distribute_transpiler.py 116.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
tianshuo78520a 已提交
17
2. rename split grad variables to add trainer_id suffix ".trainer_%d".
18
3. modify trainer program add split_op to each grad variable.
T
tianshuo78520a 已提交
19 20 21
4. append send_op to send split variables to server and
5. add recv_op to fetch params(split blocks or origin param) from server.
6. append concat_op to merge split blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

1
123malin 已提交
31
import os
T
tangwei12 已提交
32
import sys
T
typhoonzero 已提交
33
import math
T
tangwei12 已提交
34 35
from functools import reduce

36
import collections
Q
Qiao Longfei 已提交
37
import logging
38

T
tangwei12 已提交
39 40
import numpy as np

41
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
42
from .. import core, framework, unique_name, initializer
43 44 45 46 47 48 49 50
from ..framework import (
    Program,
    default_main_program,
    default_startup_program,
    Block,
    Parameter,
    grad_var_name,
)
T
tangwei12 已提交
51 52
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
53
from ..distribute_lookup_table import find_distributed_lookup_table
54
from . import collective
55

56 57
LOOKUP_TABLE_TYPE = ["lookup_table", "lookup_table_v2"]
LOOKUP_TABLE_GRAD_TYPE = ["lookup_table_grad", "lookup_table_v2_grad"]
C
Chengmo 已提交
58 59
OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
60
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
61 62 63
RPC_OP_ROLE_ATTR_NAME = (
    op_role_attr_name
) = core.op_proto_and_checker_maker.kOpRoleAttrName()
X
fix  
Xin Pan 已提交
64
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
65
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
66 67 68 69 70 71
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


1
123malin 已提交
72 73 74 75 76 77 78
class DistributedMode:
    SYNC = 0
    ASYNC = 1
    HALF_ASYNC = 2
    GEO = 3


79 80 81
def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
82 83


T
typhoonzero 已提交
84 85 86 87 88 89
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
90

T
typhoonzero 已提交
91 92
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
93 94


95 96 97 98
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
99
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
100
    """
101 102 103 104 105 106
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
107
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
108 109 110

    Args:
        var_list (list): List of variables.
111 112
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
T
tianshuo78520a 已提交
113
        min_block_size (int): Minimum split block size.
114
    Returns:
115
        blocks (list[(varname, block_id, current_block_size)]): A list
116
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
117 118 119
    """
    blocks = []
    for var in var_list:
120
        split_count = slice_count
T
typhoonzero 已提交
121 122 123 124
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
125
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
126 127 128 129 130 131 132 133 134
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
135
        # update split_count after aligning
T
typhoonzero 已提交
136
        split_count = int(math.ceil(var_numel / float(block_size)))
137
        for block_id in range(split_count):
138 139 140
            curr_block_size = min(
                block_size, var_numel - ((block_id) * block_size)
            )
T
typhoonzero 已提交
141 142 143 144 145
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
146 147
class DistributeTranspilerConfig(object):
    """
148
        :api_attr: Static Graph
S
swtkiwi 已提交
149

150
    A configuration class that provide support for transpiler distributed jobs.
151 152 153
    Some important parameters are explained as follows:


H
haowang101779990 已提交
154 155
    .. py:attribute:: slice_var_up (bool)

156
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
157 158 159

    .. py:attribute:: split_method (PSDispatcher)

160 161 162 163
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
164 165 166

    .. py:attribute:: min_block_size (int)

T
tianshuo78520a 已提交
167
          Minimum number of split elements in block, default is 8192.
H
haowang101779990 已提交
168 169

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
tianshuo78520a 已提交
170
          We can use bandwidth efficiently when data size is larger than 2MB.If you
171 172 173 174
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
175

176 177 178
    Examples:
        .. code-block:: python

179 180 181
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

182 183
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
184 185
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
186 187 188 189 190
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
191
    enable_dc_asgd = False
192
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
193
    mode = "pserver"
194
    print_log = False
W
Wu Yi 已提交
195
    wait_port = True
Q
Qiao Longfei 已提交
196
    # split the send recv var in runtime
1
123malin 已提交
197 198
    __runtime_split_send_recv = False
    __sync_mode = True
G
gongweibao 已提交
199

200 201
    # half_async
    half_async = False
T
tangwei12 已提交
202
    completely_not_async = False
203

204 205 206 207
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

208
    nccl_comm_num = 1
209 210
    # The picture here illustrates the principle:
    # https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
211
    use_hierarchical_allreduce = False
212
    # Nccl ranks in a node when use hierarchical allreduce, it's set to gpu cards' number in most cases.
213 214
    hierarchical_allreduce_inter_nranks = 0

215
    # if mode is collective
216
    # supported modes: grad_allreduce, local_sgd
217 218
    collective_mode = None

219 220 221 222 223
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
1
123malin 已提交
224
        return self.__runtime_split_send_recv
225 226 227 228 229

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
1
123malin 已提交
230
        if value and self.__sync_mode:
231 232 233
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
1
123malin 已提交
234
        self.__runtime_split_send_recv = value
235 236 237

    @property
    def sync_mode(self):
1
123malin 已提交
238
        return self.__sync_mode
239 240 241 242 243

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
1
123malin 已提交
244
        if value and self.__runtime_split_send_recv:
245 246 247
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
1
123malin 已提交
248 249 250 251 252 253
        self.__sync_mode = value


class ServerRuntimeConfig(object):
    def __init__(self):
        self._rpc_send_thread_num = int(
254 255
            os.getenv("FLAGS_rpc_send_thread_num", "12")
        )
1
123malin 已提交
256
        self._rpc_get_thread_num = int(
257 258
            os.getenv("FLAGS_rpc_get_thread_num", "12")
        )
1
123malin 已提交
259
        self._rpc_prefetch_thread_num = int(
260 261
            os.getenv("FLAGS_rpc_prefetch_thread_num", "12")
        )
262

G
gongweibao 已提交
263

Y
gen rst  
yi.wu 已提交
264
class DistributeTranspiler(object):
Y
yi.wu 已提交
265
    """
266
        :api_attr: Static Graph
S
swtkiwi 已提交
267

Y
yi.wu 已提交
268 269 270
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
271
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
272

W
Wu Yi 已提交
273 274 275 276 277 278 279 280 281
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
282 283 284 285

    Examples:
        .. code-block:: python

286 287
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
288 289 290 291 292 293 294 295
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
296 297 298 299 300 301
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
302
            role = "PSERVER"
T
Tink_Y 已提交
303 304 305 306 307 308
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
309
                                                                pserver_program)
T
Tink_Y 已提交
310 311 312 313
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
314 315
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
316 317
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
318
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
319
            t = fluid.DistributeTranspiler(config=config)
320
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
321
            exe = fluid.ParallelExecutor(
322 323 324
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
325 326
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
327
    """
Y
Yancey1989 已提交
328

G
gongweibao 已提交
329 330 331 332 333
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()
1
123malin 已提交
334
        self._set_server_config()
G
gongweibao 已提交
335 336 337 338

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

T
tangwei12 已提交
339
        if self.config.sync_mode or self.config.completely_not_async:
1
123malin 已提交
340 341 342 343 344 345
            self.distributed_mode = DistributedMode.SYNC
        elif self.config.runtime_split_send_recv:
            self.distributed_mode = DistributedMode.ASYNC
        else:
            self.distributed_mode = DistributedMode.HALF_ASYNC

346 347 348
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
349 350
        assert self.config.min_block_size >= 8192
        assert self.config.split_method.__bases__[0] == PSDispatcher
1
123malin 已提交
351
        self.counter_var = None
G
gongweibao 已提交
352

1
123malin 已提交
353 354 355 356 357 358 359 360 361 362
    def _set_server_config(self, server_config=None):
        if server_config is None:
            self.server_config = ServerRuntimeConfig()
        elif isinstance(server_config, ServerRuntimeConfig):
            self.server_config = server_config
        else:
            raise TypeError(
                "In DistributeTranspiler, server_config must be an instance of ServerRuntimeConfig"
            )

363 364 365 366 367 368 369 370
    def _transpile_nccl2(
        self,
        trainer_id,
        trainers,
        current_endpoint,
        startup_program=None,
        wait_port=True,
    ):
W
Wu Yi 已提交
371 372 373 374 375 376
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
377 378
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
379 380

            nccl_id_var = startup_program.global_block().create_var(
381 382
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW
            )
383 384 385 386 387

