers.adaptive_pool3d(x, 3, pool_type='avg'))
2229
            pool, mask = layers.adaptive_pool3d(x, 3, require_index=True)
2230 2231
            return (pool)
            return (mask)
2232

2233 2234 2235 2236
    def make_lstm_unit(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x_t_data = self._get_data(
Y
yangyaming 已提交
2237 2238
                name='x_t_data', shape=[10, 10], dtype='float32')
            x_t = layers.fc(input=x_t_data, size=10)
2239
            prev_hidden_data = self._get_data(
Y
yangyaming 已提交
2240 2241
                name='prev_hidden_data', shape=[10, 30], dtype='float32')
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
2242
            prev_cell_data = self._get_data(
Y
yangyaming 已提交
2243 2244
                name='prev_cell', shape=[10, 30], dtype='float32')
            prev_cell = layers.fc(input=prev_cell_data, size=30)
2245 2246
            return (layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell))
2247

2248 2249 2250 2251
    def make_softmax(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
2252
            hid = layers.fc(input=data, size=20)
2253
            return (layers.softmax(hid, axis=1))
D
dangqingqing 已提交
2254

2255 2256 2257 2258
    def make_space_to_depth(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
J
JiabinYang 已提交
2259
                name='data',
J
JiabinYang 已提交
2260 2261 2262
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32')
2263
            return (layers.space_to_depth(data, 3))
J
JiabinYang 已提交
2264

2265 2266 2267 2268 2269
    def make_lrn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
            return (layers.lrn(data))
2270

2271 2272 2273 2274
    def make_get_places(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            get_places(device_count=1)
X
xuezhong 已提交
2275

2276
    @prog_scope()
2277
    def make_nce(self):
Y
Yang Yu 已提交
2278 2279
        window_size = 5
        words = []
2280
        for i in range(window_size):
Y
Yang Yu 已提交
2281
            words.append(
2282
                self._get_data(
Y
Yang Yu 已提交
2283 2284 2285
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

        dict_size = 10000
M
minqiyang 已提交
2286
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
2287 2288

        embs = []
2289
        for i in range(window_size):
Y
Yang Yu 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
            if i == label_word:
                continue

            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True)

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
        loss = layers.nce(input=embs,
                          label=words[label_word],
                          num_total_classes=dict_size,
                          param_attr='nce.w',
                          bias_attr='nce.b')
Y
Yu Yang 已提交
2307
        avg_loss = layers.mean(loss)
2308
        return (avg_loss)
Y
Yang Yu 已提交
2309

2310 2311 2312 2313 2314 2315
    def make_multiplex(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
2316
            out = layers.multiplex(inputs=[x1, x2], index=index)
2317 2318 2319 2320 2321 2322 2323
            return (out)

    def make_softmax_with_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
2324 2325
            loss, softmax = layers.softmax_with_cross_entropy(
                x, y, return_softmax=True)
2326 2327 2328
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

2329
            loss = layers.softmax_with_cross_entropy(x, y)
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
            return (loss4)
2345 2346 2347 2348 2349 2350

    def make_smooth_l1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
2351
            loss = layers.smooth_l1(x, y)
2352
            return (loss)
2353

2354 2355 2356 2357
    def make_scatter(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
2358 2359 2360 2361
                name='x',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
2362
            idx = self._get_data(
2363
                name='idx', shape=[2], append_batch_size=False, dtype='int32')
2364
            updates = self._get_data(
2365 2366 2367 2368 2369
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')
            out = layers.scatter(input=x, index=idx, updates=updates)
2370
            return (out)
Y
yangyaming 已提交
2371

2372 2373 2374 2375 2376 2377
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            return (one_hot_label)

2378 2379 2380 2381 2382
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
2383 2384
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
2385 2386
                label=one_hot_label, epsilon=0.1, dtype="int32")
            return (smooth_label)
2387

2388 2389 2390 2391 2392 2393 2394
    def make_topk(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
            return (values)
            return (indices)
J
jerrywgz 已提交
2395

2396 2397 2398 2399
    def make_resize_bilinear(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
2400
            output = layers.resize_bilinear(x, out_shape=[12, 12])
2401
            return (output)
K
Kaipeng Deng 已提交
2402 2403 2404 2405 2406 2407

    def make_resize_bilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
2408
            return (output)
2409

