distribute_transpiler.py 116.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
tianshuo78520a 已提交
17
2. rename split grad variables to add trainer_id suffix ".trainer_%d".
18
3. modify trainer program add split_op to each grad variable.
T
tianshuo78520a 已提交
19 20 21
4. append send_op to send split variables to server and
5. add recv_op to fetch params(split blocks or origin param) from server.
6. append concat_op to merge split blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

1
123malin 已提交
31
import os
T
tangwei12 已提交
32
import sys
T
typhoonzero 已提交
33
import math
T
tangwei12 已提交
34 35
from functools import reduce

36
import collections
Q
Qiao Longfei 已提交
37
import logging
38

T
tangwei12 已提交
39 40
import numpy as np

41
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
42
from .. import core, framework, unique_name, initializer
43 44 45 46 47 48 49 50
from ..framework import (
    Program,
    default_main_program,
    default_startup_program,
    Block,
    Parameter,
    grad_var_name,
)
T
tangwei12 已提交
51 52
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
53
from ..distribute_lookup_table import find_distributed_lookup_table
54
from . import collective
55

56 57
LOOKUP_TABLE_TYPE = ["lookup_table", "lookup_table_v2"]
LOOKUP_TABLE_GRAD_TYPE = ["lookup_table_grad", "lookup_table_v2_grad"]
C
Chengmo 已提交
58 59
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
60
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
61 62 63
RPC_OP_ROLE_ATTR_NAME = (
    op_role_attr_name
) = core.op_proto_and_checker_maker.kOpRoleAttrName()
X
fix  
Xin Pan 已提交
64
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
65
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
66 67 68 69 70 71
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


1
123malin 已提交
72 73 74 75 76 77 78
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


79 80 81
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
82 83


T
typhoonzero 已提交
84 85 86 87 88 89
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
90

T
typhoonzero 已提交
91 92
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
93 94


95 96 97 98
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
99
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
100
    """
101 102 103 104 105 106
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
107
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
108 109 110

    Args:
        var_list (list): List of variables.
111 112
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
T
tianshuo78520a 已提交
113
        min_block_size (int): Minimum split block size.
114
    Returns:
115
        blocks (list[(varname, block_id, current_block_size)]): A list
116
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
117 118 119
    """
    blocks = []
    for var in var_list:
120
        split_count = slice_count
T
typhoonzero 已提交
121 122 123 124
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
125
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
126 127 128 129 130 131 132 133 134
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
135
        # update split_count after aligning
T
typhoonzero 已提交
136
        split_count = int(math.ceil(var_numel / float(block_size)))
137
        for block_id in range(split_count):
138 139 140
            curr_block_size = min(
                block_size, var_numel - ((block_id) * block_size)
            )
T
typhoonzero 已提交
141 142 143 144 145
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


146
class DistributeTranspilerConfig:
G
gongweibao 已提交
147
    """
148
        :api_attr: Static Graph
S
swtkiwi 已提交
149

150
    A configuration class that provide support for transpiler distributed jobs.
151 152 153
    Some important parameters are explained as follows:


H
haowang101779990 已提交
154 155
    .. py:attribute:: slice_var_up (bool)

156
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
157 158 159

    .. py:attribute:: split_method (PSDispatcher)

160 161 162 163
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
164 165 166

    .. py:attribute:: min_block_size (int)

T
tianshuo78520a 已提交
167
          Minimum number of split elements in block, default is 8192.
H
haowang101779990 已提交
168 169

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
tianshuo78520a 已提交
170
          We can use bandwidth efficiently when data size is larger than 2MB.If you
171 172 173 174
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
175

176 177 178
    Examples:
        .. code-block:: python

179 180 181
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

182 183
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
184 185
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
186 187 188 189 190
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
191
    enable_dc_asgd = False
192
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
193
    mode = "pserver"
194
    print_log = False
W
Wu Yi 已提交
195
    wait_port = True
Q
Qiao Longfei 已提交
196
    # split the send recv var in runtime
1
123malin 已提交
197 198
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
199

200 201
    # half_async
    half_async = False
T
tangwei12 已提交
202
    completely_not_async = False
203

204 205 206 207
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

208
    nccl_comm_num = 1
209 210
    # The picture here illustrates the principle:
    # https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
211
    use_hierarchical_allreduce = False
212
    # Nccl ranks in a node when use hierarchical allreduce, it's set to gpu cards' number in most cases.
213 214
    hierarchical_allreduce_inter_nranks = 0

215
    # if mode is collective
216
    # supported modes: grad_allreduce, local_sgd
217 218
    collective_mode = None

219 220 221 222 223
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
224
        return self.__runtime_split_send_recv
225 226 227 228 229

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
230
        if value and self.__sync_mode:
231 232 233
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
234
        self.__runtime_split_send_recv = value
235 236 237

    @property
    def sync_mode(self):
1
123malin 已提交
238
        return self.__sync_mode
239 240 241 242 243

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
244
        if value and self.__runtime_split_send_recv:
245 246 247
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
248 249 250
        self.__sync_mode = value


251
class ServerRuntimeConfig:
1
123malin 已提交
252 253
    def __init__(self):
        self._rpc_send_thread_num = int(
254 255
            os.getenv("FLAGS_rpc_send_thread_num", "12")
        )
1
123malin 已提交
256
        self._rpc_get_thread_num = int(
257 258
            os.getenv("FLAGS_rpc_get_thread_num", "12")
        )
1
123malin 已提交
259
        self._rpc_prefetch_thread_num = int(
260 261
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12")
        )
262

G
gongweibao 已提交
263

264
class DistributeTranspiler:
Y
yi.wu 已提交
265
    """
266
        :api_attr: Static Graph
S
swtkiwi 已提交
267

Y
yi.wu 已提交
268 269 270
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
271
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
272

W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
282 283 284 285

    Examples:
        .. code-block:: python

286 287 288 289 290
            import paddle
            import paddle.fluid as fluid

            paddle.enable_static()

2
201716010711 已提交
291
            x = fluid.data(name='x', shape=[1,13], dtype='float32')
292
            y = fluid.data(name='y', shape=[1], dtype='float32')
293 294
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

295
            cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
2
201716010711 已提交
296
            avg_loss = paddle.mean(cost)
297 298 299 300

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
301 302 303 304 305 306
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
307
            role = "PSERVER"
T
Tink_Y 已提交
308 309 310 311 312 313
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
314
                                                                pserver_program)
T
Tink_Y 已提交
315 316 317 318
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
319 320
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
321 322
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
323
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
324
            t = fluid.DistributeTranspiler(config=config)
325
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
326
            exe = fluid.ParallelExecutor(
327 328 329
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
330 331
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
332
    """
Y
Yancey1989 已提交
333

G
gongweibao 已提交
334 335 336 337 338
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
339
        self._set_server_config()
G
gongweibao 已提交
340 341 342 343

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

T
tangwei12 已提交
344
        if self.config.sync_mode or self.config.completely_not_async:
1
123malin 已提交
345 346 347 348 349 350
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

351 352 353
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
354 355
        assert self.config.min_block_size >= 8192
        assert self.config.split_method.__bases__[0] == PSDispatcher
1
123malin 已提交
356
        self.counter_var = None
G
gongweibao 已提交
357

1
123malin 已提交
358 359 360 361 362 363 364 365 366 367
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

368 369 370 371 372 373 374 375
    def _transpile_nccl2(
        self,
        trainer_id,
        trainers,
        current_endpoint,
        startup_program=None,
        wait_port=True,
    ):
W
Wu Yi 已提交
376 377 378 379 380 381
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
382 383
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
384 385

            nccl_id_var = startup_program.global_block().create_var(
386 387
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW
            )
388 389 390 391 392

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
393 394
                    type=core.VarDesc.VarType.RAW,
                )
395 396 397

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
398 399 400
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
401 402
                        type=core.VarDesc.VarType.RAW,
                    )
403 404 405
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
406 407
                        type=core.VarDesc.VarType.RAW,
                    )
408

