model.py 93.3 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16 17 18
import inspect
import os
import pickle
19
import socket
20 21 22 23
import time
import warnings

import numpy as np
24

25
import paddle
26 27
import paddle.distributed as dist
import paddle.distributed.fleet as fleet
28
from paddle import fluid
29 30
from paddle.autograd import no_grad
from paddle.distributed.fleet.base import role_maker
31
from paddle.fluid import core
32 33
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.executor import global_scope
34
from paddle.fluid.framework import Variable
35
from paddle.fluid.framework import _current_expected_place as _get_device
36
from paddle.fluid.framework import _get_paddle_place, _non_static_mode
37
from paddle.fluid.layers import collective
38
from paddle.framework.io_utils import is_belong_to_optimizer
39
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
40
from paddle.jit.translated_layer import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
41
from paddle.metric import Metric
42 43
from paddle.static import InputSpec as Input

44
from .callbacks import EarlyStopping, config_callbacks
L
LielinJiang 已提交
45
from .model_summary import summary
46

47
__all__ = []
48 49 50 51 52 53 54 55 56 57 58 59 60

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
61 62 63
    assert isinstance(
        var, (Variable, fluid.core.VarBase, fluid.core.eager.Tensor)
    ), "not a variable"
H
hong 已提交
64
    if isinstance(var, (fluid.core.VarBase, fluid.core.eager.Tensor)):
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
91
    return inspect.getfullargspec(func).args
92 93 94


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
95 96 97
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream
    )
98 99 100


def wait_server_ready(endpoints):
101
    assert not isinstance(endpoints, str)
102 103 104 105 106 107
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
108 109
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as sock:
110 111 112 113 114 115 116 117 118 119 120
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


121 122 123
def init_communicator(
    program, rank, nranks, wait_port, current_endpoint, endpoints
):
124 125 126 127
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
128
    block = program.global_block()
129 130
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
131 132 133 134
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
159 160
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
161
            name=fluid.unique_name.generate('hccl_id'),
162
            persistable=True,
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
            type=core.VarDesc.VarType.RAW,
        )
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks,
            },
        )
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    elif core.is_compiled_with_xpu():
        bkcl_id_var = block.create_var(
            name=fluid.unique_name.generate('bkcl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW,
        )

        block.append_op(
            type='c_gen_bkcl_id',
            inputs={},
            outputs={'Out': bkcl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
            },
        )

        block.append_op(
            type='c_comm_init',
            inputs={'X': bkcl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            },
        )
214 215 216 217


def prepare_distributed_context(place=None):
    if place is None:
218
        place = (
219 220
            fluid.CUDAPlace(paddle.distributed.ParallelEnv().dev_id)
            if paddle.distributed.ParallelEnv().nranks > 1
221
            else fluid.CUDAPlace(0)
222
        )
223

224
    place = _get_paddle_place(place)
Q
qizhaoaoe 已提交
225
    strategy = paddle.distributed.parallel.ParallelStrategy()
226 227 228 229 230 231 232 233
    strategy.nranks = paddle.distributed.ParallelEnv().nranks
    strategy.local_rank = paddle.distributed.ParallelEnv().local_rank
    strategy.trainer_endpoints = (
        paddle.distributed.ParallelEnv().trainer_endpoints
    )
    strategy.current_endpoint = (
        paddle.distributed.ParallelEnv().current_endpoint
    )
234 235 236 237 238 239 240 241 242 243

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
244 245 246 247 248 249 250 251
            init_communicator(
                communicator_prog,
                strategy.local_rank,
                strategy.nranks,
                True,
                strategy.current_endpoint,
                strategy.trainer_endpoints,
            )
252 253 254
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

J
Jiabin Yang 已提交
255
        if fluid._non_static_mode():
256 257 258 259 260
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
261
        assert "Only support CUDAPlace for now."
262 263 264

    _parallel_context_initialized = True
    return strategy
265 266


L
LiuChiachi 已提交
267
def _update_input_info(inputs):
L
LiuChiachi 已提交
268
    "Get input shape list by given inputs in Model initialization."
269
    shapes = None
L
LiuChiachi 已提交
270
    dtypes = None
L
LiuChiachi 已提交
271 272
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
273
        dtypes = [inputs.dtype]
274
    elif isinstance(inputs, (list, tuple)):
275
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
276
        dtypes = [input.dtype for input in inputs]
277 278
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
279 280 281 282
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
283 284


285
class StaticGraphAdapter:
286
    """
287

288
    Model traning/inference with a static graph.
289

290 291 292
    """

    def __init__(self, model):
293
        super().__init__()
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
312
            'test_batch': 0,
313 314
        }

315 316
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
317

J
Jiaqi Liu 已提交
318 319 320
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
321
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
322

323 324 325 326 327 328 329 330
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
331
    def train_batch(self, inputs, labels=None, update=True):
332 333 334
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
335
        self.mode = 'train'
336 337
        assert (
            update is True
338
        ), "Does not support `update == False` in static graph mode by now."
339 340 341 342 343 344
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

345
    def predict_batch(self, inputs):
346 347 348 349
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
350
        return self.model.network.parameters(*args, **kwargs)
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
369
        _save(self.model.network.state_dict(), param_path)
370 371 372 373 374 375
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
376
            p.name: p for p in filter(is_belong_to_optimizer, prog.list_vars())
377 378 379 380 381 382
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
383
    # TODO: support save/load scaler state in static graph
384 385 386 387 388 389 390 391
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
392 393 394 395
            [param for param, state in param_state_pairs],
            global_scope(),
            executor,
        )
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
423 424 425 426
                    (np.array(converted_state.pop("global_step")) - 1)
                    if "global_step" in converted_state
                    else converted_state.pop("@LR_DECAY_COUNTER@", None)
                )
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
443 444 445 446 447 448 449 450 451
                        accum_name = (
                            name
                            if opt_name is None
                            else name[len(opt_name) + 1 :]
                        )
                        for (
                            param_name,
                            state_var,
                        ) in self.model._optimizer._accumulators[name].items():
452 453 454
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
                                for state_key in sorted(
                                    state.keys(),
                                    key=lambda x: len(x),
                                    reverse=True,
                                ):
                                    prefix = (
                                        param_name
                                        + "_"
                                        + (
                                            opt_cls_name
                                            if opt_name is None
                                            else opt_name
                                        )
                                        + "_"
                                    )
470
                                    if state_key.startswith(prefix):
471 472 473
                                        prefix_offset = state_key[
                                            len(prefix) :
                                        ].find("_") + len(prefix)
474
                                        opt_unq_name = state_key[
475 476 477 478
                                            len(
                                                param_name + "_"
                                            ) : prefix_offset
                                        ]
479 480 481 482
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
483 484 485 486 487 488 489 490
                            dy_state_name = (
                                param_name
                                + "_"
                                + opt_unq_name
                                + "_"
                                + accum_name
                                + "_0"
                            )
491
                            converted_state[
492 493
                                state_var.name
                            ] = converted_state.pop(dy_state_name)
494