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
388 389
                    type=core.VarDesc.VarType.RAW,
                )
390 391 392

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
393 394 395
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
396 397
                        type=core.VarDesc.VarType.RAW,
                    )
398 399 400
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
401 402
                        type=core.VarDesc.VarType.RAW,
                    )
403

W
Wu Yi 已提交
404 405 406 407 408
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
409 410 411 412 413 414 415
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce": self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks": self.config.hierarchical_allreduce_inter_nranks,
                },
            )
W
Wu Yi 已提交
416 417 418 419
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

420 421 422 423 424 425 426 427 428 429
    def _transpile_collective(
        self,
        collective_mode,
        trainer_id,
        trainers,
        current_endpoint,
        startup_program=None,
        main_program=None,
        wait_port=True,
    ):
430 431 432 433
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
434
        elif collective_mode != "single_process_multi_thread":
435 436
            raise ValueError('invalid trainers config: ' + str(trainers))

437 438 439 440
        if (
            len(endpoints) == 1
            and collective_mode != "single_process_multi_thread"
        ):
441 442 443 444 445 446 447 448 449 450
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
451
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
452
        elif collective_mode == 'local_sgd':
453
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
454 455
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
456 457 458
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

459 460 461 462 463 464 465 466
        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port,
        )
467

Q
Qiao Longfei 已提交
468
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
469
        sparse_update_ops = []
470
        sparse_update_op_types = ["lookup_table", "nce", "lookup_table_v2"]
Q
Qiao Longfei 已提交
471
        for op in main_program.global_block().ops:
472 473 474 475
            if (
                op.type in sparse_update_op_types
                and op.attr('remote_prefetch') is True
            ):
Q
Qiao Longfei 已提交
476 477 478
                sparse_update_ops.append(op)
        return sparse_update_ops

479 480 481
    def _update_remote_sparse_update_op(
        self, program, need_sparse_update_params
    ):
482 483 484

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
485 486
                param_varname
            ]
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

504
            if op_type in LOOKUP_TABLE_TYPE:
505 506 507 508 509 510 511 512 513 514 515 516
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
542
                        inputs={"Ids": inputs, 'W': w},
543 544 545 546 547 548
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
549
                            "trainer_id": self.trainer_id,
550 551 552
                            "lookup_table_version": op_type,
                        },
                    )
553 554 555 556
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
557

558 559
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
560 561 562 563 564 565

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
566

567 568 569 570 571 572 573 574 575 576
    def transpile(
        self,
        trainer_id,
        program=None,
        pservers="127.0.0.1:6174",
        trainers=1,
        sync_mode=True,
        startup_program=None,
        current_endpoint="127.0.0.1:6174",
    ):
577
        """
578
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
579 580 581 582 583 584

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
585 586
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
587 588
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
589 590 591
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
592
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
593 594
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
595 596 597
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
598 599 600 601 602 603 604 605 606 607 608

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
609
        """
610 611 612 613 614 615 616 617 618

        err_msg = """

API is deprecated since 2.0.0 Please use FleetAPI instead.
WIKI: https://github.com/PaddlePaddle/Fleet/blob/develop/markdown_doc/transpiler

        """
        print(err_msg, file=sys.stderr)

619 620
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
621 622
        if startup_program is None:
            startup_program = default_startup_program()
623
        self.origin_program = program
W
Wu Yi 已提交
624 625
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
626

W
Wu Yi 已提交
627
        if self.config.mode == "nccl2":
628
            assert isinstance(trainers, str)
629
            self.origin_program._trainers_endpoints = trainers.split(",")
630
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
631 632 633
            self.origin_program._use_hierarchical_allreduce = (
                self.config.use_hierarchical_allreduce
            )
634 635 636 637 638
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
639 640
                    self.config.hierarchical_allreduce_inter_nranks = (
                        core.get_cuda_device_count()
641 642
                    )

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
                assert (
                    trainers_num
                    > self.config.hierarchical_allreduce_inter_nranks
                ), "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(
                    trainers_num,
                    self.config.hierarchical_allreduce_inter_nranks,
                )

                assert (
                    trainers_num
                    % self.config.hierarchical_allreduce_inter_nranks
                    == 0
                ), "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(
                    trainers_num,
                    self.config.hierarchical_allreduce_inter_nranks,
                )

                self.origin_program._hierarchical_allreduce_inter_nranks = int(
                    self.config.hierarchical_allreduce_inter_nranks
                )
663

664 665 666 667 668 669 670
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program,
                wait_port=self.config.wait_port,
            )
W
Wu Yi 已提交
671 672
            return

673 674 675 676 677 678 679 680
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
681 682
                wait_port=self.config.wait_port,
            )
683 684
            return

685
        self.trainer_num = trainers
686
        self.sync_mode = sync_mode
687 688 689
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
690
        self.vars_overview = VarsDistributed()
691 692
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
693
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
694
        self.table_name = find_distributed_lookup_table(self.origin_program)
695
        self.has_distributed_lookup_table = self.table_name is not None
696
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
697
        self.grad_name_to_param_name = dict()
698 699
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
700
            self.grad_name_to_param_name[grad_var.name] = param_var.name
701

Q
Qiao Longfei 已提交
702
        # get all sparse update ops
Q
Qiao Longfei 已提交
703
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
704 705
            self.origin_program
        )
Q
Qiao Longfei 已提交
706
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
707
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
708
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
709

T
tangwei12 已提交
710 711 712
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
713
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
714
        self.origin_program._is_chief = self.trainer_id == 0
715 716 717
        self.origin_program._distributed_lookup_table = (
            self.table_name if self.table_name else None
        )
T
tangwei12 已提交
718

T
tianshuo78520a 已提交
719 720
        # split and create vars, then put split vars in dicts for later use.
        # step 1: split and create vars, then put split vars in dicts for later use.
G
gongweibao 已提交
721
        self._init_splited_vars()
722

G
gongweibao 已提交
723
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
724
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
725
        send_vars = []
726 727 728 729 730 731

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
732
        grad_var_mapping_items = list(self.grad_var_mapping.items())
733

G
gongweibao 已提交
734
        if not self.config.slice_var_up:
735 736
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
737

738
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
739

740
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
741
            eplist = ps_dispatcher.dispatch(splited_vars)
742

G
gongweibao 已提交
743
            if not self.config.slice_var_up:
744
                assert len(splited_vars) == 1
745

746
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
747
            if len(splited_vars) == 1:
748
                splited_grad_varname = splited_vars[0].name
749 750 751
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True
                )
752

Y
Yancey1989 已提交
753
            elif len(splited_vars) > 1:
754
                orig_var = program.global_block().vars[splited_grad_varname]
755 756 757
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True
                )
758

Q
Qiao Longfei 已提交
759
                if not self.config.runtime_split_send_recv:
760 761 762
                    self._insert_split_op(
                        program, orig_var, index, splited_vars
                    )
Q
Qiao Longfei 已提交
763
                    index += 1
Y
Yancey1989 已提交
764
            else:
765
                AssertionError(
766 767 768
                    "Can not insert the send op by original " "variable name :",
                    splited_grad_varname,
                )
Y
Yancey1989 已提交
769

770 771 772 773 774 775 776
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
777
            dummy_output = program.global_block().create_var(
778 779
                name=framework.generate_control_dev_var_name()
            )
780
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
781

Q
Qiao Longfei 已提交
782 783 784 785 786
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
T
tangwei12 已提交
787

788
                if self.config.completely_not_async and self.trainer_num > 1:
T
tangwei12 已提交
789 790 791 792 793 794
                    send_varnames = [
                        "{}.trainer_{}".format(var.name, self.trainer_id)
                        for var in splited_vars
                    ]
                else:
                    send_varnames = [var.name for var in splited_vars]
Q
Qiao Longfei 已提交
795 796 797 798 799
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

T
tianshuo78520a 已提交
800 801
            # get send op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name (split_by_ref and send
W
Wu Yi 已提交
802 803
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
804
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
805
                index=index + 1,
806
                type="send",
Q
Qiao Longfei 已提交
807
                inputs={"X": send_input_vars},
808
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
809
                attrs={
810 811 812 813
                    "epmap": eplist,
                    "sections": sections,
                    "send_varnames": send_varnames,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
814 815
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
816 817 818 819
                        splited_grad_varname,
                    ],
                },
            )
Y
update  
Yancey1989 已提交
820 821
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
822