W
Wu Yi 已提交
409 410 411 412 413
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
414 415 416 417 418 419 420
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce": self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks": self.config.hierarchical_allreduce_inter_nranks,
                },
            )
W
Wu Yi 已提交
421 422 423 424
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

425 426 427 428 429 430 431 432 433 434
    def _transpile_collective(
        self,
        collective_mode,
        trainer_id,
        trainers,
        current_endpoint,
        startup_program=None,
        main_program=None,
        wait_port=True,
    ):
435 436 437 438
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
439
        elif collective_mode != "single_process_multi_thread":
440 441
            raise ValueError('invalid trainers config: ' + str(trainers))

442 443 444 445
        if (
            len(endpoints) == 1
            and collective_mode != "single_process_multi_thread"
        ):
446 447 448 449 450 451 452 453 454 455
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
456
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
457
        elif collective_mode == 'local_sgd':
458
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
459 460
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
461 462 463
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

464 465 466 467 468 469 470 471
        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port,
        )
472

Q
Qiao Longfei 已提交
473
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
474
        sparse_update_ops = []
475
        sparse_update_op_types = ["lookup_table", "nce", "lookup_table_v2"]
Q
Qiao Longfei 已提交
476
        for op in main_program.global_block().ops:
477 478 479 480
            if (
                op.type in sparse_update_op_types
                and op.attr('remote_prefetch') is True
            ):
Q
Qiao Longfei 已提交
481 482 483
                sparse_update_ops.append(op)
        return sparse_update_ops

484 485 486
    def _update_remote_sparse_update_op(
        self, program, need_sparse_update_params
    ):
487 488 489

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
490 491
                param_varname
            ]
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

509
            if op_type in LOOKUP_TABLE_TYPE:
510 511 512 513 514 515 516 517 518 519 520 521
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
547
                        inputs={"Ids": inputs, 'W': w},
548 549 550 551 552 553
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
554
                            "trainer_id": self.trainer_id,
555 556 557
                            "lookup_table_version": op_type,
                        },
                    )
558 559 560 561
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
562

563 564
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
565 566 567 568 569 570

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
571

572 573 574 575 576 577 578 579 580 581
    def transpile(
        self,
        trainer_id,
        program=None,
        pservers="127.0.0.1:6174",
        trainers=1,
        sync_mode=True,
        startup_program=None,
        current_endpoint="127.0.0.1:6174",
    ):
582
        """
583
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
584 585 586 587 588 589

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
590 591
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
592 593
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
594 595 596
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
597
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
598 599
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
600 601 602
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
603 604 605 606 607 608 609 610 611 612 613

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
614
        """
615 616 617 618 619 620 621 622 623

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

624 625
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
626 627
        if startup_program is None:
            startup_program = default_startup_program()
628
        self.origin_program = program
W
Wu Yi 已提交
629 630
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
631

W
Wu Yi 已提交
632
        if self.config.mode == "nccl2":
633
            assert isinstance(trainers, str)
634
            self.origin_program._trainers_endpoints = trainers.split(",")
635
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
636 637 638
            self.origin_program._use_hierarchical_allreduce = (
                self.config.use_hierarchical_allreduce
            )
639 640 641 642 643
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
644 645
                    self.config.hierarchical_allreduce_inter_nranks = (
                        core.get_cuda_device_count()
646 647
                    )

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
                assert (
                    trainers_num
                    > self.config.hierarchical_allreduce_inter_nranks
                ), "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(
                    trainers_num,
                    self.config.hierarchical_allreduce_inter_nranks,
                )

                assert (
                    trainers_num
                    % self.config.hierarchical_allreduce_inter_nranks
                    == 0
                ), "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(
                    trainers_num,
                    self.config.hierarchical_allreduce_inter_nranks,
                )

                self.origin_program._hierarchical_allreduce_inter_nranks = int(
                    self.config.hierarchical_allreduce_inter_nranks
                )
668

669 670 671 672 673 674 675
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program,
                wait_port=self.config.wait_port,
            )
W
Wu Yi 已提交
676 677
            return

678 679 680 681 682 683 684 685
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
686 687
                wait_port=self.config.wait_port,
            )
688 689
            return

690
        self.trainer_num = trainers
691
        self.sync_mode = sync_mode
692 693 694
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
695
        self.vars_overview = VarsDistributed()
696 697
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
698
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
699
        self.table_name = find_distributed_lookup_table(self.origin_program)
700
        self.has_distributed_lookup_table = self.table_name is not None
701
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
702
        self.grad_name_to_param_name = dict()
703 704
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
705
            self.grad_name_to_param_name[grad_var.name] = param_var.name
706

Q
Qiao Longfei 已提交
707
        # get all sparse update ops
Q
Qiao Longfei 已提交
708
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
709 710
            self.origin_program
        )
Q
Qiao Longfei 已提交
711
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
712
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
713
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
714

T
tangwei12 已提交
715 716 717
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
718
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
719
        self.origin_program._is_chief = self.trainer_id == 0
720 721 722
        self.origin_program._distributed_lookup_table = (
            self.table_name if self.table_name else None
        )
T
tangwei12 已提交
723

T
tianshuo78520a 已提交
724 725
        # split and create vars, then put split vars in dicts for later use.
        # step 1: split and create vars, then put split vars in dicts for later use.
G
gongweibao 已提交
726
        self._init_splited_vars()
727

G
gongweibao 已提交
728
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
729
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
730
        send_vars = []
731 732 733 734 735 736

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
737
        grad_var_mapping_items = list(self.grad_var_mapping.items())
738

G
gongweibao 已提交
739
        if not self.config.slice_var_up:
740 741
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
742

743
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
744

745
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
746
            eplist = ps_dispatcher.dispatch(splited_vars)
747

G
gongweibao 已提交
748
            if not self.config.slice_var_up:
749
                assert len(splited_vars) == 1
750

751
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
752
            if len(splited_vars) == 1:
753
                splited_grad_varname = splited_vars[0].name
754 755 756
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True
                )
757

Y
Yancey1989 已提交
758
            elif len(splited_vars) > 1:
759
                orig_var = program.global_block().vars[splited_grad_varname]
760 761 762
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True
                )
763

Q
Qiao Longfei 已提交
764
                if not self.config.runtime_split_send_recv:
765 766 767
                    self._insert_split_op(
                        program, orig_var, index, splited_vars
                    )
Q
Qiao Longfei 已提交
768
                    index += 1
Y
Yancey1989 已提交
769
            else:
770
                AssertionError(
771 772 773
                    "Can not insert the send op by original " "variable name :",
                    splited_grad_varname,
                )
Y
Yancey1989 已提交
774

775 776 777 778 779 780 781
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
782
            dummy_output = program.global_block().create_var(
783 784
                name=framework.generate_control_dev_var_name()
            )
785
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
786

Q
Qiao Longfei 已提交
787 788 789 790 791
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
T
tangwei12 已提交
792

793
                if self.config.completely_not_async and self.trainer_num > 1:
T
tangwei12 已提交
794 795 796 797 798 799
                    send_varnames = [
                        "{}.trainer_{}".format(var.name, self.trainer_id)
                        for var in splited_vars
                    ]
                else:
                    send_varnames = [var.name for var in splited_vars]
Q
Qiao Longfei 已提交
800 801 802 803 804
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

T
tianshuo78520a 已提交
805 806
            # get send op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name (split_by_ref and send
W
Wu Yi 已提交
807 808
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
809
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
810
                index=index + 1,
811
                type="send",
Q
Qiao Longfei 已提交
812
                inputs={"X": send_input_vars},
813
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
814
                attrs={
815 816 817 818
                    "epmap": eplist,
                    "sections": sections,
                    "send_varnames": send_varnames,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
819 820
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
821 822 823 824
                        splited_grad_varname,
                    ],
                },
            )
Y
update  
Yancey1989 已提交
825 826
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
827

828
        send_barrier_out = program.global_block().create_var(
829 830
            name=framework.generate_control_dev_var_name()
        )
831 832
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
833 834 835 836
                self.table_name
            ] = program.global_block().create_var(
                name=framework.generate_control_dev_var_name()
            )
837
        input_deps = list(self.grad_name_to_send_dummy_out.values())
838