2410
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

2428 2429 2430
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
2431
            output = layers.resize_nearest(x, out_shape=[12, 12])
2432
            return (output)
K
Kaipeng Deng 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

    def make_resize_nearest_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
            return (output)

    def make_resize_trilinear(self):
        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
            with program_guard(fluid.default_main_program(),
                               fluid.default_startup_program()):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
            return (output)

    def make_resize_trilinear_by_scale(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
2470
            return (output)
2471

2472 2473 2474 2475
    def make_polygon_box_transform(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
2476
            output = layers.polygon_box_transform(input=x)
2477
            return (output)
2478

2479 2480 2481 2482
    def make_l2_normalize(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
2483
            output = layers.l2_normalize(x, axis=1)
2484
            return output
2485

2486 2487 2488 2489
    def make_maxout(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[8, 6, 6], dtype="float32")
Q
qingqing01 已提交
2490
            output = layers.maxout(x=data, groups=2)
2491 2492 2493 2494 2495 2496 2497
            return (output)

    def make_crop(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
2498
            output = layers.crop(x, shape=y)
2499 2500 2501 2502 2503
            return (output)

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
2504 2505
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
2506
            return (iou)
W
whs 已提交
2507

2508 2509 2510 2511
    def make_argsort(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
2512
            out, ids = layers.argsort(input=data, axis=1)
2513 2514 2515 2516 2517 2518 2519
            return (out)
            return (ids)

    def make_rank_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            label = self._get_data(
2520 2521 2522 2523
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
2524
            left = self._get_data(
2525 2526 2527 2528
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
2529
            right = self._get_data(
2530 2531 2532 2533 2534
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32")
            out = layers.rank_loss(label, left, right, name="rank_loss")
2535
            return (out)
2536

2537 2538 2539 2540
    def make_shape(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
B
Bai Yifan 已提交
2541
                name="input", shape=[3, 100, 100], dtype="float32")
G
fix  
gongweibao 已提交
2542
            out = layers.shape(input)
2543
            return (out)
B
Bai Yifan 已提交
2544

2545 2546 2547 2548
    def make_pad2d(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
W
whs 已提交
2549
                name="input", shape=[3, 100, 100], dtype="float32")
2550
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
W
whs 已提交
2551 2552 2553 2554 2555 2556
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape")
2557 2558 2559 2560 2561 2562
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape")
2563 2564
            return (out)
            return (out_1)
W
whs 已提交
2565

2566 2567 2568 2569
    def make_prelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
J
jerrywgz 已提交
2570 2571 2572 2573 2574 2575 2576
                name="input", shape=[5, 200, 100, 100], dtype="float32")
            mode = 'channel'
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu')
2577
            return (out)
J
jerrywgz 已提交
2578

2579 2580 2581 2582
    def make_brelu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2583
            out = layers.brelu(input, t_min=1.0, t_max=20.0, name='brelu')
2584
            return (out)
T
tensor-tang 已提交
2585

2586 2587 2588 2589
    def make_leaky_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2590
            out = layers.leaky_relu(input, alpha=0.1, name='leaky_relu')
2591
            return (out)
T
tensor-tang 已提交
2592

2593 2594 2595 2596
    def make_soft_relu(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2597
            out = layers.soft_relu(input, threshold=30.0, name='soft_relu')
2598
            return (out)
T
tensor-tang 已提交
2599

2600 2601 2602 2603
    def make_sigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2604
            out = layers.sigmoid(input, name='sigmoid')
2605
            return (out)
T
tensor-tang 已提交
2606

2607 2608 2609 2610
    def make_logsigmoid(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2611
            out = layers.logsigmoid(input, name='logsigmoid')
2612
            return (out)
T
tensor-tang 已提交
2613

2614 2615 2616 2617
    def make_exp(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2618
            out = layers.exp(input, name='exp')
2619
            return (out)
T
tensor-tang 已提交
2620

2621 2622 2623 2624
    def make_tanh(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2625
            out = layers.tanh(input, name='tanh')
2626
            return (out)
T
tensor-tang 已提交
2627

2628 2629 2630 2631
    def make_tanh_shrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2632
            out = layers.tanh_shrink(input, name='tanh_shrink')
2633
            return (out)
T
tensor-tang 已提交
2634

2635 2636 2637 2638
    def make_sqrt(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2639
            out = layers.sqrt(input, name='sqrt')
2640
            return (out)
T
tensor-tang 已提交
2641

2642 2643 2644 2645
    def make_abs(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2646
            out = layers.abs(input, name='abs')
2647
            return (out)
T
tensor-tang 已提交
2648