823
        send_barrier_out = program.global_block().create_var(
824 825
            name=framework.generate_control_dev_var_name()
        )
826 827
        if self.has_distributed_lookup_table:
            self.grad_name_to_send_dummy_out[
828 829 830 831
                self.table_name
            ] = program.global_block().create_var(
                name=framework.generate_control_dev_var_name()
            )
832
        input_deps = list(self.grad_name_to_send_dummy_out.values())
833

834
        if not self.sync_mode:
1
123malin 已提交
835 836 837
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
838 839
                    name=framework.generate_control_dev_var_name()
                )
1
123malin 已提交
840
                if self.config.runtime_split_send_recv:
841
                    # async mode, using communicator to merge and send
1
123malin 已提交
842 843 844 845 846 847 848 849 850
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
851 852 853 854 855 856 857 858 859 860 861 862
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.counter_var.name,
                            self.counter_var.name,
                        ],
                    },
                )
863 864 865 866 867
                input_deps.append(decay_dummy_output)

        if self.sync_mode:
            fetch_barrier_input = []

868 869 870 871 872 873 874 875 876 877 878
            program.global_block().append_op(
                type="send_barrier",
                inputs={"X": list(input_deps)},
                outputs={"Out": send_barrier_out},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    "half_async": False,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                },
            )
879 880 881 882 883 884 885 886 887 888 889 890

            fetch_barrier_input.append(send_barrier_out)
        else:
            if self.config.runtime_split_send_recv and self.config.half_async:
                program.global_block().append_op(
                    type="send_barrier",
                    inputs={"X": list(input_deps)},
                    outputs={"Out": send_barrier_out},
                    attrs={
                        "endpoints": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        "half_async": True,
891 892 893
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                    },
                )
Y
Yancey1989 已提交
894

G
gongweibao 已提交
895
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
896
        recv_vars = []
Y
update  
Yancey1989 已提交
897
        for _, var in enumerate(send_vars):
898
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
899
        ps_dispatcher.reset()
Y
Yancey1989 已提交
900 901
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
902
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
903 904
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
905

906
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
907 908
                recv_vars[i].name
            )
909 910
            distributed_var.endpoint = ep

911 912
        need_sparse_update_params = {}

Y
Yancey1989 已提交
913
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
914
        all_recv_outputs = []
915
        for param_varname, splited_var in self.param_var_mapping.items():
Y
Yancey1989 已提交
916
            eps = []
Q
Qiao Longfei 已提交
917
            table_names = []
Y
Yancey1989 已提交
918 919 920
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
921
                table_names.append(var.name)
W
Wu Yi 已提交
922 923 924 925
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
926
                recv_dep_in = self.grad_name_to_send_dummy_out[
927 928
                    self.param_name_to_grad_name[param_varname]
                ]
Q
Qiao Longfei 已提交
929

T
tianshuo78520a 已提交
930 931
            # get recv op_role_var, if not split, the grad should have .trainer suffix
            # if split, grad should be the original grad var name. ParallelExecutor
W
Wu Yi 已提交
932 933 934 935 936 937 938
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
939
            if param_varname in self.sparse_param_to_height_sections:
940
                for table_name in table_names:
941 942 943 944 945
                    distributed_var = (
                        self.vars_overview.get_distributed_var_by_slice(
                            table_name
                        )
                    )
946 947
                    distributed_var.vtype = "RemotePrefetch"

948
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
949
            else:
Q
Qiao Longfei 已提交
950 951 952
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
953
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
954
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
955
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
956

Q
Qiao Longfei 已提交
957 958 959 960 961
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
962 963 964 965 966 967 968 969 970 971
                        "epmap": eps,
                        "recv_varnames": recv_varnames,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            param_varname,
                            recv_op_role_var_name,
                        ],
                    },
                )
T
typhoonzero 已提交
972

973 974
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
975
        if self.sync_mode:
W
Wu Yi 已提交
976
            # form a WAW dependency
977 978 979 980 981 982 983 984 985 986
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={"X": fetch_barrier_input},
                outputs={"Out": all_recv_outputs},
                attrs={
                    "endpoints": pserver_endpoints,
                    "trainer_id": self.trainer_id,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                },
            )
Y
Yancey1989 已提交
987

988
        for param_varname, splited_var in self.param_var_mapping.items():
989 990
            if len(splited_var) <= 1:
                continue
991
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
992
            if param_varname not in self.sparse_param_to_height_sections:
993
                if not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
994 995 996 997 998 999
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
1000 1001 1002
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE,
                        },
                    )
T
typhoonzero 已提交
1003

G
gongweibao 已提交
1004 1005
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

1006
        if self.has_distributed_lookup_table:
1007 1008 1009
            self._replace_lookup_table_op_with_prefetch(
                program, pserver_endpoints
            )
Y
Yancey1989 已提交
1010
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
1011

1012 1013 1014
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
1015 1016 1017 1018 1019
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
1020 1021 1022 1023
            if (
                op.type in sparse_update_op_types
                and op.attr('is_sparse') is True
            ):
T
tangwei12 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
1043 1044 1045
                raise ValueError(
                    "table init op num should be 1, now is " + str(init_op_num)
                )
T
tangwei12 已提交
1046 1047 1048 1049 1050
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
1051 1052
                attrs={"shape": table_init_op.attr('shape')},
            )
T
tangwei12 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
1091
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
1092
        """
1093
        Get transpiled trainer side program. The program on trainer side compared with origin program
C
Chengmo 已提交
1094 1095 1096
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
1097
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op``
1098

C
Chengmo 已提交
1099
        Args:
1100
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program,
C
Chengmo 已提交
1101
            default is True
Y
yi.wu 已提交
1102 1103 1104

        Returns:
            Program: trainer side program.
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
1117
        """
T
typhoonzero 已提交
1118
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
1119
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
1120

T
tangwei12 已提交
1121 1122 1123 1124
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
1125 1126
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
1127
        self._delete_trainer_optimizer(is_startup=False)
1128

1129
        self.origin_program.__str__()
T
tangwei12 已提交
1130
        self.startup_program.__str__()
G
gongweibao 已提交
1131

W
Wu Yi 已提交
1132 1133 1134
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

1135
        return self.origin_program
T
typhoonzero 已提交
1136

W
Wu Yi 已提交
1137
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
1138 1139 1140 1141
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
1142
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
1143
            eplist (list): A list of strings indicating
G
gongweibao 已提交
1144 1145 1146 1147

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
1148
        startup_program = self.startup_program
G
gongweibao 已提交
1149 1150 1151

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
1152 1153 1154
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
1155
        # self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1156

1157
        for varname, splited_var in self.param_var_mapping.items():
T
tangwei12 已提交
1158 1159
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
1176 1177
                    lod_level=var.lod_level,
                )
G
gongweibao 已提交
1178 1179 1180

            op = startup_program.global_block().append_op(
                type="recv",
1181
                inputs={"X": []},
G
gongweibao 已提交
1182 1183 1184
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1185
                    "trainer_id": self.trainer_id,
1186 1187 1188
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                },
            )
G
gongweibao 已提交
1189

W
Wu Yi 已提交
1190
        fetch_barrier_out = startup_program.global_block().create_var(
1191 1192
            name=framework.generate_control_dev_var_name()
        )
G
gongweibao 已提交
1193 1194 1195
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1196
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1197 1198
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1199
                "trainer_id": self.trainer_id,
1200 1201 1202
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
            },
        )
G
gongweibao 已提交
1203

1204
        for varname, splited_var in self.param_var_mapping.items():
T
tangwei12 已提交
1205 1206
            if varname in sparse_table_names:
                continue
T
tianshuo78520a 已提交
1207
            # add concat ops to merge split parameters received from parameter servers.
G
gongweibao 已提交
1208 1209
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1210
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1211
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1212 1213
                orig_param = startup_program.global_block().vars[varname]
            else:
1214 1215 1216
                origin_param_var = self.origin_program.global_block().vars[
                    varname
                ]
W
Wu Yi 已提交
1217 1218 1219 1220 1221
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
1222 1223
                    shape=origin_param_var.shape,
                )
G
gongweibao 已提交
1224 1225 1226 1227
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
1228 1229
                attrs={"axis": 0},
            )
G
gongweibao 已提交
1230 1231 1232

        return startup_program

T
typhoonzero 已提交
1233 1234
    def get_pserver_program(self, endpoint):
        """
1235
        Get parameter server side program.The program on pserver side compared with origin program
C
Chengmo 已提交
1236 1237
        has following difference:

1238
            - Only the following op is included: optimize-related op and communication-related op
C
Chengmo 已提交
1239 1240
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1241

Y
yi.wu 已提交
1242 1243
        Args:
            endpoint (str): current parameter server endpoint.
1244

Y
yi.wu 已提交
1245 1246
        Returns:
            Program: the program for current parameter server to run.
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1261
        """
Y
yi.wu 已提交
1262 1263 1264 1265
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1266 1267 1268
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1269 1270
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1271
        pserver_program.random_seed = self.origin_program.random_seed
1272 1273
        pserver_program._copy_dist_param_info_from(self.origin_program)

1274
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1275 1276 1277 1278 1279 1280 1281 1282
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1283 1284 1285 1286 1287
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1288 1289
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
            single_trainer_var = pserver_program.global_block().create_var(
                name=orig_var_name,
                persistable=True,
                type=v.type,
                dtype=v.dtype,
                shape=v.shape,
            )
            if (
                self.sync_mode
                or self.config.completely_not_async
                and self.trainer_num > 1
            ):
1302
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1303 1304 1305 1306 1307
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
1308 1309
                        shape=v.shape,
                    )
T
typhoonzero 已提交
1310 1311 1312
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1313

Q
qiaolongfei 已提交
1314
        # step 3
1315
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1316 1317 1318
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1319
        # step 3.2
T
typhoonzero 已提交
1320 1321 1322 1323
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1324
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
1325 1326
                endpoint, op
            ):
T
typhoonzero 已提交
1327
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1328
        # step 3.3
W
Wu Yi 已提交
1329 1330
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
1331
            assert self.sync_mode == False
W
Wu Yi 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
1343 1344
                        dtype=p.dtype,
                    )
W
Wu Yi 已提交
1345 1346 1347
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1348
        # Iterate through the ops, and if an op and the optimize ops
1349
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1350
        # append it into the sub program.
T
typhoonzero 已提交
1351 1352 1353

        global_ops = []

1354 1355 1356
        # sparse grad name to param name
        sparse_grad_to_param = []

1357 1358 1359
        def __append_optimize_op__(
            op, block, grad_to_block_id, merged_var, lr_ops
        ):
1360
            if self._is_optimizer_op(op):
1361 1362 1363 1364 1365 1366 1367 1368 1369
                self._append_pserver_ops(
                    block,
                    op,
                    endpoint,
                    grad_to_block_id,
                    self.origin_program,
                    merged_var,
                    sparse_grad_to_param,
                )
Y
wip  
yi.wu 已提交
1370
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1371
                self._append_pserver_non_opt_ops(block, op)
1372

Y
Yancey1989 已提交
1373
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1374 1375 1376 1377 1378 1379 1380 1381
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1382
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1383 1384 1385

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1386
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1387 1388

            # clone ops
Y
Yancey1989 已提交
1389 1390
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1391
                # clone sub_block of op
Y
Yancey1989 已提交
1392
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1393 1394

            # reset the block of op
W
Wu Yi 已提交
1395
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1396

1397
        # append lr decay ops to the child block if exists
1398
        lr_ops = self._get_lr_ops()
1399 1400
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1401 1402

        lr_decay_block_id = -1
1403
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1404
            lr_decay_block = pserver_program._create_block(
1405 1406
                pserver_program.num_blocks - 1
            )
1407
            optimize_blocks.append(lr_decay_block)
1408
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1409
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1410
                # append sub blocks to pserver_program in lr_decay_op
1411 1412 1413
                __clone_lr_op_sub_block__(
                    cloned_op, pserver_program, lr_decay_block
                )
1414
            lr_decay_block_id = lr_decay_block.idx
1415

T
typhoonzero 已提交
1416
        # append op to the current block
Q
qiaolongfei 已提交
1417
        grad_to_block_id = []
Q
qiaolongfei 已提交
1418
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1419
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1420
            per_opt_block = pserver_program._create_block(pre_block_idx)
1421
            optimize_blocks.append(per_opt_block)
1422
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1423
            # append grad merging ops before clip and weight decay
1424 1425
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1426
            for _, op in enumerate(self.optimize_ops):
1427
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1428
                # merged_var should be the input var name of L2Decay
1429
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
1430 1431 1432 1433
                if (
                    op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    == optimize_target_param_name
                ):
1434
                    merged_var = self._append_pserver_grad_merge_ops(
1435 1436 1437 1438 1439 1440
                        per_opt_block,
                        grad_varname_for_block,
                        endpoint,
                        grad_to_block_id,
                        self.origin_program,
                    )
1441 1442 1443 1444 1445
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
                    if (
                        op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                        == optimize_target_param_name
                        and op not in global_ops
                    ):
                        log(
                            "append opt op: ",
                            op.type,
                            op.input_arg_names,
                            merged_var,
                        )
                        __append_optimize_op__(
                            op,
                            per_opt_block,
                            grad_to_block_id,
                            merged_var,
                            lr_ops,
                        )
T
typhoonzero 已提交
1464

1465
        # dedup grad to ids list
W
Wu Yi 已提交
1466
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1467
        # append global ops
1468
        if global_ops:
W
Wu Yi 已提交
1469
            opt_state_block = pserver_program._create_block(
1470 1471
                pserver_program.num_blocks - 1
            )
1472
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1473
            for glb_op in global_ops:
1474 1475 1476
                __append_optimize_op__(
                    glb_op, opt_state_block, grad_to_block_id, None, lr_ops
                )
T
typhoonzero 已提交
1477

1478
        # process distributed lookup_table
Q
qiaolongfei 已提交
1479
        prefetch_var_name_to_block_id = []
1480 1481
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1482
            table_opt_block = self._create_table_optimize_block(
1483 1484
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id
            )
1485
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1486
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1487 1488
                pserver_index, pserver_program, table_opt_block
            )
T
tangwei12 已提交
1489
            checkpoint_block_id = self._create_checkpoint_save_block(
1490 1491
                pserver_program, table_opt_block.idx
            )
1492

T
tangwei12 已提交
1493
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1494
            prefetch_var_name_to_block_id.extend(
1495 1496
                lookup_table_var_name_to_block_id
            )
1497

1498
        if len(optimize_blocks) == 0:
1499 1500 1501
            logging.warn(
                "pserver [" + str(endpoint) + "] has no optimize block!!"
            )
1502 1503 1504 1505 1506 1507
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1508
        attrs = {
1509
            "optimize_blocks": optimize_blocks,
1510
            "endpoint": endpoint,
1511
            "pserver_id": self.pserver_endpoints.index(endpoint),
1512
            "Fanin": self.trainer_num,
1
123malin 已提交
1513
            "distributed_mode": self.distributed_mode,
Y
Yancey1989 已提交
1514
            "grad_to_block_id": grad_to_block_id,
1515
            "sparse_grad_to_param": sparse_grad_to_param,
1516
            "lr_decay_block_id": lr_decay_block_id,
1
123malin 已提交
1517 1518
            "rpc_get_thread_num": self.server_config._rpc_get_thread_num,
            "rpc_send_thread_num": self.server_config._rpc_send_thread_num,
1519
            "rpc_prefetch_thread_num": self.server_config._rpc_prefetch_thread_num,
1520
        }
T
tangwei12 已提交
1521 1522

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1523
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1524 1525
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1526

T
tangwei12 已提交
1527 1528
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
1529 1530
                'prefetch_var_name_to_block_id'
            ] = prefetch_var_name_to_block_id
T
tangwei12 已提交
1531

T
typhoonzero 已提交
1532
        # step5 append the listen_and_serv op
1533 1534 1535 1536 1537 1538
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs=attrs,
        )
1539

W
Wu Yi 已提交
1540
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1541 1542
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1543 1544
        return pserver_program

W
Wu Yi 已提交
1545 1546 1547
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
1548
        The ``main_program`` returned by this function is consistent with the
C
Chengmo 已提交
1549
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1550 1551 1552

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1553

W
Wu Yi 已提交
1554 1555
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1570 1571
        """
        pserver_prog = self.get_pserver_program(endpoint)
1572 1573 1574
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog
        )
W
Wu Yi 已提交
1575 1576
        return pserver_prog, pserver_startup

1577 1578 1579
    def get_startup_program(
        self, endpoint, pserver_program=None, startup_program=None
    ):
T
typhoonzero 已提交
1580
        """
W
Wu Yi 已提交
1581 1582
        **Deprecated**