839
        if not self.sync_mode:
1
123malin 已提交
840 841 842
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
843 844
                    name=framework.generate_control_dev_var_name()
                )
1
123malin 已提交
845
                if self.config.runtime_split_send_recv:
846
                    # async mode, using communicator to merge and send
1
123malin 已提交
847 848 849 850 851 852 853 854 855
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
856 857 858 859 860 861 862 863 864 865 866 867
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.counter_var.name,
                            self.counter_var.name,
                        ],
                    },
                )
868 869 870 871 872
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

873 874 875 876 877 878 879 880 881 882 883
            program.global_block().append_op(
                type="send_barrier",
                inputs={"X": list(input_deps)},
                outputs={"Out": send_barrier_out},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    "half_async": False,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                },
            )
884 885 886 887 888 889 890 891 892 893 894 895

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
896 897 898
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    },
                )
Y
Yancey1989 已提交
899

G
gongweibao 已提交
900
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
901
        recv_vars = []
Y
update  
Yancey1989 已提交
902
        for _, var in enumerate(send_vars):
903
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
904
        ps_dispatcher.reset()
Y
Yancey1989 已提交
905 906
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
907
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
908 909
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
910

911
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
912 913
                recv_vars[i].name
            )
914 915
            distributed_var.endpoint = ep

916 917
        need_sparse_update_params = {}

Y
Yancey1989 已提交
918
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
919
        all_recv_outputs = []
920
        for param_varname, splited_var in self.param_var_mapping.items():
Y
Yancey1989 已提交
921
            eps = []
Q
Qiao Longfei 已提交
922
            table_names = []
Y
Yancey1989 已提交
923 924 925
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
926
                table_names.append(var.name)
W
Wu Yi 已提交
927 928 929 930
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
931
                recv_dep_in = self.grad_name_to_send_dummy_out[
932 933
                    self.param_name_to_grad_name[param_varname]
                ]
Q
Qiao Longfei 已提交
934

T
tianshuo78520a 已提交
935 936
            # get recv op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name. ParallelExecutor
W
Wu Yi 已提交
937 938 939 940 941 942 943
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
944
            if param_varname in self.sparse_param_to_height_sections:
945
                for table_name in table_names:
946 947 948 949 950
                    distributed_var = (
                        self.vars_overview.get_distributed_var_by_slice(
                            table_name
                        )
                    )
951 952
                    distributed_var.vtype = "RemotePrefetch"

953
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
954
            else:
Q
Qiao Longfei 已提交
955 956 957
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
958
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
959
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
960
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
961

Q
Qiao Longfei 已提交
962 963 964 965 966
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
967 968 969 970 971 972 973 974 975 976
                        "epmap": eps,
                        "recv_varnames": recv_varnames,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            param_varname,
                            recv_op_role_var_name,
                        ],
                    },
                )
T
typhoonzero 已提交
977

978 979
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
980
        if self.sync_mode:
W
Wu Yi 已提交
981
            # form a WAW dependency
982 983 984 985 986 987 988 989 990 991
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={"X": fetch_barrier_input},
                outputs={"Out": all_recv_outputs},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                },
            )
Y
Yancey1989 已提交
992

993
        for param_varname, splited_var in self.param_var_mapping.items():
994 995
            if len(splited_var) <= 1:
                continue
996
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
997
            if param_varname not in self.sparse_param_to_height_sections:
998
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
999 1000 1001 1002 1003 1004
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
1005 1006 1007
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE,
                        },
                    )
T
typhoonzero 已提交
1008

G
gongweibao 已提交
1009 1010
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

1011
        if self.has_distributed_lookup_table:
1012 1013 1014
            self._replace_lookup_table_op_with_prefetch(
                program, pserver_endpoints
            )
Y
Yancey1989 已提交
1015
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
1016

1017 1018 1019
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
1020 1021 1022 1023 1024
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
1025 1026 1027 1028
            if (
                op.type in sparse_update_op_types
                and op.attr('is_sparse') is True
            ):
T
tangwei12 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
1048 1049 1050
                raise ValueError(
                    "table init op num should be 1, now is " + str(init_op_num)
                )
T
tangwei12 已提交
1051 1052 1053 1054 1055
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
1056 1057
                attrs={"shape": table_init_op.attr('shape')},
            )
T
tangwei12 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1096
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1097
        """
1098
        Get transpiled trainer side program. The program on trainer side compared with origin program
C
Chengmo 已提交
1099 1100 1101
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
1102
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op``
1103

C
Chengmo 已提交
1104
        Args:
1105
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program,
C
Chengmo 已提交
1106
            default is True
Y
yi.wu 已提交
1107 1108 1109

        Returns:
            Program: trainer side program.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1122
        """
T
typhoonzero 已提交
1123
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1124
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1125

T
tangwei12 已提交
1126 1127 1128 1129
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1130 1131
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1132
        self._delete_trainer_optimizer(is_startup=False)
1133

1134
        self.origin_program.__str__()
T
tangwei12 已提交
1135
        self.startup_program.__str__()
G
gongweibao 已提交
1136

W
Wu Yi 已提交
1137 1138 1139
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1140
        return self.origin_program
T
typhoonzero 已提交
1141

W
Wu Yi 已提交
1142
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1143 1144 1145 1146
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1147
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1148
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1149 1150 1151 1152

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1153
        startup_program = self.startup_program
G
gongweibao 已提交
1154 1155 1156

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1157 1158 1159
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
1160
        # self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1161

1162
        for varname, splited_var in self.param_var_mapping.items():
T
tangwei12 已提交
1163 1164
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
1181 1182
                    lod_level=var.lod_level,
                )
G
gongweibao 已提交
1183 1184 1185

            op = startup_program.global_block().append_op(
                type="recv",
1186
                inputs={"X": []},
G
gongweibao 已提交
1187 1188 1189
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1190
                    "trainer_id": self.trainer_id,
1191 1192 1193
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                },
            )
G
gongweibao 已提交
1194

W
Wu Yi 已提交
1195
        fetch_barrier_out = startup_program.global_block().create_var(
1196 1197
            name=framework.generate_control_dev_var_name()
        )
G
gongweibao 已提交
1198 1199 1200
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1201
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1202 1203
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1204
                "trainer_id": self.trainer_id,
1205 1206 1207
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
            },
        )
G
gongweibao 已提交
1208

1209
        for varname, splited_var in self.param_var_mapping.items():
T
tangwei12 已提交
1210 1211
            if varname in sparse_table_names:
                continue
T
tianshuo78520a 已提交
1212
            # add concat ops to merge split parameters received from parameter servers.
G
gongweibao 已提交
1213 1214
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1215
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1216
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1217 1218
                orig_param = startup_program.global_block().vars[varname]
            else:
1219 1220 1221
                origin_param_var = self.origin_program.global_block().vars[
                    varname
                ]
W
Wu Yi 已提交
1222 1223 1224 1225 1226
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
1227 1228
                    shape=origin_param_var.shape,
                )
G
gongweibao 已提交
1229 1230 1231 1232
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
1233 1234
                attrs={"axis": 0},
            )
G
gongweibao 已提交
1235 1236 1237

        return startup_program

T
typhoonzero 已提交
1238 1239
    def get_pserver_program(self, endpoint):
        """
1240
        Get parameter server side program.The program on pserver side compared with origin program
C
Chengmo 已提交
1241 1242
        has following difference:

1243
            - Only the following op is included: optimize-related op and communication-related op
C
Chengmo 已提交
1244 1245
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1246

Y
yi.wu 已提交
1247 1248
        Args:
            endpoint (str): current parameter server endpoint.
1249

Y
yi.wu 已提交
1250 1251
        Returns:
            Program: the program for current parameter server to run.
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1266
        """
Y
yi.wu 已提交
1267 1268 1269 1270
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1271 1272 1273
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1274 1275
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1276
        pserver_program.random_seed = self.origin_program.random_seed
1277 1278
        pserver_program._copy_dist_param_info_from(self.origin_program)