2649 2650 2651 2652
    def make_ceil(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2653
            out = layers.ceil(input, name='ceil')
2654
            return (out)
T
tensor-tang 已提交
2655

2656 2657 2658 2659
    def make_floor(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2660
            out = layers.floor(input, name='floor')
2661
            return (out)
T
tensor-tang 已提交
2662

2663 2664 2665 2666
    def make_cos(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2667
            out = layers.cos(input, name='cos')
2668
            return (out)
T
tensor-tang 已提交
2669

2670 2671 2672 2673
    def make_sin(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2674
            out = layers.sin(input, name='sin')
2675
            return (out)
T
tensor-tang 已提交
2676

2677 2678 2679 2680
    def make_round(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2681
            out = layers.round(input, name='round')
2682
            return (out)
T
tensor-tang 已提交
2683

2684 2685 2686 2687
    def make_reciprocal(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2688
            out = layers.reciprocal(input, name='reciprocal')
2689
            return (out)
T
tensor-tang 已提交
2690

2691 2692 2693 2694
    def make_square(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2695
            out = layers.square(input, name='square')
2696
            return (out)
T
tensor-tang 已提交
2697

2698 2699 2700 2701
    def make_softplus(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2702
            out = layers.softplus(input, name='softplus')
2703
            return (out)
T
tensor-tang 已提交
2704

2705 2706 2707 2708
    def make_softsign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
2709
            out = layers.softsign(input, name='softsign')
2710
            return (out)
T
tensor-tang 已提交
2711

2712 2713 2714 2715 2716
    def make_cross_entropy(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2717 2718
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
2719
            return (out)
2720

2721 2722 2723 2724 2725
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
2726
            out = layers.bpr_loss(x, label)
2727
            return (out)
2728

2729 2730 2731 2732
    def make_expand(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
2733
            out = layers.expand(x, [1, 2])
2734
            return out
W
whs 已提交
2735

2736 2737 2738 2739 2740
    def make_uniform_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2741
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
2742
            return (out)
G
fix  
gongweibao 已提交
2743

2744 2745 2746
    def make_gaussian_random(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
G
fix  
gongweibao 已提交
2747
            out = layers.gaussian_random(shape=[20, 30])
2748
            return (out)
G
fix  
gongweibao 已提交
2749

2750 2751 2752 2753
    def make_sampling_id(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(
G
fix  
gongweibao 已提交
2754 2755 2756 2757
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)
G
fix  
gongweibao 已提交
2758 2759

            out = layers.sampling_id(x)
2760
            return (out)
G
fix  
gongweibao 已提交
2761

2762 2763 2764 2765 2766
    def make_gaussian_random_batch_size_like(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2767 2768 2769

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
2770
            return (out)
G
fix  
gongweibao 已提交
2771

2772 2773 2774 2775 2776
    def make_sum(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32')
G
fix  
gongweibao 已提交
2777 2778

            out = layers.sum(input)
2779
            return (out)
G
fix  
gongweibao 已提交
2780

2781
    def make_slice(self):
G
fix  
gongweibao 已提交
2782 2783 2784 2785
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

2786 2787 2788
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
G
fix  
gongweibao 已提交
2789 2790 2791
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
2792
            return out
G
merge  
gongweibao 已提交
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
    def make_scale_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False)

            out = layers.scale(input, scale=scale_var)
            return out

2808 2809 2810 2811
    def make_softshrink(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = self._get_data(name="input", shape=[16], dtype="float32")
2812
            out = layers.softshrink(input, alpha=0.3)
2813
            return (out)
G
fix  
gongweibao 已提交
2814

M
minqiyang 已提交
2815
    def make_iou_similarity(self):
2816 2817
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2818 2819
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
2820
            out = layers.iou_similarity(x, y, name='iou_similarity')
2821 2822 2823 2824 2825 2826 2827
            return (out)

    def make_grid_sampler(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
2828
            out = layers.grid_sampler(x, grid)
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
            return (out)

    def make_bilinear_tensor_product_layer(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
            return (out)

    def make_batch_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.batch_norm(data)
            return (out)

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
    def make_batch_norm_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False)
            out = layers.batch_norm(data, momentum=momentum)
            return (out)

K
Kaipeng Deng 已提交
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
    def make_inplace_abn(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
            return (out)

    def make_inplace_abn_momentum_variable(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32")
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False)
            out = layers.inplace_abn(
                data, momentum=momentum, act='elu', act_alpha=2.0)
            return (out)