T
typhoonzero 已提交
1583 1584 1585
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1586 1587 1588

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1589 1590
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
T
tianshuo78520a 已提交
1591
                when initializing
1592

Y
yi.wu 已提交
1593 1594
        Returns:
            Program: parameter server side startup program.
1595 1596

        Examples:
1597 1598
            .. code-block:: python

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1610 1611
        """
        s_prog = Program()
W
Wu Yi 已提交
1612
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1613
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1625
        created_var_map = collections.OrderedDict()
1626
        for _, var in pserver_vars.items():
W
Wu Yi 已提交
1627
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1628 1629 1630 1631
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1632
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1633 1634
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1645 1646

            if op_on_pserver:
1647 1648 1649
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1650
                if op.type in [
1651 1652 1653 1654
                    "gaussian_random",
                    "fill_constant",
                    "uniform_random",
                    "truncated_gaussian_random",
T
typhoonzero 已提交
1655
                ]:
W
Wu Yi 已提交
1656
                    op._set_attr("shape", list(new_outputs["Out"].shape))
1657 1658 1659 1660 1661 1662
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.all_attrs(),
                )
W
Wu Yi 已提交
1663 1664 1665 1666 1667
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
1668 1669 1670 1671 1672
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar},
                )
1673

T
typhoonzero 已提交
1674 1675
        return s_prog

1676 1677
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1678
        block_suffix = "block"
1679 1680 1681
        block_idx = 0
        offset = 0
        is_slice = False
1682

1683
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1684

1685 1686
        if not block_name:
            return is_slice, block_idx, offset
1687

1688 1689 1690 1691
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1692 1693 1694
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
1695 1696 1697
            orig_dim1_flatten = reduce(
                lambda x, y: x * y, slice_vars[0].shape[1:]
            )
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
1711 1712
                    endpoint, op
                ):
1713 1714 1715 1716 1717 1718 1719 1720
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
1721 1722
                            param_name, endpoint
                        )
1723 1724
                        break
                for key in opt_op.input_names:
1725
                    if key in [
1726 1727 1728 1729 1730
                        "Param",
                        "Grad",
                        "LearningRate",
                        "Beta1Tensor",
                        "Beta2Tensor",
1731
                    ]:
1732 1733
                        continue
                    origin_var = self.origin_program.global_block().vars[
1734 1735
                        opt_op.input(key)[0]
                    ]
1736 1737
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
1738 1739
                        opt_op.type, key, origin_var.shape, dist_var.slice.shape
                    )
1740 1741 1742 1743 1744 1745 1746 1747

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
1748 1749
                            persistable=origin_var.persistable,
                        )
1750 1751 1752 1753 1754 1755 1756 1757

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
1758 1759
                            endpoint=endpoint,
                        )
1760 1761 1762 1763 1764 1765 1766 1767
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
1768 1769
                            endpoint=endpoint,
                        )
1770 1771 1772

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1773

1774 1775 1776
    def _update_dist_lookup_table_vars(
        self, param_list, grad_list, params_grads
    ):
Y
yi.wu 已提交
1777 1778 1779 1780 1781 1782 1783 1784
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
1785 1786
                grad
                for grad in grad_list
Y
yi.wu 已提交
1787 1788 1789
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
1790 1791
                param_grad
                for param_grad in params_grads
Y
yi.wu 已提交
1792 1793 1794 1795 1796 1797
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
1798 1799
                        name="%s.trainer_%d.pserver_%d"
                        % (table_grad_var.name, self.trainer_id, index),
Y
yi.wu 已提交
1800 1801
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
1802 1803
                        dtype=table_grad_var.dtype,
                    )
Y
yi.wu 已提交
1804 1805 1806 1807 1808 1809 1810 1811
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
1812 1813
                        dtype=table_grad_var.dtype,
                    )
Y
yi.wu 已提交
1814 1815 1816 1817
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1818
    def _init_splited_vars(self):
Y
yi.wu 已提交
1819
        # update these mappings for further transpile:
T
tianshuo78520a 已提交
1820 1821
        # 1. param_var_mapping: param var name -> [split params vars]
        # 2. grad_var_mapping: grad var name -> [split grads vars]
Y
yi.wu 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
1840 1841
            param_list, grad_list, self.params_grads
        )
Y
yi.wu 已提交
1842

G
gongweibao 已提交
1843
        if self.config.slice_var_up:
Y
yi.wu 已提交
1844 1845
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
            grad_blocks = slice_variable(
                grad_list,
                len(self.pserver_endpoints),
                self.config.min_block_size,
            )
            param_blocks = slice_variable(
                param_list,
                len(self.pserver_endpoints),
                self.config.min_block_size,
            )
Y
yi.wu 已提交
1856 1857 1858
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
1859 1860 1861 1862 1863 1864 1865
            grad_blocks = slice_variable(
                grad_list, 1, self.config.min_block_size
            )
            param_blocks = slice_variable(
                param_list, 1, self.config.min_block_size
            )
        assert len(grad_blocks) == len(param_blocks)
Y
yi.wu 已提交
1866

1867
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1868
        self.param_var_mapping = self._create_vars_from_blocklist(
1869 1870
            self.origin_program, param_blocks
        )
1871 1872 1873 1874 1875 1876

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                    splited_var
                )

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param",
                )
1888

1889
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1890 1891 1892
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
1893 1894
            add_trainer_suffix=self.trainer_num > 1,
        )
1895
        # dict(grad_splited_var -> param_splited_var)
1896
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1897 1898 1899
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
1900 1901 1902
            self.grad_param_mapping[
                self.grad_var_mapping[g_name][int(g_bid)]
            ] = self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1903 1904

        # create mapping of endpoint -> split var to create pserver side program
1905
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1906
        [
1907 1908
            self.param_grad_ep_mapping.update({ep: {"params": [], "grads": []}})
            for ep in self.pserver_endpoints
Y
yi.wu 已提交
1909 1910
        ]

1911
    # transpiler function for dis lookup_table
1912 1913 1914
    def _replace_lookup_table_op_with_prefetch(
        self, program, pserver_endpoints
    ):
1915
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1916
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1917 1918
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1919 1920
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1921 1922 1923 1924 1925 1926

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
1927 1928 1929 1930
                if (
                    op.type == LOOKUP_TABLE_TYPE
                    and self.table_name == op.input("W")[0]
                ):
1931
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1932 1933
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
1934 1935
                            "should set is_distributed to true"
                        )
1936 1937
                    continue_search_lookup_table_op = True

1938 1939 1940 1941 1942
                    lookup_table_op_index = (
                        lookup_table_op_index
                        if lookup_table_op_index != -1
                        else list(all_ops).index(op)
                    )
1943 1944 1945
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1946
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1947
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1948 1949

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1950
                    self.all_out_emb_vars.append(out_var)
1951 1952

                    # delete lookup_table_op
1953
                    delete_ops(program.global_block(), [op])
1954 1955 1956
                    # break for loop
                    break

S
seiriosPlus 已提交
1957 1958 1959 1960 1961
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
1962 1963
                dtype=self.all_in_ids_vars[0].dtype,
            )
S
seiriosPlus 已提交
1964 1965 1966 1967 1968 1969
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
1970 1971
                dtype=self.all_out_emb_vars[0].dtype,
            )
S
seiriosPlus 已提交
1972 1973 1974 1975 1976 1977 1978
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
1979 1980
            outputs={"Out": self.all_prefetch_input_vars},
        )
S
seiriosPlus 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
1993 1994
            },
        )
S
seiriosPlus 已提交
1995 1996 1997 1998 1999 2000 2001 2002

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
2003
                'X': self.all_prefetch_output_vars,
S
seiriosPlus 已提交
2004
            },
2005 2006
            outputs={"Out": self.all_out_emb_vars},
        )
S
seiriosPlus 已提交
2007

Y
Yancey1989 已提交
2008
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
2009
        # 2. add split_ids_op and send_op to send gradient to pservers
2010