1279
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1280 1281 1282 1283 1284 1285 1286 1287
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1288 1289 1290 1291 1292
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1293 1294
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
            single_trainer_var = pserver_program.global_block().create_var(
                name=orig_var_name,
                persistable=True,
                type=v.type,
                dtype=v.dtype,
                shape=v.shape,
            )
            if (
                self.sync_mode
                or self.config.completely_not_async
                and self.trainer_num > 1
            ):
1307
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1308 1309 1310 1311 1312
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
1313 1314
                        shape=v.shape,
                    )
T
typhoonzero 已提交
1315 1316 1317
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1318

Q
qiaolongfei 已提交
1319
        # step 3
1320
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1321 1322 1323
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1324
        # step 3.2
T
typhoonzero 已提交
1325 1326 1327 1328
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1329
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
1330 1331
                endpoint, op
            ):
T
typhoonzero 已提交
1332
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1333
        # step 3.3
W
Wu Yi 已提交
1334 1335
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
1336
            assert self.sync_mode == False
W
Wu Yi 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
1348 1349
                        dtype=p.dtype,
                    )
W
Wu Yi 已提交
1350 1351 1352
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1353
        # Iterate through the ops, and if an op and the optimize ops
1354
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1355
        # append it into the sub program.
T
typhoonzero 已提交
1356 1357 1358

        global_ops = []

1359 1360 1361
        # sparse grad name to param name
        sparse_grad_to_param = []

1362 1363 1364
        def __append_optimize_op__(
            op, block, grad_to_block_id, merged_var, lr_ops
        ):
1365
            if self._is_optimizer_op(op):
1366 1367 1368 1369 1370 1371 1372 1373 1374
                self._append_pserver_ops(
                    block,
                    op,
                    endpoint,
                    grad_to_block_id,
                    self.origin_program,
                    merged_var,
                    sparse_grad_to_param,
                )
Y
wip  
yi.wu 已提交
1375
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1376
                self._append_pserver_non_opt_ops(block, op)
1377

Y
Yancey1989 已提交
1378
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1379 1380 1381 1382 1383 1384 1385 1386
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1387
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1388 1389 1390

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1391
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1392 1393

            # clone ops
Y
Yancey1989 已提交
1394 1395
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1396
                # clone sub_block of op
Y
Yancey1989 已提交
1397
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1398 1399

            # reset the block of op
W
Wu Yi 已提交
1400
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1401

1402
        # append lr decay ops to the child block if exists
1403
        lr_ops = self._get_lr_ops()
1404 1405
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1406 1407

        lr_decay_block_id = -1
1408
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1409
            lr_decay_block = pserver_program._create_block(
1410 1411
                pserver_program.num_blocks - 1
            )
1412
            optimize_blocks.append(lr_decay_block)
1413
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1414
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1415
                # append sub blocks to pserver_program in lr_decay_op
1416 1417 1418
                __clone_lr_op_sub_block__(
                    cloned_op, pserver_program, lr_decay_block
                )
1419
            lr_decay_block_id = lr_decay_block.idx
1420

T
typhoonzero 已提交
1421
        # append op to the current block
Q
qiaolongfei 已提交
1422
        grad_to_block_id = []
Q
qiaolongfei 已提交
1423
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1424
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1425
            per_opt_block = pserver_program._create_block(pre_block_idx)
1426
            optimize_blocks.append(per_opt_block)
1427
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1428
            # append grad merging ops before clip and weight decay
1429 1430
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1431
            for _, op in enumerate(self.optimize_ops):
1432
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1433
                # merged_var should be the input var name of L2Decay
1434
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
1435 1436 1437 1438
                if (
                    op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    == optimize_target_param_name
                ):
1439
                    merged_var = self._append_pserver_grad_merge_ops(
1440 1441 1442 1443 1444 1445
                        per_opt_block,
                        grad_varname_for_block,
                        endpoint,
                        grad_to_block_id,
                        self.origin_program,
                    )
1446 1447 1448 1449 1450
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
                    if (
                        op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                        == optimize_target_param_name
                        and op not in global_ops
                    ):
                        log(
                            "append opt op: ",
                            op.type,
                            op.input_arg_names,
                            merged_var,
                        )
                        __append_optimize_op__(
                            op,
                            per_opt_block,
                            grad_to_block_id,
                            merged_var,
                            lr_ops,
                        )
T
typhoonzero 已提交
1469

1470
        # dedup grad to ids list
W
Wu Yi 已提交
1471
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1472
        # append global ops
1473
        if global_ops:
W
Wu Yi 已提交
1474
            opt_state_block = pserver_program._create_block(
1475 1476
                pserver_program.num_blocks - 1
            )
1477
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1478
            for glb_op in global_ops:
1479 1480 1481
                __append_optimize_op__(
                    glb_op, opt_state_block, grad_to_block_id, None, lr_ops
                )
T
typhoonzero 已提交
1482

1483
        # process distributed lookup_table
Q
qiaolongfei 已提交
1484
        prefetch_var_name_to_block_id = []
1485 1486
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1487
            table_opt_block = self._create_table_optimize_block(
1488 1489
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id
            )
1490
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1491
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1492 1493
                pserver_index, pserver_program, table_opt_block
            )
T
tangwei12 已提交
1494
            checkpoint_block_id = self._create_checkpoint_save_block(
1495 1496
                pserver_program, table_opt_block.idx
            )
1497

T
tangwei12 已提交
1498
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1499
            prefetch_var_name_to_block_id.extend(
1500 1501
                lookup_table_var_name_to_block_id
            )
1502

1503
        if len(optimize_blocks) == 0:
1504 1505 1506
            logging.warn(
                "pserver [" + str(endpoint) + "] has no optimize block!!"
            )
1507 1508 1509 1510 1511 1512
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1513
        attrs = {
1514
            "optimize_blocks": optimize_blocks,
1515
            "endpoint": endpoint,
1516
            "pserver_id": self.pserver_endpoints.index(endpoint),
1517
            "Fanin": self.trainer_num,
1
123malin 已提交
1518
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1519
            "grad_to_block_id": grad_to_block_id,
1520
            "sparse_grad_to_param": sparse_grad_to_param,
1521
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1522 1523
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
1524
            "rpc_prefetch_thread_num": self.server_config._rpc_prefetch_thread_num,
1525
        }
T
tangwei12 已提交
1526 1527

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1528
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1529 1530
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1531

T
tangwei12 已提交
1532 1533
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
1534 1535
                'prefetch_var_name_to_block_id'
            ] = prefetch_var_name_to_block_id
T
tangwei12 已提交
1536

T
typhoonzero 已提交
1537
        # step5 append the listen_and_serv op
1538 1539 1540 1541 1542 1543
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs=attrs,
        )
1544

W
Wu Yi 已提交
1545
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1546 1547
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1548 1549
        return pserver_program

W
Wu Yi 已提交
1550 1551 1552
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
1553
        The ``main_program`` returned by this function is consistent with the
C
Chengmo 已提交
1554
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1555 1556 1557

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1558

W
Wu Yi 已提交
1559 1560
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1575 1576
        """
        pserver_prog = self.get_pserver_program(endpoint)
1577 1578 1579
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog
        )
W
Wu Yi 已提交
1580 1581
        return pserver_prog, pserver_startup

1582 1583 1584
    def get_startup_program(
        self, endpoint, pserver_program=None, startup_program=None
    ):
T
typhoonzero 已提交
1585
        """
W
Wu Yi 已提交
1586 1587
        **Deprecated**

T
typhoonzero 已提交
1588 1589 1590
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1591 1592 1593

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1594 1595
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
T
tianshuo78520a 已提交
1596
                when initializing
1597

Y
yi.wu 已提交
1598 1599
        Returns:
            Program: parameter server side startup program.
1600 1601