2883 2884 2885 2886
    def make_range(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            layers.range(0, 10, 2, 'int32')
2887 2888 2889 2890 2891 2892
            layers.range(0.1, 10.0, 0.2, 'float32')
            layers.range(0.1, 10.0, 0.2, 'float64')
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
            y = layers.range(start, end, step, 'float64')
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
            return y

    def make_spectral_norm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False)
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
            return (out)

    def make_kldiv_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
M
minqiyang 已提交
2909 2910 2911 2912 2913
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
2914
            target = self._get_data(
M
minqiyang 已提交
2915 2916 2917 2918
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False)
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
            return (loss)

    def make_temporal_shift(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
            return (out)

    def make_shuffle_channel(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
            return (out)

M
minqiyang 已提交
2936
    def make_fsp_matrix(self):
2937 2938 2939 2940 2941 2942 2943
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
            return (out)

M
minqiyang 已提交
2944 2945 2946 2947 2948 2949 2950
    def make_pixel_shuffle(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
            return (out)

R
ruri 已提交
2951 2952 2953 2954 2955 2956 2957 2958
    def make_mse_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
            return (out)

2959 2960 2961 2962 2963 2964 2965 2966
    def make_square_error_cost(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
            return (out)

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim))

    def test_linear_chain_crf(self):
        with self.static_graph():
            label_dict_len = 10
2981 2982 2983
            feature = layers.data(name='feature', shape=[784], dtype='float32')
            label = layers.data(name='label', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10)
2984
            crf = layers.linear_chain_crf(
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
                input=emission, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = layers.crf_decoding(
                input=emission, param_attr=ParamAttr(name="crfw"))
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_linear_chain_crf_padding(self):
        with self.static_graph():
            label_dict_len, max_len = 10, 20
            feature = layers.data(
                name='feature', shape=[max_len, 784], dtype='float32')
            label = layers.data(name='label', shape=[max_len], dtype='int64')
            length = layers.data(name='length', shape=[1], dtype='int64')
            emission = layers.fc(input=feature, size=10, num_flatten_dims=2)
            crf = layers.linear_chain_crf(
                input=emission,
                label=label,
                length=length,
                param_attr=ParamAttr(name="crfw"))
3009
            crf_decode = layers.crf_decoding(
3010 3011 3012
                input=emission,
                length=length,
                param_attr=ParamAttr(name="crfw"))
3013 3014 3015 3016 3017
            self.assertFalse(crf is None)
            self.assertFalse(crf_decode is None)
            return layers.chunk_eval(
                input=crf_decode,
                label=label,
3018
                seq_length=length,
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) // 2)

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1])
            return (output)

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
3038
            # case 1
3039 3040 3041
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
3042 3043 3044
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
3045
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
3046 3047 3048 3049 3050 3051
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
3052

W
whs 已提交
3053
    def test_affine_grid(self):
3054
        with self.static_graph():
W
whs 已提交
3055 3056 3057 3058
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
3059
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
W
whs 已提交
3060 3061 3062 3063 3064
            data_0 = layers.affine_grid(theta, out_shape)
            data_1 = layers.affine_grid(theta, [5, 3, 28, 28])

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
3065

W
wangchaochaohu 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides)
            return out

3077 3078 3079 3080 3081 3082 3083 3084
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64')
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64')
            return out

3085 3086 3087 3088 3089 3090 3091 3092
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
            return (output)
3093

3094 3095 3096 3097 3098 3099 3100
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2)
            return (layers.sequence_expand(x=x, y=y, ref_level=1))
3101

3102 3103 3104 3105 3106 3107
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
            return (out)
3108

3109 3110 3111 3112
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
3113
            length = layers.data(name='length', shape=[], dtype='int64')
3114
            return (layers.sequence_unpad(x=x, length=length))
3115

3116 3117 3118 3119 3120 3121 3122
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1)
            seq = layers.fc(input=seq_data, size=20)
            return (layers.sequence_softmax(seq))
3123

3124 3125 3126 3127 3128 3129
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
            return (out)
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(
                name='x',
                shape=[3, 6],
                append_batch_size=False,
                dtype='float32')
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1)
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1)
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
            return (out)
W
whs 已提交
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1)
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length)
            return (out)
W
whs 已提交
3165

J
Jiawei Wang 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x1 = layers.data(
                name='Ins', shape=[32, 1], dtype='float32', lod_level=0)
            x2 = layers.data(
                name='Ins_tag',
                shape=[32, 1],
                dtype='int64',
                lod_level=0,
                stop_gradient=True)
            x3 = layers.create_global_var(
                shape=[1, 1],
                value=20,
                dtype='int64',
                persistable=True,
                force_cpu=True,
                name='Filter_tag')
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0)
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            return (out1)

3198 3199 3200 3201 3202 3203 3204 3205
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2)
            return (sum)

S
ShenLiang 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                act="relu")
        return (out)

S
ShenLiang 已提交
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32")
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
                    initializer=fluid.initializer.Xavier(uniform=False)),
                max_rank=3)
            return (out)

3240 3241 3242 3243 3244 3245
    def test_roi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
F
FDInSky 已提交
3246 3247 3248
            rois_lod = layers.data(
                name="rois_lod", shape=[None, ], dtype="int", lod_level=1)
            output = layers.roi_pool(x, rois, 7, 7, 0.6, rois_lod)
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
            return (output)

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1)
F
FDInSky 已提交
3263 3264 3265 3266
            rois_lod = layers.data(
                name="rois_lod", shape=[None, ], dtype="int", lod_level=1)
            output = layers.roi_align(x, rois, 14, 14, 0.5, 2, 'roi_align',
                                      rois_lod)
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
            return (output)

    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1)
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
            return (output)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
            return (out)

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32')
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4])

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
            return (out)

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32")
            out = layers.flatten(x, axis=1, name="flatten")
            return (out)
3310

Z
zhoukunsheng 已提交
3311 3312 3313 3314 3315 3316 3317
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

3318
    def test_deformable_conv(self):
3319
        with self.static_graph():
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            mask = layers.data(
                name='mask',
                append_batch_size=False,
                shape=[2, 9, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)

    def test_deformable_conv2(self):
        with self.static_graph():
            input = fluid.data(
                name='input', shape=[None, 3, None, None], dtype="float32")
            offset = fluid.data(
                name='offset', shape=[None, 18, None, None], dtype="float32")
            mask = fluid.data(
                name='mask', shape=[None, 9, None, None], dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
3356 3357 3358 3359
                num_filters=2,
                filter_size=3,
                padding=1)
            return (out)
3360

3361 3362 3363 3364 3365 3366
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
            return (out)

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1)
            return concat1, concat2

C
cjt222 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
    def test_deform_roi_pooling(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1)
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False)
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1)
        return (out)

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
    def test_deformable_conv_v1(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input',
                append_batch_size=False,
                shape=[2, 3, 32, 32],
                dtype="float32")
            offset = layers.data(
                name='offset',
                append_batch_size=False,
                shape=[2, 18, 32, 32],
                dtype="float32")
            out = layers.deformable_conv(
                input=input,
                offset=offset,
                mask=None,
                num_filters=2,
                filter_size=3,
                padding=1,
                modulated=False)
            return (out)

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
    def test_retinanet_target_assign(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32')
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32')
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32')
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
3461
                dtype='int32')
3462 3463 3464 3465
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
3466
                dtype='int32')
3467 3468 3469 3470 3471 3472 3473 3474 3475
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            return (layers.retinanet_target_assign(
                bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes,
                gt_labels, is_crowd, im_info, 10))

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
    def test_sigmoid_focal_loss(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32')
            fg_num = layers.data(
                name='fg_num',
                shape=[1],
                append_batch_size=False,
                dtype='int32')
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2., alpha=0.25)
            return (out)

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
    def test_addmm(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32')
            x = layers.data(
                name='x',
                shape=[3, 2],
                append_batch_size=False,
                dtype='float32')
            y = layers.data(
                name='y',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32')

            out = paddle.addmm(input=input, x=x, y=y)
            return (out)

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
    def test_retinanet_detection_output(self):
        with program_guard(fluid.default_main_program(),
                           fluid.default_startup_program()):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32')
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32')
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32')
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
                nms_eta=1.)
            return (nmsed_outs)

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64')
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64')
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32')
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length)
            return (output)

3572 3573 3574 3575 3576 3577 3578 3579 3580
    def test_edit_distance(self):
        with self.static_graph():
            predict = layers.data(
                name='predict', shape=[-1, 1], dtype='int64', lod_level=1)
            label = layers.data(
                name='label', shape=[-1, 1], dtype='int64', lod_level=1)
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32')
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32')
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32')

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
                        batch_first=batch_first)

Y
Yu Yang 已提交
3604 3605 3606

if __name__ == '__main__':
    unittest.main()