2011 2012
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
2013
        table_grad_name = grad_var_name(self.table_name)
2014 2015 2016 2017
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
2018
                program.global_block()._insert_op(
2019 2020 2021 2022 2023
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
2024
                    outputs={"Out": self.trainer_side_table_grad_list},
2025 2026
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE},
                )
W
Wu Yi 已提交
2027
                program.global_block()._insert_op(
2028
                    index=op_index + 2,
2029
                    type="send",
2030
                    inputs={'X': self.trainer_side_table_grad_list},
2031
                    outputs={
2032 2033 2034 2035 2036
                        'Out': [
                            self.grad_name_to_send_dummy_out[self.table_name]
                        ]
                        if self.sync_mode
                        else []
2037
                    },
Y
Yancey1989 已提交
2038
                    attrs={
2039 2040 2041
                        "epmap": pserver_endpoints,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
2042 2043
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
2044 2045 2046 2047
                            table_grad_name,
                        ],
                    },
                )
2048 2049
                break

2050 2051 2052
    def _create_prefetch_block(
        self, pserver_index, pserver_program, optimize_block
    ):
2053 2054
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
2055
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
2056 2057 2058 2059 2060 2061
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
2062 2063
            dtype=trainer_ids.dtype,
        )
S
seiriosPlus 已提交
2064 2065 2066 2067 2068
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
2069 2070
            dtype=trainer_out.dtype,
        )
S
seiriosPlus 已提交
2071 2072
        prefetch_block.append_op(
            type="lookup_sparse_table",
2073
            inputs={'Ids': pserver_ids, "W": table_var},
S
seiriosPlus 已提交
2074 2075 2076 2077
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
2078 2079 2080 2081 2082 2083
                "padding_idx": -1,
            },
        )
        prefetch_var_name_to_block_id.append(
            trainer_ids.name + ":" + str(prefetch_block.idx)
        )
Q
qiaolongfei 已提交
2084
        return prefetch_var_name_to_block_id
2085

2086 2087 2088
    def _create_table_optimize_block(
        self, pserver_index, pserver_program, pre_block_idx, grad_to_block_id
    ):
2089
        # STEP: create table optimize block
2090
        table_opt_block = pserver_program._create_block(pre_block_idx)
2091
        # create table param and grad var in pserver program
2092 2093
        # create table optimize block in pserver program
        table_opt_op = [
2094 2095 2096
            op
            for op in self.optimize_ops
            if 'Param' in op.input_names
2097
            and op.input("Param")[0] == self.table_name
2098 2099
        ][0]

Y
Yancey1989 已提交
2100
        origin_param_var = self.origin_program.global_block().vars[
2101 2102
            self.table_name
        ]
T
tangwei12 已提交
2103

T
tangwei12 已提交
2104
        zero_dim = int(
2105 2106 2107 2108
            math.ceil(
                origin_param_var.shape[0] / float(len(self.pserver_endpoints))
            )
        )
T
tangwei12 已提交
2109 2110 2111
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
2112 2113
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
2114
            shape=table_shape,
Y
Yancey1989 已提交
2115 2116
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
2117 2118
            persistable=True,
        )
2119

2120 2121
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
2122
        grad_var = pserver_program.global_block()._clone_variable(
2123 2124 2125 2126
            self.origin_program.global_block().vars[
                grad_var_name(self.table_name)
            ]
        )
2127

2128
        lr_var = pserver_program.global_block()._clone_variable(
2129 2130 2131 2132
            self.origin_program.global_block().vars[
                table_opt_op.input("LearningRate")[0]
            ]
        )
2133

2134 2135 2136
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
2137
            pserver_side_table_grad_list = [
2138
                pserver_program.global_block().create_var(
2139 2140
                    name="%s.trainer_%d.pserver_%d"
                    % (table_grad_var.name, index, pserver_index),
2141 2142
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
2143 2144
                    dtype=table_grad_var.dtype,
                )
2145 2146 2147
                for index in range(self.trainer_num)
            ]

2148
            # append sum op for pserver_side_table_grad_list
2149 2150
            table_opt_block.append_op(
                type="sum",
2151
                inputs={"X": pserver_side_table_grad_list},
2152
                outputs={"Out": [grad_var]},
2153 2154
                attrs={"use_mkldnn": False},
            )
2155
        else:
T
tianshuo78520a 已提交
2156
            # in async_mode, for table gradient, it also need to be split to each parameter server
2157
            origin_grad_name = grad_var.name
2158
            splited_grad_name = self.trainer_side_table_grad_list[
2159 2160
                pserver_index
            ].name
2161
            if not splited_grad_name.startswith(origin_grad_name):
2162 2163 2164 2165 2166 2167
                raise ValueError(
                    "origin_grad_var: "
                    + splited_grad_name
                    + " grad_var:"
                    + grad_var.name
                )
W
Wu Yi 已提交
2168
            grad_var = pserver_program.global_block()._rename_var(
2169 2170
                origin_grad_name, splited_grad_name
            )
2171 2172 2173 2174

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
2175
            "LearningRate": [lr_var],
2176 2177
        }
        outputs = {"ParamOut": [param_var]}
2178
        # only support sgd now
2179 2180
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
2181 2182
            + table_opt_op.type
        )
2183
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
2184

2185 2186 2187
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

2188 2189
        return table_opt_block

T
tangwei12 已提交
2190 2191 2192 2193 2194
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

2195 2196 2197 2198 2199
        pserver_program.global_block().create_var(
            name="kLookupTablePath",
            persistable=True,
            type=core.VarDesc.VarType.RAW,
        )
T
tangwei12 已提交
2200

W
Wu Yi 已提交
2201
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
2202
        # this 'file_path' do not be used in save lookup table variable
2203 2204 2205 2206 2207 2208
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
            attrs={'file_path': "none"},
        )
T
tangwei12 已提交
2209 2210 2211

        return checkpoint_save_block.idx

2212 2213 2214
    def _create_vars_from_blocklist(
        self, program, block_list, add_trainer_suffix=False
    ):
T
typhoonzero 已提交
2215
        """
2216
        Create vars for each split.
T
typhoonzero 已提交
2217 2218
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
2219 2220 2221 2222
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
2223
        Returns:
2224
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
2225
                from original var name to each var split.
T
typhoonzero 已提交
2226
        """
2227 2228

        # varname->[(block_id, current_block_size)]
2229
        block_map = collections.OrderedDict()
2230

2231
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
2232 2233
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
2234
            if varname not in block_map:
T
typhoonzero 已提交
2235
                block_map[varname] = []
2236
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
2237

2238
        for varname, split in block_map.items():
T
typhoonzero 已提交
2239
            orig_var = program.global_block().var(varname)
T
tianshuo78520a 已提交
2240
            if len(split) == 1:
2241
                if self.sync_mode and add_trainer_suffix:
2242 2243 2244 2245
                    new_var_name = "%s.trainer_%d" % (
                        orig_var.name,
                        self.trainer_id,
                    )
W
Wu Yi 已提交
2246
                    program.global_block()._rename_var(varname, new_var_name)
2247 2248 2249
                    var_mapping[varname] = [
                        program.global_block().var(new_var_name)
                    ]
T
typhoonzero 已提交
2250
                else:
2251 2252 2253
                    var_mapping[varname] = [
                        program.global_block().var(orig_var.name)
                    ]
T
typhoonzero 已提交
2254
                continue
T
typhoonzero 已提交
2255
            var_mapping[varname] = []
T
typhoonzero 已提交
2256 2257 2258 2259
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
2260

T
tianshuo78520a 已提交
2261
            for i, block in enumerate(split):
T
typhoonzero 已提交
2262
                size = block[1]
M
minqiyang 已提交
2263
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
2264 2265 2266
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
2267
                new_var_name = ""
2268
                if self.sync_mode and add_trainer_suffix:
2269 2270 2271 2272 2273
                    new_var_name = "%s.block%d.trainer_%d" % (
                        varname,
                        i,
                        self.trainer_id,
                    )
T
typhoonzero 已提交
2274
                else:
2275
                    new_var_name = "%s.block%d" % (varname, i)
T
typhoonzero 已提交
2276
                var = program.global_block().create_var(
T
typhoonzero 已提交
2277 2278
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2279
                    dtype=orig_var.dtype,
2280
                    type=orig_var.type,
2281 2282
                    shape=splited_shape,
                )  # flattend split var
T
typhoonzero 已提交
2283
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2284
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2285
        return var_mapping
T
done  
typhoonzero 已提交
2286

2287
    def _clone_var(self, block, var, persistable=True):
2288 2289 2290 2291 2292 2293 2294 2295
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=persistable,
        )
T
done  
typhoonzero 已提交
2296