        Examples:
1602 1603
            .. code-block:: python

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1615 1616
        """
        s_prog = Program()
W
Wu Yi 已提交
1617
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1618
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1630
        created_var_map = collections.OrderedDict()
1631
        for _, var in pserver_vars.items():
W
Wu Yi 已提交
1632
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1633 1634 1635 1636
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1637
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1638 1639
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1650 1651

            if op_on_pserver:
1652 1653 1654
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1655
                if op.type in [
1656 1657 1658 1659
                    "gaussian_random",
                    "fill_constant",
                    "uniform_random",
                    "truncated_gaussian_random",
T
typhoonzero 已提交
1660
                ]:
W
Wu Yi 已提交
1661
                    op._set_attr("shape", list(new_outputs["Out"].shape))
1662 1663 1664 1665 1666 1667
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.all_attrs(),
                )
W
Wu Yi 已提交
1668 1669 1670 1671 1672
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
1673 1674 1675 1676 1677
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar},
                )
1678

T
typhoonzero 已提交
1679 1680
        return s_prog

1681 1682
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1683
        block_suffix = "block"
1684 1685 1686
        block_idx = 0
        offset = 0
        is_slice = False
1687

1688
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1689

1690 1691
        if not block_name:
            return is_slice, block_idx, offset
1692

1693 1694 1695 1696
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1697 1698 1699
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
1700 1701 1702
            orig_dim1_flatten = reduce(
                lambda x, y: x * y, slice_vars[0].shape[1:]
            )
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
1716 1717
                    endpoint, op
                ):
1718 1719 1720 1721 1722 1723 1724 1725
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
1726 1727
                            param_name, endpoint
                        )
1728 1729
                        break
                for key in opt_op.input_names:
1730
                    if key in [
1731 1732 1733 1734 1735
                        "Param",
                        "Grad",
                        "LearningRate",
                        "Beta1Tensor",
                        "Beta2Tensor",
1736
                    ]:
1737 1738
                        continue
                    origin_var = self.origin_program.global_block().vars[
1739 1740
                        opt_op.input(key)[0]
                    ]
1741 1742
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
1743 1744
                        opt_op.type, key, origin_var.shape, dist_var.slice.shape
                    )
1745 1746 1747 1748 1749 1750 1751 1752

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
1753 1754
                            persistable=origin_var.persistable,
                        )
1755 1756 1757 1758 1759 1760 1761 1762

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
1763 1764
                            endpoint=endpoint,
                        )
1765 1766 1767 1768 1769 1770 1771 1772
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
1773 1774
                            endpoint=endpoint,
                        )
1775 1776 1777

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1778

1779 1780 1781
    def _update_dist_lookup_table_vars(
        self, param_list, grad_list, params_grads
    ):
Y
yi.wu 已提交
1782 1783 1784 1785 1786 1787 1788 1789
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
1790 1791
                grad
                for grad in grad_list
Y
yi.wu 已提交
1792 1793 1794
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
1795 1796
                param_grad
                for param_grad in params_grads
Y
yi.wu 已提交
1797 1798 1799 1800 1801 1802
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
1803 1804
                        name="%s.trainer_%d.pserver_%d"
                        % (table_grad_var.name, self.trainer_id, index),
Y
yi.wu 已提交
1805 1806
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
1807 1808
                        dtype=table_grad_var.dtype,
                    )
Y
yi.wu 已提交
1809 1810 1811 1812 1813 1814 1815 1816
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
1817 1818
                        dtype=table_grad_var.dtype,
                    )
Y
yi.wu 已提交
1819 1820 1821 1822
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1823
    def _init_splited_vars(self):
Y
yi.wu 已提交
1824
        # update these mappings for further transpile:
T
tianshuo78520a 已提交
1825 1826
        # 1. param_var_mapping: param var name -> [split params vars]
        # 2. grad_var_mapping: grad var name -> [split grads vars]
Y
yi.wu 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
1845 1846
            param_list, grad_list, self.params_grads
        )
Y
yi.wu 已提交
1847

G
gongweibao 已提交
1848
        if self.config.slice_var_up:
Y
yi.wu 已提交
1849 1850
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
            grad_blocks = slice_variable(
                grad_list,
                len(self.pserver_endpoints),
                self.config.min_block_size,
            )
            param_blocks = slice_variable(
                param_list,
                len(self.pserver_endpoints),
                self.config.min_block_size,
            )
Y
yi.wu 已提交
1861 1862 1863
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
1864 1865 1866 1867 1868 1869 1870
            grad_blocks = slice_variable(
                grad_list, 1, self.config.min_block_size
            )
            param_blocks = slice_variable(
                param_list, 1, self.config.min_block_size
            )
        assert len(grad_blocks) == len(param_blocks)
Y
yi.wu 已提交
1871

1872
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1873
        self.param_var_mapping = self._create_vars_from_blocklist(
1874 1875
            self.origin_program, param_blocks
        )
1876 1877 1878 1879 1880 1881

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
                    splited_var
                )

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param",
                )
1893

1894
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1895 1896 1897
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
1898 1899
            add_trainer_suffix=self.trainer_num > 1,
        )
1900
        # dict(grad_splited_var -> param_splited_var)
1901
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1902 1903 1904
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
1905 1906 1907
            self.grad_param_mapping[
                self.grad_var_mapping[g_name][int(g_bid)]
            ] = self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1908 1909

        # create mapping of endpoint -> split var to create pserver side program
1910
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1911
        [
1912 1913
            self.param_grad_ep_mapping.update({ep: {"params": [], "grads": []}})
            for ep in self.pserver_endpoints
Y
yi.wu 已提交
1914 1915
        ]

1916
    # transpiler function for dis lookup_table
1917 1918 1919
    def _replace_lookup_table_op_with_prefetch(
        self, program, pserver_endpoints
    ):
1920
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1921
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1922 1923
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1924 1925
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1926 1927 1928 1929 1930 1931

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
1932 1933 1934 1935
                if (
                    op.type == LOOKUP_TABLE_TYPE
                    and self.table_name == op.input("W")[0]
                ):
1936
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1937 1938
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
1939 1940
                            "should set is_distributed to true"
                        )
1941 1942
                    continue_search_lookup_table_op = True

1943 1944 1945 1946 1947
                    lookup_table_op_index = (
                        lookup_table_op_index
                        if lookup_table_op_index != -1
                        else list(all_ops).index(op)
                    )
1948 1949 1950
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1951
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1952
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1953 1954

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1955
                    self.all_out_emb_vars.append(out_var)
1956 1957

                    # delete lookup_table_op
1958
                    delete_ops(program.global_block(), [op])
1959 1960 1961
                    # break for loop
                    break

S
seiriosPlus 已提交
1962 1963 1964 1965 1966
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
1967 1968
                dtype=self.all_in_ids_vars[0].dtype,
            )
S
seiriosPlus 已提交
1969 1970 1971 1972 1973 1974
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
1975 1976
                dtype=self.all_out_emb_vars[0].dtype,
            )
S
seiriosPlus 已提交
1977 1978 1979 1980 1981 1982 1983
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
1984 1985
            outputs={"Out": self.all_prefetch_input_vars},
        )
S
seiriosPlus 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
1998 1999
            },
        )
S
seiriosPlus 已提交
2000 2001 2002 2003 2004 2005 2006 2007

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
2008
                'X': self.all_prefetch_output_vars,
S
seiriosPlus 已提交
2009
            },
2010 2011
            outputs={"Out": self.all_out_emb_vars},
        )
S
seiriosPlus 已提交
2012

Y
Yancey1989 已提交
2013
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
2014
        # 2. add split_ids_op and send_op to send gradient to pservers
2015

2016 2017
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
2018
        table_grad_name = grad_var_name(self.table_name)
2019 2020 2021 2022
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
2023
                program.global_block()._insert_op(
2024 2025 2026 2027 2028
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
2029
                    outputs={"Out": self.trainer_side_table_grad_list},
2030 2031
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE},
                )
W
Wu Yi 已提交
2032
                program.global_block()._insert_op(
2033
                    index=op_index + 2,
2034
                    type="send",
2035
                    inputs={'X': self.trainer_side_table_grad_list},
2036
                    outputs={
2037 2038 2039 2040 2041
                        'Out': [
                            self.grad_name_to_send_dummy_out[self.table_name]
                        ]
                        if self.sync_mode
                        else []
2042
                    },
Y
Yancey1989 已提交
2043
                    attrs={
2044 2045 2046
                        "epmap": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
2047 2048
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
2049 2050 2051 2052
                            table_grad_name,
                        ],
                    },
                )
2053 2054
                break