495 496 497
            assert (
                var.name in converted_state
            ), "variable [{}] is not in optimizer state file".format(var.name)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
516 517 518
        assert (
            compiled_prog
        ), "Model is not ready, please call `model.prepare()` first"
519 520 521 522

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
523 524
        assert len(inputs) == len(self._input_vars[self.mode]), (
            "number of inputs"
525
            + " does not match number of arguments of `forward` method"
526
        )
527 528 529

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
530 531
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

532 533 534 535
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
536 537 538 539
            if (
                self._amp_level == 'O2'
                and input_dtypes[idx] == core.VarDesc.VarType.FP16
            ):
L
Leo Chen 已提交
540 541
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
L
Leo Chen 已提交
542
                elif isinstance(feed[n], np.array):
L
Leo Chen 已提交
543 544
                    feed[n] = feed[n].astype('float16')

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

567 568 569 570 571 572
        rets = self._executor.run(
            compiled_prog,
            feed=feed,
            fetch_list=pruned_fetch_list,
            return_numpy=False,
        )
573 574 575 576 577 578 579 580 581 582

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
583

584 585 586 587
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
588 589 590 591 592 593
            if (
                self.mode != 'train'
                and self.model._test_dataloader is not None
                and isinstance(self.model._test_dataloader, DataLoader)
                and self._nranks > 1
            ):
594 595 596 597 598 599
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
600
                        s[: int(total_size - current_count), ...] for s in state
601 602
                    ]
                    self._merge_count[self.mode + '_total'] = 0
603 604 605
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
606 607 608 609 610
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
611 612 613 614 615

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
637 638 639 640 641
        if (
            mode == 'train'
            and self.model._optimizer
            and self.model._optimizer._learning_rate_map
        ):
642 643 644 645 646 647 648 649
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
650 651
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
652 653
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
654
            self._label_vars[mode] = labels
655
            outputs = to_list(self.model.network.forward(*inputs))
656

657 658
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
659 660 661 662 663 664 665 666

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
667
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
668 669

            if mode == 'train' and self.model._optimizer:
670
                self._loss_endpoint = paddle.add_n(losses)
671 672 673
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
674 675 676 677 678
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
679 680 681
                        dist_strategy.amp_configs['use_pure_fp16'] = (
                            self._amp_level == 'O2'
                        )
682
                    self.model._optimizer = fleet.distributed_optimizer(
683 684
                        self.model._optimizer, strategy=dist_strategy
                    )
J
Jiaqi Liu 已提交
685
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
686 687 688 689 690 691 692
                    amp_lists = (
                        paddle.static.amp.AutoMixedPrecisionLists(
                            **self._amp_custom_lists
                        )
                        if self._amp_custom_lists
                        else None
                    )
J
Jiaqi Liu 已提交
693 694 695 696 697
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
698 699
                        **self._amp_configs
                    )
700 701 702 703 704 705 706 707 708 709 710

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
711
            "loss": to_list(losses),
712
            "metric": metrics,
713 714 715 716 717 718 719
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

720 721 722
        assert (
            self.model._place is not None
        ), "device is not set, please call `model.prepare()` first"
723 724 725 726 727 728 729 730 731 732 733 734

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
735 736 737 738 739
                if (
                    not var_py.name.startswith('nccl_id')
                    and var
                    and var.get_tensor()._is_initialized()
                ):
740 741 742 743 744 745 746
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

747 748 749 750
        if (
            self._amp_level == "O2"
            and mode == 'train'
            and core.is_compiled_with_cuda()
J
Jiaqi Liu 已提交
751 752 753
        ):
            self.model._optimizer.amp_init(place)

754 755 756 757 758 759 760 761
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


762
class DynamicGraphAdapter:
763
    def __init__(self, model):
764
        super().__init__()
765
        self.model = model
766 767
        self._nranks = paddle.distributed.ParallelEnv().nranks
        self._local_rank = paddle.distributed.ParallelEnv().local_rank
768 769 770 771
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
772
            'test_batch': 0,
773 774
        }

L
LiuChiachi 已提交
775
        self._input_info = None
J
Jiaqi Liu 已提交
776 777 778 779 780
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

781
        if self._nranks > 1:
782
            dist.init_parallel_env()
Q
qizhaoaoe 已提交
783
            stradegy = paddle.distributed.parallel.ParallelStrategy()
784 785 786 787 788 789 790 791
            stradegy.nranks = paddle.distributed.ParallelEnv().nranks
            stradegy.local_rank = paddle.distributed.ParallelEnv().local_rank
            stradegy.trainer_endpoints = (
                paddle.distributed.ParallelEnv().trainer_endpoints
            )
            stradegy.current_endpoint = (
                paddle.distributed.ParallelEnv().current_endpoint
            )
Q
qizhaoaoe 已提交
792
            self.ddp_model = paddle.DataParallel(self.model.network, stradegy)
793 794 795 796 797 798 799 800 801 802

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
803
    def train_batch(self, inputs, labels=None, update=True):
804 805 806
        assert (
            self.model._optimizer
        ), "model not ready, please call `model.prepare()` first"
807
        self.model.network.train()
808 809
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
810
        self._input_info = _update_input_info(inputs)
811 812 813
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
814 815 816 817
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