Q
Qiao Longfei 已提交
2297 2298 2299 2300 2301 2302 2303
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2304
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2305 2306
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2307
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2308
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2309
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2310
                self.sparse_param_to_height_sections[
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
                    sparse_param_name
                ] = height_sections
            program.global_block()._insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE,
                },
            )
Y
update  
Yancey1989 已提交
2323
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
            program.global_block()._insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={
                    "sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE,
                },
            )
Y
update  
Yancey1989 已提交
2334
        else:
2335 2336 2337
            AssertionError(
                "Variable type should be in set " "[LOD_TENSOR, SELECTED_ROWS]"
            )
T
done  
typhoonzero 已提交
2338

2339 2340 2341
    def _get_optimizer_input_shape(
        self, op_type, varkey, orig_shape, param_shape
    ):
T
typhoonzero 已提交
2342 2343
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2344
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2357
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2358 2359
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2360 2361
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2362
                return param_shape
2363 2364 2365
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2366 2367 2368
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2369 2370
        elif op_type == "sgd":
            pass
2371 2372
        else:
            raise ValueError(
2373 2374
                "Not supported optimizer for distributed training: %s" % op_type
            )
T
typhoonzero 已提交
2375 2376
        return orig_shape

2377 2378
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2379
        orig_var_name = ""
2380 2381 2382 2383
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
2384
            trainer_part = varname[trainer_idx + 1 :]
2385 2386 2387 2388
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
2389
            block_part = varname[block_index + 1 : trainer_idx]
T
typhoonzero 已提交
2390
        else:
2391
            block_index = len(varname)
2392
        orig_var_name = varname[0 : min(block_index, trainer_idx)]
2393 2394 2395 2396 2397 2398
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

2399 2400 2401 2402 2403 2404 2405 2406
    def _append_pserver_grad_merge_ops(
        self,
        optimize_block,
        grad_varname_for_block,
        endpoint,
        grad_to_block_id,
        origin_program,
    ):
2407 2408 2409 2410
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
2411 2412 2413
            if self._orig_varname(g.name) == self._orig_varname(
                grad_varname_for_block
            ):
2414 2415 2416 2417 2418
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2419
            return None
2420
        orig_varname, block_name, trainer_name = self._get_varname_parts(
2421 2422
            grad_block.name
        )
2423 2424
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2425
        else:
2426
            merged_var_name = orig_varname
2427 2428

        merged_var = pserver_block.vars[merged_var_name]
2429
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
2430 2431 2432 2433 2434
        if (
            self.sync_mode
            or self.config.completely_not_async
            and self.trainer_num > 1
        ):
2435
            vars2merge = []
2436
            for i in range(self.trainer_num):
2437
                per_trainer_name = "%s.trainer_%d" % (merged_var_name, i)
2438
                vars2merge.append(pserver_block.vars[per_trainer_name])
2439 2440 2441 2442 2443 2444
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False},
            )
Q
qiaolongfei 已提交
2445 2446 2447 2448
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
2449 2450
                attrs={"scale": 1.0 / float(self.trainer_num)},
            )
2451
        return merged_var
T
typhoonzero 已提交
2452

W
Wu Yi 已提交
2453 2454
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
2455 2456 2457 2458 2459 2460 2461
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False,
        )
W
Wu Yi 已提交
2462
        # trainer_id_var is block local
2463 2464 2465 2466 2467 2468 2469
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False,
        )
W
Wu Yi 已提交
2470 2471 2472 2473 2474 2475

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
2476 2477 2478 2479 2480
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs, "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak},
        )
W
Wu Yi 已提交
2481 2482

        def __create_temp_var__():
2483 2484 2485 2486 2487 2488 2489
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False,
            )
W
Wu Yi 已提交
2490 2491

        o1 = __create_temp_var__()
2492 2493 2494 2495 2496
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var, "Y": local_param_bak},
            outputs={"Out": o1},
        )
W
Wu Yi 已提交
2497
        o2 = __create_temp_var__()
2498 2499 2500 2501 2502
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1, "Y": grad_var},
            outputs={"Out": o2},
        )
W
Wu Yi 已提交
2503
        o3 = __create_temp_var__()
2504 2505 2506 2507 2508
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2, "Y": grad_var},
            outputs={"Out": o3},
        )
W
Wu Yi 已提交
2509 2510
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
2511 2512 2513 2514 2515
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var, "Y": o3},
            outputs={"Out": o4},
        )
W
Wu Yi 已提交
2516 2517
        return o4

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
    def _append_pserver_ops(
        self,
        optimize_block,
        opt_op,
        endpoint,
        grad_to_block_id,
        origin_program,
        merged_var,
        sparse_grad_to_param,
    ):
2528
        program = optimize_block.program
T
typhoonzero 已提交
2529
        pserver_block = program.global_block()
2530
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2541 2542 2543 2544
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2545
        for key in opt_op.input_names:
T
typhoonzero 已提交
2546
            if key == "Grad":
W
Wu Yi 已提交
2547 2548 2549
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2550 2551 2552
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
2553 2554 2555 2556
                    if (
                        core.kNewGradSuffix() in origin_grad_name
                        and pserver_block.has_var(origin_grad_name)
                    ):
Q
Qiao Longfei 已提交
2557 2558 2559 2560
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2561
            elif key == "Param":
W
Wu Yi 已提交
2562
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2563 2564
                if not param_block:
                    return
2565 2566 2567 2568 2569 2570
                tmpvar = pserver_block.create_var(
                    name=param_block.name,
                    persistable=True,
                    dtype=param_block.dtype,
                    shape=param_block.shape,
                )
T
typhoonzero 已提交
2571
                new_inputs[key] = tmpvar
2572
            elif key == "LearningRate":
2573
                # learning rate variable has already be created by non-optimize op,
2574
                # don't create it once again.
2575
                lr_varname = opt_op.input(key)[0]
2576
                if lr_varname in pserver_block.vars:
2577 2578 2579 2580 2581 2582 2583
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
2584 2585
                        shape=origin_var.shape,
                    )
2586
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2587

T
typhoonzero 已提交
2588
        for key in opt_op.input_names:
2589
            new_shape = None
2590
            if key in [
2591 2592 2593 2594 2595
                "Param",
                "Grad",
                "LearningRate",
                "Beta1Tensor",
                "Beta2Tensor",
2596
            ]:
T
typhoonzero 已提交
2597
                continue
2598
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2599
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2600
            # update accumulator variable shape
2601 2602 2603 2604 2605 2606 2607 2608 2609
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape
            )
            tmpvar = pserver_block.create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape,
            )
T
typhoonzero 已提交
2610
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2611

2612
        # change output's ParamOut variable
2613
        outputs = self._get_output_map_from_op(
2614 2615
            self.origin_program.global_block().vars, opt_op
        )
2616
        outputs["ParamOut"] = new_inputs["Param"]
2617 2618 2619 2620 2621 2622
        optimize_block.append_op(
            type=opt_op.type,
            inputs=new_inputs,
            outputs=outputs,
            attrs=opt_op.all_attrs(),
        )
T
typhoonzero 已提交
2623

2624 2625 2626
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
2627 2628 2629 2630
                str(new_inputs["Grad"].name)
                + ":"
                + str(new_inputs["Param"].name)
            )
2631

2632 2633 2634 2635 2636 2637
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
T
tianshuo78520a 已提交
2638
            a@GRAD -> a@GRAD (a is not split)
2639
            fc_0.w_0 -> fc_0.w_0.block_0
T
tianshuo78520a 已提交
2640
            fc_0.w_0 -> fc_0.w_0 (weight is not split)
2641 2642
            _generated_var_123 -> None
        """
2643
        grad_block = None
2644
        for _, g in var_dict.items():
2645
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2646
                # skip per trainer vars
2647
                if g.name.find(".trainer_") == -1:
T
tianshuo78520a 已提交
2648
                    # only param or grads have split blocks
2649 2650 2651 2652 2653 2654
                    if (
                        self._orig_varname(g.name)
                        in self.grad_name_to_param_name
                        or self._orig_varname(g.name)
                        in self.param_name_to_grad_name
                    ):
2655 2656
                        grad_block = g
                        break
2657 2658
        return grad_block

Q
Qiyang Min 已提交
2659 2660
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
2661 2662
            self.origin_program.global_block().vars, op
        )
2663
        for key, varlist in inputs.items():
Q
Qiyang Min 已提交
2664 2665 2666 2667
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2668
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2669 2670

        outputs = self._get_output_map_from_op(
2671 2672
            self.origin_program.global_block().vars, op
        )
2673
        for key, varlist in outputs.items():
Q
Qiyang Min 已提交
2674 2675 2676 2677
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2678
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2679

2680 2681 2682
        return block.append_op(
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs()
        )
Q
Qiyang Min 已提交
2683 2684

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2685
        program = optimize_block.program
2686
        # Append the ops for parameters that do not need to be optimized/updated
2687
        inputs = self._get_input_map_from_op(
2688 2689
            self.origin_program.global_block().vars, opt_op
        )
2690
        for key, varlist in inputs.items():
2691 2692
            if not isinstance(varlist, list):
                varlist = [varlist]
2693 2694
            for i in range(len(varlist)):
                var = varlist[i]
T
tianshuo78520a 已提交
2695
                # for ops like clipping and weight decay, get the split var (xxx.block0)
2696
                # for inputs/outputs
2697
                grad_block = self._get_pserver_grad_param_var(
2698 2699
                    var, program.global_block().vars
                )
2700
                if grad_block:
2701
                    varlist[i] = grad_block
2702
                elif var.name not in program.global_block().vars:
2703 2704 2705 2706 2707
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2708

2709
        outputs = self._get_output_map_from_op(
2710 2711
            self.origin_program.global_block().vars, opt_op
        )
2712
        for key, varlist in outputs.items():
2713 2714
            if not isinstance(varlist, list):
                varlist = [varlist]
2715 2716 2717
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2718 2719
                    var, program.global_block().vars
                )
2720
                if grad_block:
2721
                    varlist[i] = grad_block
2722
                elif var.name not in program.global_block().vars:
2723 2724 2725 2726 2727
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2728

2729 2730 2731 2732 2733 2734
        return optimize_block.append_op(
            type=opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=opt_op.all_attrs(),
        )
T
typhoonzero 已提交
2735

2736 2737 2738 2739
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
2740 2741 2742
        if set(op1.desc.output_arg_names()) & set(
            op2.desc.input_arg_names()
        ) or set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2743 2744 2745 2746 2747 2748
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2749 2750
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2751 2752 2753 2754 2755 2756
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2757
    def _is_optimizer_op(self, op):
2758
        if "Param" in op.input_names and "LearningRate" in op.input_names:
2759 2760 2761 2762 2763 2764 2765
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2766
        if op.input("Param")[0] in param_names:
2767 2768 2769
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2770
                param = op.input("Param")[0]
T
typhoonzero 已提交
2771
                if same_or_split_var(n, param) and n != param:
2772 2773 2774
                    return True
            return False

T
typhoonzero 已提交
2775
    def _get_input_map_from_op(self, varmap, op):
2776
        """Returns a dict from op input name to the vars in varmap."""
2777
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2789
        """Returns a dict from op output name to the vars in varmap."""
2790
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2800 2801

    def _get_lr_ops(self):
2802 2803
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2804
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2805
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
2806 2807 2808
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or role_id == int(
                LR_SCHED_OP_ROLE_ATTR_VALUE
            ) | int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2809 2810
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
2811 2812
                        self.origin_program.global_block().vars, op
                    )
1
123malin 已提交
2813
                    outputs = self._get_output_map_from_op(
2814 2815
                        self.origin_program.global_block().vars, op
                    )
1
123malin 已提交
2816 2817 2818 2819 2820 2821 2822 2823
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
2824 2825
                            persistable=counter_var.persistable,
                        )
1
123malin 已提交
2826 2827
                        for id_ in range(self.trainer_num)
                    ]
2828
                    for i, op in enumerate(
2829 2830
                        self.startup_program.global_block().ops
                    ):
1
123malin 已提交
2831 2832
                        if op.type == 'fill_constant':
                            for key in op.output_names:
2833 2834 2835 2836 2837 2838 2839 2840 2841
                                if (
                                    len(op.output(key)) == 1
                                    and op.output(key)[0] == counter_var.name
                                ):
                                    self.startup_program.global_block().ops[
                                        i
                                    ]._set_attr(
                                        'value', float(0.0 - self.trainer_num)
                                    )
1
123malin 已提交
2842
                    for var in all_trainer_counter_inputs:
2843 2844 2845 2846
                        if var.name == "%s.trainer_%d" % (
                            counter_var.name,
                            self.trainer_id,
                        ):
1
123malin 已提交
2847 2848 2849 2850 2851 2852 2853
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
2854 2855 2856 2857
                            initializer=initializer.Constant(1),
                        )
                    op_role_attr_name = (
                        core.op_proto_and_checker_maker.kOpRoleAttrName()
1
123malin 已提交
2858 2859 2860 2861 2862 2863 2864
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
2865 2866
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE},
                    )
2867 2868 2869 2870 2871
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2872 2873 2874 2875
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2876
            if self._is_optimizer_op(op):
2877 2878 2879 2880
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2881
        block = self.origin_program.global_block()
2882 2883 2884 2885 2886
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2887

2888 2889 2890 2891
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
2892 2893 2894 2895 2896 2897
                if (
                    op1 != op2
                    and self._is_op_connected(op1, op2)
                    and not self._is_optimizer_op(op1)
                    and not self._is_optimizer_op(op2)
                ):
2898 2899 2900 2901 2902 2903
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2904 2905
                    # we only need to append op for once
                    break
2906
        return lr_ops
Y
Yancey1989 已提交
2907

W
Wu Yi 已提交
2908 2909 2910 2911 2912
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
2913 2914 2915
        if op_maker.kOpRoleAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(optimize_role):
W
Wu Yi 已提交
2916 2917 2918
            return True
        return False

Y
Yancey1989 已提交
2919
    def _get_optimize_pass(self):
2920
        """
2921
        Get optimizer operators, parameters and gradients from origin_program
2922 2923
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2924
            params_grads (dict): parameter->gradient.
2925
        """
Y
Yancey1989 已提交
2926 2927 2928
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2929 2930
        # tmp set to dedup
        optimize_params = set()
2931
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2932
        for op in block.ops:
W
Wu Yi 已提交
2933
            if self._is_opt_role_op(op):
C
Chengmo 已提交
2934
                # Todo(chengmo): Whether clip related op belongs to Optimize guard should be discussed
2935
                # delete clip op from opt_ops when run in Parameter Server mode
2936 2937 2938 2939 2940 2941
                if (
                    OP_NAME_SCOPE in op.all_attrs()
                    and CLIP_OP_NAME_SCOPE in op.attr(OP_NAME_SCOPE)
                    and self.config.mode != "nccl2"
                    and self.config.mode != "collective"
                ):
C
Chengmo 已提交
2942 2943
                    op._set_attr(
                        "op_role",
2944 2945
                        int(core.op_proto_and_checker_maker.OpRole.Backward),
                    )
C
Chengmo 已提交
2946
                    continue
Y
Yancey1989 已提交
2947
                opt_ops.append(op)
2948 2949 2950 2951 2952 2953
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2954 2955 2956 2957 2958 2959
                        params_grads.append(
                            [
                                origin_var_dict[param_name],
                                origin_var_dict[grad_name],
                            ]
                        )
Y
Yancey1989 已提交
2960 2961
            else:
                pass
C
Chengmo 已提交
2962 2963 2964 2965 2966 2967

        # designed for special situation
        special_distribute_update_vars = self._get_distribute_update_vars()
        if special_distribute_update_vars:
            params_grads = params_grads + special_distribute_update_vars

Y
Yancey1989 已提交
2968
        return opt_ops, params_grads
C
Chengmo 已提交
2969 2970

    def _get_distribute_update_vars(self):
2971
        # TODO(chengmo): find more powerful and simple way to deal with these special situation
C
Chengmo 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
        """
        This Function is used for a special model, like PyramidDnn which has pyramid hash op.
        Some Parameters don't use optimizing op to update its value, but updated in its BP process.
        In these cases, Transpilse can't find these special vars by optimizing op information.
        So we add this function and add attr "distribute_update_vars" to tell transpiler these Parameter
        need to be updated in distribute training.
        We assume these special var send and receive the same var_name.
        """
        block = self.origin_program.global_block()
        origin_var_dict = self.origin_program.global_block().vars
        params = []
        for op in block.ops:
            special_attr = "distribute_update_vars"
            if special_attr in op.all_attrs():
                if op.attr(special_attr):
                    for param_name in op.attr(special_attr).split(","):
                        params.append(origin_var_dict[param_name])
        unique_params = list(set(params))
        params_grads = []
        for var in unique_params:
            params_grads.append([var, var])
        return params_grads