2055 2056 2057
    def _create_prefetch_block(
        self, pserver_index, pserver_program, optimize_block
    ):
2058 2059
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
2060
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
2061 2062 2063 2064 2065 2066
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
2067 2068
            dtype=trainer_ids.dtype,
        )
S
seiriosPlus 已提交
2069 2070 2071 2072 2073
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
2074 2075
            dtype=trainer_out.dtype,
        )
S
seiriosPlus 已提交
2076 2077
        prefetch_block.append_op(
            type="lookup_sparse_table",
2078
            inputs={'Ids': pserver_ids, "W": table_var},
S
seiriosPlus 已提交
2079 2080 2081 2082
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
2083 2084 2085 2086 2087 2088
                "padding_idx": -1,
            },
        )
        prefetch_var_name_to_block_id.append(
            trainer_ids.name + ":" + str(prefetch_block.idx)
        )
Q
qiaolongfei 已提交
2089
        return prefetch_var_name_to_block_id
2090

2091 2092 2093
    def _create_table_optimize_block(
        self, pserver_index, pserver_program, pre_block_idx, grad_to_block_id
    ):
2094
        # STEP: create table optimize block
2095
        table_opt_block = pserver_program._create_block(pre_block_idx)
2096
        # create table param and grad var in pserver program
2097 2098
        # create table optimize block in pserver program
        table_opt_op = [
2099 2100 2101
            op
            for op in self.optimize_ops
            if 'Param' in op.input_names
2102
            and op.input("Param")[0] == self.table_name
2103 2104
        ][0]

Y
Yancey1989 已提交
2105
        origin_param_var = self.origin_program.global_block().vars[
2106 2107
            self.table_name
        ]
T
tangwei12 已提交
2108

T
tangwei12 已提交
2109
        zero_dim = int(
2110 2111 2112 2113
            math.ceil(
                origin_param_var.shape[0] / float(len(self.pserver_endpoints))
            )
        )
T
tangwei12 已提交
2114 2115 2116
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
2117 2118
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
2119
            shape=table_shape,
Y
Yancey1989 已提交
2120 2121
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
2122 2123
            persistable=True,
        )
2124

2125 2126
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
2127
        grad_var = pserver_program.global_block()._clone_variable(
2128 2129 2130 2131
            self.origin_program.global_block().vars[
                grad_var_name(self.table_name)
            ]
        )
2132

2133
        lr_var = pserver_program.global_block()._clone_variable(
2134 2135 2136 2137
            self.origin_program.global_block().vars[
                table_opt_op.input("LearningRate")[0]
            ]
        )
2138

2139 2140 2141
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
2142
            pserver_side_table_grad_list = [
2143
                pserver_program.global_block().create_var(
2144 2145
                    name="%s.trainer_%d.pserver_%d"
                    % (table_grad_var.name, index, pserver_index),
2146 2147
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
2148 2149
                    dtype=table_grad_var.dtype,
                )
2150 2151 2152
                for index in range(self.trainer_num)
            ]

2153
            # append sum op for pserver_side_table_grad_list
2154 2155
            table_opt_block.append_op(
                type="sum",
2156
                inputs={"X": pserver_side_table_grad_list},
2157
                outputs={"Out": [grad_var]},
2158 2159
                attrs={"use_mkldnn": False},
            )
2160
        else:
T
tianshuo78520a 已提交
2161
            # in async_mode, for table gradient, it also need to be split to each parameter server
2162
            origin_grad_name = grad_var.name
2163
            splited_grad_name = self.trainer_side_table_grad_list[
2164 2165
                pserver_index
            ].name
2166
            if not splited_grad_name.startswith(origin_grad_name):
2167 2168 2169 2170 2171 2172
                raise ValueError(
                    "origin_grad_var: "
                    + splited_grad_name
                    + " grad_var:"
                    + grad_var.name
                )
W
Wu Yi 已提交
2173
            grad_var = pserver_program.global_block()._rename_var(
2174 2175
                origin_grad_name, splited_grad_name
            )
2176 2177 2178 2179

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
2180
            "LearningRate": [lr_var],
2181 2182
        }
        outputs = {"ParamOut": [param_var]}
2183
        # only support sgd now
2184 2185
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
2186 2187
            + table_opt_op.type
        )
2188
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
2189

2190 2191 2192
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

2193 2194
        return table_opt_block

T
tangwei12 已提交
2195 2196 2197 2198 2199
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

2200 2201 2202 2203 2204
        pserver_program.global_block().create_var(
            name="kLookupTablePath",
            persistable=True,
            type=core.VarDesc.VarType.RAW,
        )
T
tangwei12 已提交
2205

W
Wu Yi 已提交
2206
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
2207
        # this 'file_path' do not be used in save lookup table variable
2208 2209 2210 2211 2212 2213
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
            attrs={'file_path': "none"},
        )
T
tangwei12 已提交
2214 2215 2216

        return checkpoint_save_block.idx

2217 2218 2219
    def _create_vars_from_blocklist(
        self, program, block_list, add_trainer_suffix=False
    ):
T
typhoonzero 已提交
2220
        """
2221
        Create vars for each split.
T
typhoonzero 已提交
2222 2223
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2224 2225 2226 2227
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2228
        Returns:
2229
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2230
                from original var name to each var split.
T
typhoonzero 已提交
2231
        """
2232 2233

        # varname->[(block_id, current_block_size)]
2234
        block_map = collections.OrderedDict()
2235

2236
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2237 2238
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2239
            if varname not in block_map:
T
typhoonzero 已提交
2240
                block_map[varname] = []
2241
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2242

2243
        for varname, split in block_map.items():
T
typhoonzero 已提交
2244
            orig_var = program.global_block().var(varname)
T
tianshuo78520a 已提交
2245
            if len(split) == 1:
2246
                if self.sync_mode and add_trainer_suffix:
2247 2248 2249 2250
                    new_var_name = "%s.trainer_%d" % (
                        orig_var.name,
                        self.trainer_id,
                    )
W
Wu Yi 已提交
2251
                    program.global_block()._rename_var(varname, new_var_name)
2252 2253 2254
                    var_mapping[varname] = [
                        program.global_block().var(new_var_name)
                    ]
T
typhoonzero 已提交
2255
                else:
2256 2257 2258
                    var_mapping[varname] = [
                        program.global_block().var(orig_var.name)
                    ]
T
typhoonzero 已提交
2259
                continue
T
typhoonzero 已提交
2260
            var_mapping[varname] = []
T
typhoonzero 已提交
2261 2262 2263 2264
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2265

T
tianshuo78520a 已提交
2266
            for i, block in enumerate(split):
T
typhoonzero 已提交
2267
                size = block[1]
M
minqiyang 已提交
2268
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2269 2270 2271
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2272
                new_var_name = ""
2273
                if self.sync_mode and add_trainer_suffix:
2274 2275 2276 2277 2278
                    new_var_name = "%s.block%d.trainer_%d" % (
                        varname,
                        i,
                        self.trainer_id,
                    )
T
typhoonzero 已提交
2279
                else:
2280
                    new_var_name = "%s.block%d" % (varname, i)
T
typhoonzero 已提交
2281
                var = program.global_block().create_var(
T
typhoonzero 已提交
2282 2283
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2284
                    dtype=orig_var.dtype,
2285
                    type=orig_var.type,
2286 2287
                    shape=splited_shape,
                )  # flattend split var
T
typhoonzero 已提交
2288
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2289
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2290
        return var_mapping
T
done  
typhoonzero 已提交
2291