818 819 820 821 822
        with paddle.amp.auto_cast(
            enable=self._amp_level != 'O0',
            **self._amp_custom_lists,
            level=self._amp_level
        ):
J
Jiaqi Liu 已提交
823
            if self._nranks > 1:
824
                outputs = self.ddp_model(*[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
825
            else:
826
                outputs = self.model.network(*[to_variable(x) for x in inputs])
827

L
Leo Chen 已提交
828 829
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
830
        final_loss = paddle.add_n(losses)
831

J
Jiaqi Liu 已提交
832
        if self._amp_level != "O0":
L
Leo Chen 已提交
833
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
834
            scaled.backward()
L
lyuwenyu 已提交
835
            if update:
L
Leo Chen 已提交
836
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
837
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
838 839
        else:
            final_loss.backward()
L
lyuwenyu 已提交
840 841 842
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
843

844 845
        metrics = []
        for metric in self.model._metrics:
846
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
847
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
848 849
            metrics.append(m)

850 851 852 853 854
        return (
            ([to_numpy(l) for l in losses], metrics)
            if len(metrics) > 0
            else [to_numpy(l) for l in losses]
        )
855 856

    def eval_batch(self, inputs, labels=None):
857
        self.model.network.eval()
858 859
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
860
        self._input_info = _update_input_info(inputs)
861 862 863
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

864
        outputs = self.model.network(*[to_variable(x) for x in inputs])
865 866 867 868 869 870 871 872 873

        # Transfrom data to expected device
        expected_device = paddle.device.get_device()
        for o in to_list(outputs):
            o._to(device=expected_device)

        for l in labels:
            l._to(device=expected_device)

874 875
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
876 877
            losses = to_list(losses)

878 879 880 881 882 883
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
884 885 886 887 888
            if (
                self.model._test_dataloader is not None
                and self._nranks > 1
                and isinstance(self.model._test_dataloader, DataLoader)
            ):
889 890 891 892 893
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
894
                        o[: int(total_size - current_count)] for o in outputs
895 896
                    ]
                    labels = [
897
                        l[: int(total_size - current_count)] for l in labels
898 899
                    ]
                    self._merge_count[self.mode + '_total'] = 0
900 901 902
                    self._merge_count[self.mode + '_batch'] = int(
                        total_size - current_count
                    )
903 904 905 906
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

907
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
908
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
909 910
            metrics.append(m)

911
        if self.model._loss and len(metrics):
912
            return [to_numpy(l) for l in losses], metrics
913
        elif self.model._loss:
914 915 916
            return [to_numpy(l) for l in losses]
        else:
            return metrics
917

918
    def predict_batch(self, inputs):
919
        self.model.network.eval()
920 921
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
922
        self._input_info = _update_input_info(inputs)
923
        outputs = self.model.network(*inputs)
924 925 926 927 928 929
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
930
        return self.model.network.parameters(*args, **kwargs)
931 932

    def save(self, path):
933
        params = self.model.network.state_dict()
934
        paddle.save(params, path + '.pdparams')
L
Leo Chen 已提交
935 936 937
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
938
                paddle.save(optim, path + '.pdopt')
L
Leo Chen 已提交
939 940 941 942 943 944
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
945 946 947 948
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
949 950 951 952
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

953 954 955 956
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

957 958
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
959 960 961 962 963 964 965 966 967 968
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
969
        opt_name = opt_unq_name[: opt_unq_name.rfind("_")]  # remove suffix idx
970
        param_names = [param.name for param in self.model.network.parameters()]
971 972 973
        for var_name, state_var in sorted(
            optim_state.items(), key=lambda x: len(x[0]), reverse=True
        ):
974 975 976 977 978
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
979 980 981
                    converted_state["global_step"] = (
                        np.array(converted_state.pop("@LR_DECAY_COUNTER@")) + 1
                    )
982 983 984 985 986 987
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
988 989 990 991 992 993 994
                        accum_name = var_name[
                            len(param_name + "_" + opt_name + "_") :
                        ]
                    elif (
                        var_name.startswith(param_name + "_")
                        and opt_name == opt_cls_name
                    ):
995
                        # when init optimizer without name
996
                        accum_name = var_name[len(param_name + "_") :]
997 998 999
                    else:
                        continue
                    # remove suffix idx
1000
                    accum_name = accum_name[: accum_name.rfind("_")]
1001 1002
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
1003 1004 1005 1006 1007 1008 1009 1010
                    dy_state_name = (
                        param_name
                        + "_"
                        + opt_unq_name
                        + "_"
                        + accum_name
                        + "_0"
                    )
1011 1012
                    converted_state[dy_state_name] = state_var

1013 1014
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
1015
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
1016 1017 1018 1019
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
1020

L
Leo Chen 已提交
1021
    def prepare(self):
1022 1023 1024 1025
        if (
            self._amp_level == "O2"
            and self.model.mode == 'train'
            and core.is_compiled_with_cuda()
L
Leo Chen 已提交
1026 1027 1028 1029
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
1030 1031
                level='O2',
            )
L
Leo Chen 已提交
1032 1033 1034
        if self._amp_level != "O0":
            self.model._scaler = None

1035

1036
class Model:
1037
    """
1038

1039 1040
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
1041
    switched by `paddle.enable_static()`. The usage is as follows.
1042
    But note, the switching between dynamic and static should be before
1043
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
1044
    must be required for static graph.
1045

1046
    When training on GPU, auto mixed precision (AMP O1) and pure float16
1047
    (AMP O2) training are both supported in static graph mode and dynamic mode.
1048
    In static graph mode, before training with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
1049 1050
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
1051 1052 1053 1054
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
1055

1056
    Args:
1057 1058
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
1059
        inputs (InputSpec|list|tuple|dict|None, optional): `inputs`, entry points of network,
1060
            could be a InputSpec instance, or list/tuple of InputSpec instances,
1061
            or dict ({name: InputSpec}), and it couldn't be None in static
1062 1063
            graph. Default: None.
        labels (InputSpec|list|tuple|None, optional): `labels`, entry points of network,
1064
            could be a InputSpec instnace or list/tuple of InputSpec instances,
1065
            or None. For static graph, if labels is required in loss,
1066
            labels must be set. Otherwise, it could be None. Default: None.
1067 1068


1069
    Examples:
J
Jiaqi Liu 已提交
1070 1071
        1. A common example

1072
        .. code-block:: python
1073
          :name: code-example1
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
            from paddle.static import InputSpec

            device = paddle.set_device('cpu') # or 'gpu'

            net = nn.Sequential(
                nn.Flatten(1),
                nn.Linear(784, 200),
                nn.Tanh(),
                nn.Linear(200, 10))

            # inputs and labels are not required for dynamic graph.
            input = InputSpec([None, 784], 'float32', 'x')
            label = InputSpec([None, 1], 'int64', 'label')
1091

1092 1093 1094 1095 1096
            model = paddle.Model(net, input, label)
            optim = paddle.optimizer.SGD(learning_rate=1e-3,
                parameters=model.parameters())

            model.prepare(optim,
1097 1098
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
1099 1100 1101 1102 1103 1104 1105

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
1106 1107 1108 1109 1110


        2. An example using mixed precision training.

        .. code-block:: python
1111
          :name: code-example2
J
Jiaqi Liu 已提交
1112

1113 1114 1115 1116
            # required: gpu
            import paddle
            import paddle.nn as nn
            import paddle.vision.transforms as T
J
Jiaqi Liu 已提交
1117

1118 1119
            def run_example_code():
                device = paddle.set_device('gpu')
J
Jiaqi Liu 已提交
1120

1121 1122
                net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                    nn.Linear(200, 10))
J
Jiaqi Liu 已提交
1123

1124 1125
                model = paddle.Model(net)
                optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())
J
Jiaqi Liu 已提交
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135
                amp_configs = {
                    "level": "O1",
                    "custom_white_list": {'conv2d'},
                    "use_dynamic_loss_scaling": True
                }
                model.prepare(optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(),
                    amp_configs=amp_configs)
J
Jiaqi Liu 已提交
1136

1137 1138 1139 1140 1141 1142 1143
                transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                model.fit(data, epochs=2, batch_size=32, verbose=1)

            # mixed precision training is only supported on GPU now.
            if paddle.is_compiled_with_cuda():
                run_example_code()
J
Jiaqi Liu 已提交
1144

1145 1146
    """

1147
    def __init__(self, network, inputs=None, labels=None):
1148
        self.mode = 'train'
1149
        self.network = network
1150 1151
        self._inputs = None
        self._labels = None
1152
        self._loss = None
1153 1154
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1155
        self._input_info = None
1156
        self._is_shape_inferred = False
1157
        self._test_dataloader = None
L
LiuChiachi 已提交
1158
        self.stop_training = False
1159

J
Jiabin Yang 已提交
1160
        if not _non_static_mode():
1161
            if not isinstance(inputs, (list, tuple, dict, Input)):
1162
                raise TypeError(
1163 1164
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1165
        elif inputs:
L
LiuChiachi 已提交
1166
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1167

1168
        self._inputs = self._verify_spec(inputs, is_input=True)
1169
        self._labels = self._verify_spec(labels)
1170

1171
        # init backend
J
Jiabin Yang 已提交
1172
        if fluid._non_static_mode():
1173 1174 1175 1176
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1177
    def train_batch(self, inputs, labels=None, update=True):
1178
        """
1179

L
lyuwenyu 已提交
1180 1181
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1182 1183

        Args:
1184 1185
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1186
                tensors (in case the model has multiple inputs).
1187 1188 1189
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1190 1191 1192
                set None. Default: None.
            update (bool, optional): Whether update parameters after loss.backward() computing.
                Set it to False to accumulate gradients. Default: True.
1193 1194 1195 1196 1197 1198 1199 1200 1201

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss = model.train_batch([data], [label])
                print(loss)
                # [array([2.192784], dtype=float32)]
1225

1226
        """
L
lyuwenyu 已提交
1227
        loss = self._adapter.train_batch(inputs, labels, update)
J
Jiabin Yang 已提交
1228
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1229
            self._update_inputs()
1230
        return loss
1231

Z
zhaoyingli 已提交
1232
    @no_grad()
1233 1234
    def eval_batch(self, inputs, labels=None):
        """
1235

1236 1237 1238
        Run one evaluating step on a batch of data.

        Args:
1239 1240
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1241
                tensors (in case the model has multiple inputs).
1242 1243 1244
            labels (numpy.ndarray|Tensor|list, optional): Batch of labels. It could be
                a numpy array or paddle.Tensor, or a list of arrays or tensors
                (in case the model has multiple labels). If has no labels,
1245
                set None. Default: None.
1246 1247 1248 1249 1250 1251 1252 1253 1254

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10))

                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(net, input, label)
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
                    parameters=model.parameters())
                model.prepare(optim,
                            paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy())
                data = paddle.rand((4, 784), dtype="float32")
                label = paddle.randint(0, 10, (4, 1), dtype="int64")
                loss, acc = model.eval_batch([data], [label])
                print(loss, acc)
                # [array([2.8825705], dtype=float32)] [0.0]
1279

1280
        """
1281
        loss = self._adapter.eval_batch(inputs, labels)
J
Jiabin Yang 已提交
1282
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1283
            self._update_inputs()
1284
        return loss
1285

Z
zhaoyingli 已提交
1286
    @no_grad()
1287
    def predict_batch(self, inputs):
1288
        """
1289

1290
        Run one predicting step on a batch of data.
1291 1292

        Args:
1293 1294
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could
                be a numpy array or paddle.Tensor, or a list of arrays or
1295
                tensors (in case the model has multiple inputs).
1296 1297 1298 1299 1300 1301 1302 1303

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
1304 1305 1306 1307 1308 1309

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec

                device = paddle.set_device('cpu') # or 'gpu'
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')

                net = nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax())

                model = paddle.Model(net, input, label)
                model.prepare()
                data = paddle.rand((1, 784), dtype="float32")
                out = model.predict_batch([data])
                print(out)
                # [array([[0.08189095, 0.16740078, 0.06889386, 0.05085445, 0.10729759,
                #          0.02217775, 0.14518553, 0.1591538 , 0.01808308, 0.17906217]],
                #          dtype=float32)]
1328

1329
        """
1330
        loss = self._adapter.predict_batch(inputs)
J
Jiabin Yang 已提交
1331
        if fluid._non_static_mode() and self._input_info is None:
L
LiuChiachi 已提交
1332
            self._update_inputs()
1333
        return loss
1334

1335
    def save(self, path, training=True):
1336
        """
1337

1338
        This function saves parameters, optimizer information or model and
1339 1340
        paramters only for inference to path. It depends on the parameter
        `training`.
1341

1342
        If `training` is set to True, the parameters saved contain all
1343
        the trainable Variable, will save to a file with suffix ".pdparams".
1344 1345 1346 1347
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1348
        This function will silently overwrite existing file at the target location.
1349

1350
        If `training` is set to False, only inference model will be saved.
1351 1352

        Args:
1353 1354 1355
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1356 1357
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1358 1359 1360 1361 1362 1363 1364

        Returns:
            None

        Examples:

            .. code-block:: python
1365

1366
                import paddle
1367
                import paddle.nn as nn
1368
                import paddle.vision.transforms as T
1369
                from paddle.static import InputSpec
1370

1371
                class Mnist(nn.Layer):
1372
                    def __init__(self):
1373
                        super().__init__()
1374
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1375
                            nn.Flatten(1),
1376 1377 1378 1379
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1380

1381
                    def forward(self, x):
1382
                        return self.net(x)
1383

1384
                dynamic = True  # False
1385
                # if use static graph, do not set
1386 1387
                if not dynamic:
                    paddle.enable_static()
1388

1389 1390 1391
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1392
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1393
                    parameters=model.parameters())
1394
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1395

1396 1397 1398 1399 1400
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
1401

1402
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1403 1404
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1405

1406
        """
1407

1408
        if paddle.distributed.ParallelEnv().local_rank == 0:
1409 1410 1411 1412
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1413 1414 1415

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
1432
            skip_mismatch (bool, optional): Whether to skip the loading of mismatch
1433 1434
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1435 1436
                mismatch shape). Default: False.
            reset_optimizer (bool, optional): If True, ignore the providing file storing
1437 1438
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
1439
                a optimizer has been set to the model. Default: False.
1440 1441 1442 1443 1444 1445 1446

        Returns:
            None

        Examples:

            .. code-block:: python
1447 1448 1449 1450

                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
L
LielinJiang 已提交
1451

1452
                device = paddle.set_device('cpu')
L
LielinJiang 已提交
1453

1454
                input = InputSpec([None, 784], 'float32', 'x')
1455

1456 1457 1458 1459 1460
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10),
                    nn.Softmax()), input)
L
LielinJiang 已提交
1461

1462 1463
                model.save('checkpoint/test')
                model.load('checkpoint/test')
1464

1465 1466 1467 1468 1469 1470
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1471
                return pickle.load(f, encoding='latin1')
1472 1473 1474 1475 1476

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
1477 1478
                    "{} is not found in the providing file.".format(key)
                )
1479 1480
            if list(state.shape) != list(param.shape):
                raise ValueError(
1481 1482 1483 1484
                    "{} receives a shape {}, but the expected shape is {}.".format(
                        key, list(state.shape), list(param.shape)
                    )
                )
1485 1486 1487 1488
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
1489 1490 1491 1492 1493 1494
            assert ext in [
                '',
                '.pdparams',
                '.pdopt',
                '.pdmodel',
            ], "Unknown postfix {} from weights".format(ext)
1495 1496 1497 1498 1499 1500 1501
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1502
        for key, param in self.network.state_dict().items():
1503 1504 1505 1506 1507
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
1508 1509
                        ("Skip loading for {}. ".format(key) + str(err))
                    )
1510 1511 1512 1513 1514 1515
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

1516 1517 1518
        optim_state = (
            None if reset_optimizer else _load_state_from_path(path + ".pdopt")
        )
L
Leo Chen 已提交
1519 1520

        # TODO: support save/load scaler state in static graph
J
Jiabin Yang 已提交
1521
        if _non_static_mode():
L
Leo Chen 已提交
1522 1523 1524 1525 1526
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

1527 1528 1529
            return self._adapter.load(
                matched_param_state, optim_state, scaler_state
            )
L
Leo Chen 已提交
1530 1531
        else:
            return self._adapter.load(matched_param_state, optim_state)
1532 1533 1534

    def parameters(self, *args, **kwargs):
        """
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python
1545

1546 1547 1548
                import paddle
                import paddle.nn as nn
                from paddle.static import InputSpec
1549

1550
                input = InputSpec([None, 784], 'float32', 'x')
1551

1552 1553 1554 1555
                model = paddle.Model(nn.Sequential(
                    nn.Linear(784, 200),
                    nn.Tanh(),
                    nn.Linear(200, 10)), input)
L
LielinJiang 已提交
1556

1557
                params = model.parameters()
1558

1559 1560 1561
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1562 1563 1564
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1565 1566
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
1567 1568 1569
                assert isinstance(
                    self._optimizer._grad_clip,
                    (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm),
1570
                ), "Only ClipGradByNorm and ClipGradByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
1582 1583
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1584 1585 1586 1587 1588 1589 1590 1591
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
1592 1593
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'."
                )
J
Jiaqi Liu 已提交
1594 1595 1596 1597 1598 1599 1600 1601
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1602
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1603 1604 1605 1606 1607 1608 1609
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
1610 1611 1612
                'custom_white_list',
                'custom_black_list',
                'custom_black_varnames',
J
Jiaqi Liu 已提交
1613 1614 1615
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
1616 1617
                        param_name
                    ]
J
Jiaqi Liu 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1632 1633 1634 1635
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".format(
                        tuple(amp_config_key_set - accepted_param_set)
                    )
                )
J
Jiaqi Liu 已提交
1636 1637

            if 'use_fp16_guard' in amp_config_key_set:
J
Jiabin Yang 已提交
1638
                if _non_static_mode():
J
Jiaqi Liu 已提交
1639
                    raise ValueError(
1640
                        "'use_fp16_guard' is supported in static graph mode only."
1641
                    )
J
Jiaqi Liu 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

1651 1652 1653
    def prepare(
        self, optimizer=None, loss=None, metrics=None, amp_configs=None
    ):
1654
        """
1655

1656 1657 1658
        Configures the model before runing.

        Args:
1659
            optimizer (Optimizer|None, optional): Optimizer must be set in training
1660
                and should be a Optimizer instance. It can be None in eval
1661 1662
                and test mode. Default: None.
            loss (Loss|Callable|None, optional): Loss function can
1663
                be a `paddle.nn.Layer` instance or any callable function
1664
                taken the predicted values and ground truth values as input.
1665 1666 1667 1668
                It can be None when there is no loss. Default: None.
            metrics (Metric|list[Metric]|None, optional): If metrics is set, all
                metrics will be calculated and output in train/eval mode. Default: None.
            amp_configs (str|dict|None, optional): AMP configurations. If AMP or pure
J
Jiaqi Liu 已提交
1669 1670 1671
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1672 1673
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1674 1675 1676 1677
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1678
                'use_fp16_guard' is only supported in static graph mode. Mixed
1679 1680 1681 1682 1683
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1684

1685 1686
        Returns:
            None
1687

1688
        """
1689 1690
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1691
            global _parallel_context_initialized
1692 1693 1694 1695
            if (
                paddle.distributed.ParallelEnv().nranks > 1
                and not _parallel_context_initialized
            ):
J
Jiabin Yang 已提交
1696
                if fluid._non_static_mode():
1697
                    main_prog_seed = fluid.default_main_program().random_seed
1698 1699 1700
                    startup_prog_seed = (
                        fluid.default_startup_program().random_seed
                    )
1701
                    fluid.disable_dygraph()
1702
                    paddle.disable_static(self._place)
1703 1704 1705
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
1706 1707 1708
                    fluid.default_startup_program().random_seed = (
                        startup_prog_seed
                    )
1709 1710 1711 1712 1713
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1714 1715
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1716 1717 1718
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1719
        self._loss = loss
1720 1721 1722

        metrics = metrics or []
        for metric in to_list(metrics):
1723 1724 1725
            assert isinstance(
                metric, Metric
            ), "{} is not sub class of Metric".format(metric.__class__.__name__)
1726
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1727
        self._prepare_amp(amp_configs)
1728

L
Leo Chen 已提交
1729
        self._adapter.prepare()
1730

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    def fit(
        self,
        train_data=None,
        eval_data=None,
        batch_size=1,
        epochs=1,
        eval_freq=1,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        verbose=2,
        drop_last=False,
        shuffle=True,
        num_workers=0,
        callbacks=None,
        accumulate_grad_batches=1,
        num_iters=None,
    ):
1749
        """
1750

1751 1752 1753 1754
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
1755 1756
            train_data (Dataset|DataLoader, optional): An iterable data loader is used for
                train. An instance of paddle paddle.io.Dataset or
1757
                paddle.io.Dataloader is recomended. Default: None.
1758
            eval_data (Dataset|DataLoader, optional): An iterable data loader is used for
1759 1760
                evaluation at the end of epoch. If None, will not do evaluation.
                An instance of paddle.io.Dataset or paddle.io.Dataloader
1761
                is recomended. Default: None.
1762
            batch_size (int|list, optional): The batch size of train_data and eval_data. When
1763 1764 1765 1766
                train_data and eval_data are both the instance of Dataloader, this
                parameter will be ignored. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            eval_freq (int, optional): The frequency, in number of epochs, an evalutation
1767
                is performed. Default: 1.
1768
            log_freq (int, optional): The frequency, in number of steps, the training logs
1769
                are printed. Default: 10.
1770
            save_dir(str|None, optional): The directory to save checkpoint during training.
1771
                If None, will not save checkpoint. Default: None.
1772
            save_freq (int, optional): The frequency, in number of epochs, to save
1773
                checkpoint. Default: 1.
1774
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
1775
                1 = progress bar, 2 = one line per epoch. Default: 2.
1776
            drop_last (bool, optional): Whether drop the last incomplete batch of
1777 1778 1779
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
1780
            shuffle (bool, optional): Whther to shuffle train_data. When train_data is
1781 1782
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
1783
            num_workers (int, optional): The number of subprocess to load data, 0 for no
1784 1785 1786
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
1787 1788 1789
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. If None, :ref:`api_paddle_callbacks_ProgBarLogger` and
                :ref:`api_paddle_callbacks_ModelCheckpoint` are automatically inserted. Default: None.
1790
            accumulate_grad_batches (int, optional): The number of batches to accumulate gradident
L
lyuwenyu 已提交
1791
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1792
                size. Default: 1.
1793 1794 1795 1796
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.

1797 1798 1799 1800
        Returns:
            None

        Examples:
1801
            1. An example use Dataset and set batch size, shuffle in fit.
1802 1803 1804
               How to make a batch is done internally.

            .. code-block:: python
1805
              :name: code-example3
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec

                dynamic = True
                if not dynamic:
                    paddle.enable_static()

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)
                val_dataset = MNIST(mode='test', transform=transform)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')

                model = paddle.Model(
                    paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_dataset,
                            val_dataset,
                            epochs=2,
                            batch_size=64,
                            save_dir='mnist_checkpoint')
1840 1841 1842 1843 1844

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python
1845
              :name: code-example4
1846 1847 1848 1849 1850

                import paddle
                import paddle.vision.transforms as T
                from paddle.vision.datasets import MNIST
                from paddle.static import InputSpec
1851

1852 1853 1854
                dynamic = True
                if not dynamic:
                    paddle.enable_static()
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                train_dataset = MNIST(mode='train', transform=transform)
                train_loader = paddle.io.DataLoader(train_dataset,
                    batch_size=64)
                val_dataset = MNIST(mode='test', transform=transform)
                val_loader = paddle.io.DataLoader(val_dataset,
                    batch_size=64)

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
                model = paddle.Model(
                    paddle.vision.models.LeNet(), input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss(),
                    paddle.metric.Accuracy(topk=(1, 2)))
                model.fit(train_loader,
                            val_loader,
                            epochs=2,
                            save_dir='mnist_checkpoint')
1882

1883
        """
1884
        assert train_data is not None, "train_data must be given!"
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
        if isinstance(batch_size, (tuple, list)) and all(
            [isinstance(x, int) for x in batch_size]
        ):
            assert (
                len(batch_size) == 2
            ), "batch_size length error, expected train_batch_size and eval_batch_size."
            train_batch_size, eval_batch_size = batch_size
        elif isinstance(batch_size, int):
            train_batch_size, eval_batch_size = batch_size, batch_size

1896
        if isinstance(train_data, Dataset):
1897 1898
            train_sampler = DistributedBatchSampler(
                train_data,
1899
                batch_size=train_batch_size,
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
                shuffle=shuffle,
                drop_last=drop_last,
            )
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1910 1911 1912 1913
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
1914
            eval_sampler = DistributedBatchSampler(
1915
                eval_data, batch_size=eval_batch_size
1916 1917 1918 1919 1920 1921 1922 1923
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
1924 1925 1926 1927 1928 1929 1930
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1931

L
lyuwenyu 已提交
1932
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1933

1934
        steps = self._len_data_loader(train_loader)
1935
        self.num_iters = num_iters
1936 1937 1938 1939 1940
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(steps, int)
        ):
1941 1942 1943
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1944 1945 1946 1947 1948 1949 1950 1951 1952
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
1953 1954
            metrics=self._metrics_name(),
        )
1955

L
LiuChiachi 已提交
1956 1957 1958
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1959 1960 1961 1962 1963 1964 1965 1966 1967
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
1968 1969 1970 1971
                cbks.on_begin(
                    'eval',
                    {'steps': eval_steps, 'metrics': self._metrics_name()},
                )
1972 1973 1974 1975

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1976 1977
            if self.stop_training:
                break
1978 1979 1980

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
    def evaluate(
        self,
        eval_data,
        batch_size=1,
        log_freq=10,
        verbose=2,
        num_workers=0,
        callbacks=None,
        num_iters=None,
    ):
1992 1993 1994 1995 1996
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
1997
                evaluation. An instance of paddle.io.Dataset or
1998
                paddle.io.Dataloader is recomended.
1999 2000 2001 2002
            batch_size (int, optional): The batch size of train_data and eval_data.
                When eval_data is the instance of Dataloader, this argument will be
                ignored. Default: 1.
            log_freq (int, optional): The frequency, in number of steps, the eval logs
2003
                are printed. Default: 10.
2004
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2005
                1 = progress bar, 2 = one line per epoch. Default: 2.
2006
            num_workers (int, optional): The number of subprocess to load data,
2007 2008 2009
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
2010
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
2011 2012
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
2013 2014 2015
            num_iters (int|None, optional): The number of iterations to evaluate the model.
                If None, evaluate on whole input dataset, otherwise, evaluate `num_iters` times.
                Default: None.
2016 2017 2018 2019 2020
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
2021 2022

          .. code-block:: python
2023

2024 2025 2026
                import paddle
                import paddle.vision.transforms as T
                from paddle.static import InputSpec
2027

2028 2029 2030 2031 2032 2033
                # declarative mode
                transform = T.Compose([
                        T.Transpose(),
                        T.Normalize([127.5], [127.5])
                    ])
                val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
2034

2035 2036 2037 2038 2039 2040 2041
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(paddle.vision.models.LeNet(), input, label)
                model.prepare(metrics=paddle.metric.Accuracy())
                result = model.evaluate(val_dataset, batch_size=64)
                print(result)
                # {'acc': 0.0699}
2042 2043 2044
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size
            )
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
2065 2066
            metrics=self._metrics_name(),
        )
2067 2068

        eval_steps = self._len_data_loader(eval_loader)
2069
        self.num_iters = num_iters
2070 2071 2072 2073 2074
        if (
            num_iters is not None
            and isinstance(num_iters, int)
            and isinstance(eval_steps, int)
        ):
2075 2076 2077
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
2078 2079 2080
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

2094 2095 2096 2097 2098 2099 2100 2101 2102
    def predict(
        self,
        test_data,
        batch_size=1,
        num_workers=0,
        stack_outputs=False,
        verbose=1,
        callbacks=None,
    ):
2103 2104 2105 2106 2107 2108 2109
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
2110 2111
            batch_size (int, optional): The batch size of test_data. When test_data is the
                instance of Dataloader, this argument will be ignored. Default: 1.
2112
            num_workers (int, optional): The number of subprocess to load data, 0 for no subprocess
2113 2114 2115 2116
                used and loading data in main process. When test_data is the instance of Dataloader,
                this argument will be ignored. Default: 0.
            stack_outputs (bool, optional): Whether stack output field like a batch, as for an output
                field of a sample is in shape [X, Y], test_data contains N samples, predict
2117
                output field will be in shape [N, X, Y] if stack_output is True, and will
2118
                be a length N list in shape [[X, Y], [X, Y], ..., [X, Y]] if stack_outputs
2119 2120
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
2121
            verbose (int, optional): The verbosity mode, should be 0, 1, or 2. 0 = silent,
2122
                1 = progress bar, 2 = one line per batch. Default: 1.
2123
            callbacks(Callback, optional): A Callback instance, Default: None.
2124

2125 2126 2127 2128
        Returns:
            list: output of models.

        Examples:
2129 2130

          .. code-block:: python
2131

2132 2133 2134
                import numpy as np
                import paddle
                from paddle.static import InputSpec
2135

2136 2137
                class MnistDataset(paddle.vision.datasets.MNIST):
                    def __init__(self, mode, return_label=True):
2138
                        super().__init__(mode=mode)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
                        self.return_label = return_label

                    def __getitem__(self, idx):
                        img = np.reshape(self.images[idx], [1, 28, 28])
                        if self.return_label:
                            return img, np.array(self.labels[idx]).astype('int64')
                        return img,

                    def __len__(self):
                        return len(self.images)

                test_dataset = MnistDataset(mode='test', return_label=False)

                # imperative mode
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()
                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)

                # declarative mode
                device = paddle.set_device('cpu')
                paddle.enable_static()
                input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
                model = paddle.Model(paddle.vision.models.LeNet(), input)
                model.prepare()

                result = model.predict(test_dataset, batch_size=64)
                print(len(result[0]), result[0][0].shape)
                # 157 (64, 10)
2170 2171 2172
        """

        if test_data is not None and isinstance(test_data, Dataset):
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size
            )
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True,
            )
2183 2184 2185 2186 2187
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

2188
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
2189 2190 2191 2192

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

2193
        cbks.on_begin('predict', logs)
2194 2195 2196

        outputs = []

2197
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

2208
        cbks.on_end('predict', logs)
2209 2210
        return outputs

2211
    def _save_inference_model(self, path):
2212
        """
2213
        Save inference model can be used in static or dynamic mode.
2214 2215

        Args:
2216 2217
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2218
        Returns:
2219
            None
2220 2221
        """

J
Jiabin Yang 已提交
2222
        if fluid._non_static_mode():
2223 2224
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2225
                if self._input_info is None:  # No provided or inferred
2226
                    raise RuntimeError(
L
LiuChiachi 已提交
2227
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2228 2229 2230 2231
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
2232 2233
                        % self._input_info[0]
                    )
L
LiuChiachi 已提交
2234

2235
                paddle.jit.save(layer, path, input_spec=self._inputs)
2236

2237
        else:
2238 2239 2240 2241 2242 2243
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
2244 2245
                    "file_prefix is empty string."
                )
2246 2247 2248 2249 2250 2251 2252 2253 2254

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2255
            prog = self._adapter._progs.get('test', None)
2256 2257 2258
            assert (
                prog
            ), "Model is not ready, please call `model.prepare()` first"
2259 2260 2261 2262 2263 2264

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2265 2266 2267 2268 2269 2270 2271 2272 2273
            fluid.io.save_inference_model(
                model_path,
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
                params_filename=params_filename,
            )
2274

L
update  
lyuwenyu 已提交
2275
    def _run_one_epoch(
2276 2277 2278 2279 2280 2281
        self,
        data_loader,
        callbacks,
        mode,
        logs={},
    ):
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
2292
            # 4. custumed iterator yield separated inputs and labels:
2293 2294
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
2295
            data = paddle.utils.flatten(data)
2296 2297
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2298

2299 2300 2301 2302 2303
            batch_size = (
                data[0].shape()[0]
                if callable(data[0].shape)
                else data[0].shape[0]
            )
2304 2305 2306

            callbacks.on_batch_begin(mode, step, logs)

2307
            if mode != 'predict':
2308
                _inputs = [data[: len(self._inputs)], data[len(self._inputs) :]]
L
lyuwenyu 已提交
2309
                if mode == 'train':
2310 2311 2312 2313
                    _inputs.append(
                        (step + 1) % self._accumulate == 0
                        or step + 1 == len(data_loader)
                    )
L
update  
lyuwenyu 已提交
2314

L
lyuwenyu 已提交
2315
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2316

2317
                if self._metrics and self._loss:
2318
                    metrics = [[l[0] for l in outs[0]]]
2319
                elif self._loss:
2320 2321 2322
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2333
                if self._inputs is not None:
2334
                    outs = self.predict_batch(data[: len(self._inputs)])
L
LielinJiang 已提交
2335
                else:
2336
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2337

2338 2339 2340
                outputs.append(outs)

            logs['step'] = step
2341 2342 2343 2344
            if (
                mode == 'train'
                or self._adapter._merge_count.get(mode + '_batch', 0) <= 0
            ):
2345 2346 2347
                logs['batch_size'] = (
                    batch_size * paddle.distributed.ParallelEnv().nranks
                )
2348 2349 2350 2351
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2352 2353
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2354 2355 2356
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2357
                    break
2358 2359
        self._reset_metrics()

2360
        if mode == 'predict':
2361 2362 2363
            return logs, outputs
        return logs

L
LielinJiang 已提交
2364
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2365 2366 2367
        """Prints a string summary of the network.

        Args:
2368 2369 2370 2371
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor.
                    if not set, input_size will get from ``self._inputs`` if network only have
                    one input, input_size can be tuple or InputSpec. if model have multiple
                    input, input_size must be a list which contain every input's shape.
L
LielinJiang 已提交
2372
                    Default: None.
2373
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2374 2375 2376 2377 2378 2379

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python
2380 2381 2382 2383 2384 2385

                import paddle
                from paddle.static import InputSpec

                input = InputSpec([None, 1, 28, 28], 'float32', 'image')
                label = InputSpec([None, 1], 'int64', 'label')
L
LielinJiang 已提交
2386

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
                model = paddle.Model(paddle.vision.models.LeNet(),
                    input, label)
                optim = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                model.prepare(
                    optim,
                    paddle.nn.CrossEntropyLoss())

                params_info = model.summary()
                print(params_info)
                # {'total_params': 61610, 'trainable_params': 61610}
L
LielinJiang 已提交
2398 2399

        """
2400 2401 2402
        assert (
            input_size is not None or self._inputs is not None
        ), "'input_size' or 'self._input' must be set"
2403 2404 2405 2406
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2407
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2408

L
LiuChiachi 已提交
2409
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2410 2411
        out_specs = []

2412 2413 2414 2415 2416 2417
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2418
                # While Saving inference model in dygraph, and providing inputs only in running.
2419 2420 2421 2422
                if (
                    shapes is not None
                    and dtypes is not None
                    and fluid._non_static_mode()
L
LiuChiachi 已提交
2423
                ):
2424
                    out_specs = [
2425
                        Input(name=n, dtype=dtypes[i], shape=shapes[i])
2426 2427 2428 2429 2430 2431 2432
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2433 2434
            assert is_input is False
            out_specs = [
2435 2436
                specs[n]
                for n in extract_args(self.network.forward)
2437 2438
                if n != 'self'
            ]
2439 2440 2441 2442 2443 2444 2445 2446
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2447 2448 2449 2450
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
2451 2452 2453

        return out_specs

2454 2455 2456 2457 2458
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2459
        metrics_name = ['loss'] if self._loss else []
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2470 2471 2472

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2473 2474
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
2475 2476 2477
            self._inputs = self._verify_spec(
                None, self._input_info[0], self._input_info[1], True
            )
L
LiuChiachi 已提交
2478
            self._is_shape_inferred = True