2292
    def _clone_var(self, block, var, persistable=True):
2293 2294 2295 2296 2297 2298 2299 2300
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=persistable,
        )
T
done  
typhoonzero 已提交
2301

Q
Qiao Longfei 已提交
2302 2303 2304 2305 2306 2307 2308
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2309
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2310 2311
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2312
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2313
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2314
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2315
                self.sparse_param_to_height_sections[
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
                    sparse_param_name
                ] = height_sections
            program.global_block()._insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE,
                },
            )
Y
update  
Yancey1989 已提交
2328
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
            program.global_block()._insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={
                    "sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE,
                },
            )
Y
update  
Yancey1989 已提交
2339
        else:
2340 2341 2342
            AssertionError(
                "Variable type should be in set " "[LOD_TENSOR, SELECTED_ROWS]"
            )
T
done  
typhoonzero 已提交
2343

2344 2345 2346
    def _get_optimizer_input_shape(
        self, op_type, varkey, orig_shape, param_shape
    ):
T
typhoonzero 已提交
2347 2348
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2349
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2362
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2363 2364
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2365 2366
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2367
                return param_shape
2368 2369 2370
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2371 2372 2373
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2374 2375
        elif op_type == "sgd":
            pass
2376 2377
        else:
            raise ValueError(
2378 2379
                "Not supported optimizer for distributed training: %s" % op_type
            )
T
typhoonzero 已提交
2380 2381
        return orig_shape

2382 2383
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2384
        orig_var_name = ""
2385 2386 2387 2388
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
2389
            trainer_part = varname[trainer_idx + 1 :]
2390 2391 2392 2393
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
2394
            block_part = varname[block_index + 1 : trainer_idx]
T
typhoonzero 已提交
2395
        else:
2396
            block_index = len(varname)
2397
        orig_var_name = varname[0 : min(block_index, trainer_idx)]
2398 2399 2400 2401 2402 2403
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

2404 2405 2406 2407 2408 2409 2410 2411
    def _append_pserver_grad_merge_ops(
        self,
        optimize_block,
        grad_varname_for_block,
        endpoint,
        grad_to_block_id,
        origin_program,
    ):
2412 2413 2414 2415
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
2416 2417 2418
            if self._orig_varname(g.name) == self._orig_varname(
                grad_varname_for_block
            ):
2419 2420 2421 2422 2423
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2424
            return None
2425
        orig_varname, block_name, trainer_name = self._get_varname_parts(
2426 2427
            grad_block.name
        )
2428 2429
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2430
        else:
2431
            merged_var_name = orig_varname
2432 2433

        merged_var = pserver_block.vars[merged_var_name]
2434
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
2435 2436 2437 2438 2439
        if (
            self.sync_mode
            or self.config.completely_not_async
            and self.trainer_num > 1
        ):
2440
            vars2merge = []
2441
            for i in range(self.trainer_num):
2442
                per_trainer_name = "%s.trainer_%d" % (merged_var_name, i)
2443
                vars2merge.append(pserver_block.vars[per_trainer_name])
2444 2445 2446 2447 2448 2449
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False},
            )
Q
qiaolongfei 已提交
2450 2451 2452 2453
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
2454 2455
                attrs={"scale": 1.0 / float(self.trainer_num)},
            )
2456
        return merged_var
T
typhoonzero 已提交
2457

W
Wu Yi 已提交
2458 2459
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
2460 2461 2462 2463 2464 2465 2466
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False,
        )
W
Wu Yi 已提交
2467
        # trainer_id_var is block local
2468 2469 2470 2471 2472 2473 2474
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False,
        )
W
Wu Yi 已提交
2475 2476 2477 2478 2479 2480

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
2481 2482 2483 2484 2485
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs, "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak},
        )
W
Wu Yi 已提交
2486 2487

        def __create_temp_var__():
2488 2489 2490 2491 2492 2493 2494
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False,
            )
W
Wu Yi 已提交
2495 2496

        o1 = __create_temp_var__()
2497 2498 2499 2500 2501
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var, "Y": local_param_bak},
            outputs={"Out": o1},
        )
W
Wu Yi 已提交
2502
        o2 = __create_temp_var__()
2503 2504 2505 2506 2507
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1, "Y": grad_var},
            outputs={"Out": o2},
        )
W
Wu Yi 已提交
2508
        o3 = __create_temp_var__()
2509 2510 2511 2512 2513
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2, "Y": grad_var},
            outputs={"Out": o3},
        )
W
Wu Yi 已提交
2514 2515
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
2516 2517 2518 2519 2520
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var, "Y": o3},
            outputs={"Out": o4},
        )
W
Wu Yi 已提交
2521 2522
        return o4

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
    def _append_pserver_ops(
        self,
        optimize_block,
        opt_op,
        endpoint,
        grad_to_block_id,
        origin_program,
        merged_var,
        sparse_grad_to_param,
    ):
2533
        program = optimize_block.program
T
typhoonzero 已提交
2534
        pserver_block = program.global_block()
2535
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2546 2547 2548 2549
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2550
        for key in opt_op.input_names:
T
typhoonzero 已提交
2551
            if key == "Grad":
W
Wu Yi 已提交
2552 2553 2554
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2555 2556 2557
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
2558 2559 2560 2561
                    if (
                        core.kNewGradSuffix() in origin_grad_name
                        and pserver_block.has_var(origin_grad_name)
                    ):
Q
Qiao Longfei 已提交
2562 2563 2564 2565
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2566
            elif key == "Param":
W
Wu Yi 已提交
2567
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2568 2569
                if not param_block:
                    return
2570 2571 2572 2573 2574 2575
                tmpvar = pserver_block.create_var(
                    name=param_block.name,
                    persistable=True,
                    dtype=param_block.dtype,
                    shape=param_block.shape,
                )
T
typhoonzero 已提交
2576
                new_inputs[key] = tmpvar
2577
            elif key == "LearningRate":
2578
                # learning rate variable has already be created by non-optimize op,
2579
                # don't create it once again.
2580
                lr_varname = opt_op.input(key)[0]
2581
                if lr_varname in pserver_block.vars:
2582 2583 2584 2585 2586 2587 2588
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
2589 2590
                        shape=origin_var.shape,
                    )
2591
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2592

T
typhoonzero 已提交
2593
        for key in opt_op.input_names:
2594
            new_shape = None
2595
            if key in [
2596 2597 2598 2599 2600
                "Param",
                "Grad",
                "LearningRate",
                "Beta1Tensor",
                "Beta2Tensor",
2601
            ]:
T
typhoonzero 已提交
2602
                continue
2603
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2604
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2605
            # update accumulator variable shape
2606 2607 2608 2609 2610 2611 2612 2613 2614
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape
            )
            tmpvar = pserver_block.create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape,
            )
T
typhoonzero 已提交
2615
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2616

2617
        # change output's ParamOut variable
2618
        outputs = self._get_output_map_from_op(
2619 2620
            self.origin_program.global_block().vars, opt_op
        )
2621
        outputs["ParamOut"] = new_inputs["Param"]
2622 2623 2624 2625 2626 2627
        optimize_block.append_op(
            type=opt_op.type,
            inputs=new_inputs,
            outputs=outputs,
            attrs=opt_op.all_attrs(),
        )
T
typhoonzero 已提交
2628

2629 2630 2631
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
2632 2633 2634 2635
                str(new_inputs["Grad"].name)
                + ":"
                + str(new_inputs["Param"].name)
            )
2636

2637 2638 2639 2640 2641 2642
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
T
tianshuo78520a 已提交
2643
            a@GRAD -> a@GRAD (a is not split)
2644
            fc_0.w_0 -> fc_0.w_0.block_0
T
tianshuo78520a 已提交
2645
            fc_0.w_0 -> fc_0.w_0 (weight is not split)
2646 2647
            _generated_var_123 -> None
        """
2648
        grad_block = None
2649
        for _, g in var_dict.items():
2650
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2651
                # skip per trainer vars
2652
                if g.name.find(".trainer_") == -1:
T
tianshuo78520a 已提交
2653
                    # only param or grads have split blocks
2654 2655 2656 2657 2658 2659
                    if (
                        self._orig_varname(g.name)
                        in self.grad_name_to_param_name
                        or self._orig_varname(g.name)
                        in self.param_name_to_grad_name
                    ):
2660 2661
                        grad_block = g
                        break
2662 2663
        return grad_block

Q
Qiyang Min 已提交
2664 2665
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
2666 2667
            self.origin_program.global_block().vars, op
        )
2668
        for key, varlist in inputs.items():
Q
Qiyang Min 已提交
2669 2670 2671 2672
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2673
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2674 2675

        outputs = self._get_output_map_from_op(
2676 2677
            self.origin_program.global_block().vars, op
        )
2678
        for key, varlist in outputs.items():
Q
Qiyang Min 已提交
2679 2680 2681 2682
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2683
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2684

2685 2686 2687
        return block.append_op(
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs()
        )
Q
Qiyang Min 已提交
2688 2689

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2690
        program = optimize_block.program
2691
        # Append the ops for parameters that do not need to be optimized/updated
2692
        inputs = self._get_input_map_from_op(
2693 2694
            self.origin_program.global_block().vars, opt_op
        )
2695
        for key, varlist in inputs.items():
2696 2697
            if not isinstance(varlist, list):
                varlist = [varlist]
2698 2699
            for i in range(len(varlist)):
                var = varlist[i]
T
tianshuo78520a 已提交
2700
                # for ops like clipping and weight decay, get the split var (xxx.block0)
2701
                # for inputs/outputs
2702
                grad_block = self._get_pserver_grad_param_var(
2703 2704
                    var, program.global_block().vars
                )
2705
                if grad_block:
2706
                    varlist[i] = grad_block
2707
                elif var.name not in program.global_block().vars:
2708 2709 2710 2711 2712
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2713

2714
        outputs = self._get_output_map_from_op(
2715 2716
            self.origin_program.global_block().vars, opt_op
        )
2717
        for key, varlist in outputs.items():
2718 2719
            if not isinstance(varlist, list):
                varlist = [varlist]
2720 2721 2722
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2723 2724
                    var, program.global_block().vars
                )
2725
                if grad_block:
2726
                    varlist[i] = grad_block
2727
                elif var.name not in program.global_block().vars:
2728 2729 2730 2731 2732
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2733

2734 2735 2736 2737 2738 2739
        return optimize_block.append_op(
            type=opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=opt_op.all_attrs(),
        )
T
typhoonzero 已提交
2740

2741 2742 2743 2744
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
2745 2746 2747
        if set(op1.desc.output_arg_names()) & set(
            op2.desc.input_arg_names()
        ) or set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2748 2749 2750 2751 2752 2753
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2754 2755
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2756 2757 2758 2759 2760 2761
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2762
    def _is_optimizer_op(self, op):
2763
        if "Param" in op.input_names and "LearningRate" in op.input_names:
2764 2765 2766 2767 2768 2769 2770
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2771
        if op.input("Param")[0] in param_names:
2772 2773 2774
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2775
                param = op.input("Param")[0]
T
typhoonzero 已提交
2776
                if same_or_split_var(n, param) and n != param:
2777 2778 2779
                    return True
            return False

T
typhoonzero 已提交
2780
    def _get_input_map_from_op(self, varmap, op):
2781
        """Returns a dict from op input name to the vars in varmap."""
2782
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2794
        """Returns a dict from op output name to the vars in varmap."""
2795
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2796 2797 2798 2799 2800 2801 2802 2803 2804
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2805 2806

    def _get_lr_ops(self):
2807 2808
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2809
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2810
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
2811 2812 2813
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or role_id == int(
                LR_SCHED_OP_ROLE_ATTR_VALUE
            ) | int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2814 2815
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
2816 2817
                        self.origin_program.global_block().vars, op
                    )
1
123malin 已提交
2818
                    outputs = self._get_output_map_from_op(
2819 2820
                        self.origin_program.global_block().vars, op
                    )
1
123malin 已提交
2821 2822 2823 2824 2825 2826 2827 2828
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
2829 2830
                            persistable=counter_var.persistable,
                        )
1
123malin 已提交
2831 2832
                        for id_ in range(self.trainer_num)
                    ]
2833
                    for i, op in enumerate(
2834 2835
                        self.startup_program.global_block().ops
                    ):
1
123malin 已提交
2836 2837
                        if op.type == 'fill_constant':
                            for key in op.output_names:
2838 2839 2840 2841 2842 2843 2844 2845 2846
                                if (
                                    len(op.output(key)) == 1
                                    and op.output(key)[0] == counter_var.name
                                ):
                                    self.startup_program.global_block().ops[
                                        i
                                    ]._set_attr(
                                        'value', float(0.0 - self.trainer_num)
                                    )
1
123malin 已提交
2847
                    for var in all_trainer_counter_inputs:
2848 2849 2850 2851
                        if var.name == "%s.trainer_%d" % (
                            counter_var.name,
                            self.trainer_id,
                        ):
1
123malin 已提交
2852 2853 2854 2855 2856 2857 2858
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
2859 2860 2861 2862
                            initializer=initializer.Constant(1),
                        )
                    op_role_attr_name = (
                        core.op_proto_and_checker_maker.kOpRoleAttrName()
1
123malin 已提交
2863 2864 2865 2866 2867 2868 2869
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
2870 2871
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE},
                    )
2872 2873 2874 2875 2876
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2877 2878 2879 2880
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2881
            if self._is_optimizer_op(op):
2882 2883 2884 2885
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2886
        block = self.origin_program.global_block()
2887 2888 2889 2890 2891
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2892

2893 2894 2895 2896
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
2897 2898 2899 2900 2901 2902
                if (
                    op1 != op2
                    and self._is_op_connected(op1, op2)
                    and not self._is_optimizer_op(op1)
                    and not self._is_optimizer_op(op2)
                ):
2903 2904 2905 2906 2907 2908
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2909 2910
                    # we only need to append op for once
                    break
2911
        return lr_ops
Y
Yancey1989 已提交
2912

W
Wu Yi 已提交
2913 2914 2915 2916 2917
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
2918 2919 2920
        if op_maker.kOpRoleAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(optimize_role):
W
Wu Yi 已提交
2921 2922 2923
            return True
        return False

Y
Yancey1989 已提交
2924
    def _get_optimize_pass(self):
2925
        """
2926
        Get optimizer operators, parameters and gradients from origin_program
2927 2928
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2929
            params_grads (dict): parameter->gradient.
2930
        """
Y
Yancey1989 已提交
2931 2932 2933
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2934 2935
        # tmp set to dedup
        optimize_params = set()
2936
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2937
        for op in block.ops:
W
Wu Yi 已提交
2938
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2939
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
2940
                # delete clip op from opt_ops when run in Parameter Server mode
2941 2942 2943 2944 2945 2946
                if (
                    OP_NAME_SCOPE in op.all_attrs()
                    and CLIP_OP_NAME_SCOPE in op.attr(OP_NAME_SCOPE)
                    and self.config.mode != "nccl2"
                    and self.config.mode != "collective"
                ):
C
Chengmo 已提交
2947 2948
                    op._set_attr(
                        "op_role",
2949 2950
                        int(core.op_proto_and_checker_maker.OpRole.Backward),
                    )
C
Chengmo 已提交
2951
                    continue
Y
Yancey1989 已提交
2952
                opt_ops.append(op)
2953 2954 2955 2956 2957 2958
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2959 2960 2961 2962 2963 2964
                        params_grads.append(
                            [
                                origin_var_dict[param_name],
                                origin_var_dict[grad_name],
                            ]
                        )
Y
Yancey1989 已提交
2965 2966
            else:
                pass
C
Chengmo 已提交
2967 2968 2969 2970 2971 2972

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2973
        return opt_ops, params_grads
C
Chengmo 已提交
2974 2975

    def _get_distribute_update_vars(self):
2976
        # TODO(chengmo): find more powerful and simple way to deal with these special situation
C
Chengmo 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads