analysis_predictor.cc 107.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <cstdlib>
N
nhzlx 已提交
21
#include <fstream>
22
#include <memory>
23
#include <set>
24
#include <string>
25
#include <utility>
26
#include <vector>
27

W
Wilber 已提交
28
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
29
#include "paddle/fluid/framework/feed_fetch_method.h"
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/operator.h"
36
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
37
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
38
#include "paddle/fluid/framework/var_type_traits.h"
39
#include "paddle/fluid/framework/version.h"
40
#include "paddle/fluid/inference/analysis/helper.h"
41
#include "paddle/fluid/inference/analysis/pass_result_info.h"
42
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
43
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
44
#include "paddle/fluid/inference/api/helper.h"
45
#include "paddle/fluid/inference/api/infer_context.h"
46
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
47
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
48
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
49
#include "paddle/fluid/inference/api/resource_manager.h"
50
#include "paddle/fluid/inference/utils/io_utils.h"
51
#include "paddle/fluid/inference/utils/model_utils.h"
52
#include "paddle/fluid/inference/utils/singleton.h"
53
#include "paddle/fluid/memory/memcpy.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
55
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
56
#include "paddle/fluid/platform/device_context.h"
57
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
58
#include "paddle/fluid/platform/profiler.h"
59
#include "paddle/phi/api/include/tensor.h"
60 61
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
62
#include "paddle/phi/common/place.h"
W
Wilber 已提交
63
#include "paddle/phi/core/enforce.h"
64
#include "paddle/phi/core/generator.h"
65
#include "paddle/phi/kernels/funcs/data_type_transform.h"
66 67
#include "paddle/utils/string/split.h"

68
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
69 70 71 72
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
73

74 75 76 77
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

78 79 80 81
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

82 83 84 85
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

86
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
87
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
88
#include "paddle/fluid/inference/tensorrt/helper.h"
89
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
90 91
#endif

92 93 94 95
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

96 97
namespace paddle {

N
nhzlx 已提交
98
using inference::Singleton;
99
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
100 101
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
102
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
103
#endif
104

105 106
int AnalysisPredictor::clone_num_ = 1;

107 108 109 110
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
111 112
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
113 114 115 116
    return true;
  }
  return false;
}
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

136
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
137
  switch (backend) {
138
    case paddle_infer::PlaceType::kGPU:
139 140
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
141
    case paddle_infer::PlaceType::kNPU:
142
      return phi::Backend::NPU;
143
    case paddle_infer::PlaceType::kXPU:
144
      return phi::Backend::XPU;
145
    case paddle_infer::PlaceType::kCPU:
146
      return phi::Backend::CPU;
147 148
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
149 150
    case paddle_infer::PlaceType::kCUSTOM:
      return phi::Backend::CUSTOM;
151 152 153 154 155 156 157
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
158

159 160 161
bool PaddleTensorToDenseTensor(const PaddleTensor &pt,
                               phi::DenseTensor *t,
                               const platform::Place &place) {
162
  framework::DDim ddim = phi::make_ddim(pt.shape);
163 164 165 166 167 168 169
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
170 171
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
172 173 174 175
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
176 177 178
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
179 180 181
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
182 183 184 185 186 187 188 189
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
190 191
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
192
        t->numel() * phi::SizeOf(t->dtype()),
193 194
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
195
  }
196 197 198

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
199 200 201 202
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
203 204
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
205 206
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
207 208 209 210
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
211
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
212 213
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
214 215
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
216
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
217
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
218
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
219
    auto dst_gpu_place = place;
C
ccrrong 已提交
220 221 222 223 224
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
225 226 227 228 229
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
230 231
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
232
    auto dst_xpu_place = place;
C
ccrrong 已提交
233 234 235 236 237
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
238 239 240
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto custom_place = place;
    auto *dev_ctx = static_cast<const paddle::platform::CustomDeviceContext *>(
        pool.Get(custom_place));
    memory::Copy(custom_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUSTOM_DEVICE, should not reach here."));
258 259 260
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
261 262
        "The analysis predictor supports CPU, GPU, XPU and CUSTOM_DEVICE "
        "now."));
263 264 265 266 267 268 269 270 271
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}
272
}  // namespace
273

Y
Yan Chunwei 已提交
274
bool AnalysisPredictor::Init(
275 276
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
277
  VLOG(3) << "Predictor::init()";
278 279
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
280 281
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
282
    platform::EnableProfiler(tracking_device);
283
  } else {
284 285
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
286 287
  }

288 289 290 291
  if (!status_is_cloned_) {
    root_predictor_id_ = predictor_id_;
  }

292
  // no matter with or without MKLDNN
L
luotao1 已提交
293
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
294

295 296 297
  if (!PrepareScope(parent_scope)) {
    return false;
  }
298 299 300

  InitPlace();

301 302 303 304 305 306 307
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

308 309 310
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

311 312 313
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
314
  }
315

316 317 318 319 320 321 322 323 324 325 326 327 328
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
329
        static_cast<phi::GPUContext *>(
330 331 332 333 334 335
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
336
  }
337
#endif
338
  inference::DisplayMemoryInfo(place_, "Init predictor");
339 340
  return true;
}
341

342
void AnalysisPredictor::InitPlace() {
343
  if (config_.use_gpu()) {
C
ccrrong 已提交
344 345
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
346 347
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
348
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
349
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
350
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
351 352
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
353 354
    }
#endif
355
  } else if (config_.use_xpu()) {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
395 396 397 398 399 400 401
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
402 403 404 405 406 407 408 409 410
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
411
#endif
412 413 414
  } else {
    place_ = paddle::platform::CPUPlace();
  }
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
432
          auto *gpu_context = new InferGPUContext(place_);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
449 450 451 452
          gpu_context->SetHostZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(platform::CPUPlace())
                  .get());
453
          gpu_context->SetGenerator(
454 455
              phi::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());
456 457

          gpu_context->SetStream(gpu_resource->GetStream());
458
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
459
          gpu_context->SetBlasTensorCoreHandle(
460 461 462 463 464 465 466 467
              gpu_resource->GetBlasTensorCoreHandleCreator());
          gpu_context->SetBlasTF32Handle(
              gpu_resource->GetBlasTF32TensorCoreHandleCreator());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
          gpu_context->SetSolverHandle(
              gpu_resource->GetSolverDnHandleCreator());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator());
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  }
506 507 508 509 510 511 512 513 514
#endif
#if defined(PADDLE_WITH_XPU)
  if (place_.GetType() == phi::AllocationType::XPU) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    return reinterpret_cast<const phi::XPUContext *>(pool.Get(place_))
        ->stream();
  }
#endif
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  // TODO(inference): Support other backends.
  return nullptr;
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
540
    paddle::framework::InitMemoryMethod();
541
    paddle::framework::InitDevices();
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
567 568
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
569 570 571 572 573
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
574 575 576 577 578
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
579 580 581 582 583 584
  }
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);
  return true;
}

bool AnalysisPredictor::CreateExecutor() {
585 586 587
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
607 608
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
609 610 611 612 613 614 615 616 617
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
618 619
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
620 621
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
622 623 624
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
625 626 627
  }
}

628
bool AnalysisPredictor::PrepareExecutor() {
629
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
630 631 632 633 634
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
635 636
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
637 638
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
639

640 641 642 643 644 645 646 647 648
  if (config_.enable_memory_optim_) {
    auto *pass_res_info =
        inference::analysis::PassResultInfoForRuntime::Instance();
    auto reuse_table =
        pass_res_info->Get<std::unordered_map<std::string, std::string>>(
            root_predictor_id_, "memory_optimize_pass");
    executor_->MakeReusePlan(reuse_table);
  }

649 650 651
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
652

653 654 655
  return true;
}

656
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
693 694 695 696 697 698 699
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
736 737 738 739 740 741
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
742 743 744 745 746 747 748 749 750 751 752
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
753 754 755 756 757
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
  } else if (config_.use_xpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_bkcl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
825 826 827 828 829 830 831 832 833 834 835 836 837
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
838 839
      static_cast<bool>(fin.is_open()),
      true,
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

912 913
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
914 915 916 917 918 919 920 921
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

922 923 924 925 926 927 928 929 930 931 932
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<paddle::Tensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(phi::vectorize<int>(inputs[i].dims()));
  }
  MkldnnPreSet(inputs_shape);
#endif
}

W
Wilber 已提交
933 934 935 936
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
937
          << phi::OneDNNContext::tls().get_cur_mkldnn_session_id();
938 939 940
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
941 942
    phi::OneDNNContext::tls().set_cur_mkldnn_session_id(
        phi::OneDNNContextThreadLocals::kMKLDNNSessionID_CacheClearing);
943 944
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
945 946 947
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
948 949 950
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
951
    phi::OneDNNContext::tls().set_cur_input_shape_str(ss.str());
952
  }
953
  phi::OneDNNContext::tls().set_cur_input_shape_cache_capacity(
954 955
      config_.mkldnn_cache_capacity_);

956 957 958 959 960 961
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
962
  if (config_.mkldnn_cache_capacity_ > 0 &&
963
      static_cast<phi::OneDNNContext *>(
964 965
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
966
    if (VLOG_IS_ON(2)) {
967
      auto shape_blob_size = static_cast<phi::OneDNNContext *>(
968 969 970 971 972 973
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
974 975 976
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
977 978 979 980
  }
#endif
}

981 982 983
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
984
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
985 986 987
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
988
  VLOG(3) << "Predictor::predict";
989 990 991 992
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
993 994 995
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
996 997
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
998
    return false;
999
  }
M
Michal Gallus 已提交
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1010 1011 1012
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
1013

1014 1015 1016 1017
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
1018
  }
Y
Yan Chunwei 已提交
1019

M
minqiyang 已提交
1020
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
1021

Y
Yan Chunwei 已提交
1022 1023 1024 1025 1026
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
1027 1028 1029
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
1030
  tensor_array_batch_cleaner_.ResetNoTensorVars();
1031 1032 1033 1034

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1035 1036
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
1037
#endif
1038
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1039 1040 1041 1042
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
1043
#endif
1044 1045
  return true;
}
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
bool AnalysisPredictor::Run(const std::vector<paddle::Tensor> &inputs,
                            std::vector<paddle::Tensor> *outputs) {
  inference::DisplayMemoryInfo(place_, "before run");
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
  VLOG(3) << "predict start";
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();

  inference::DisplayMemoryInfo(place_, "after run");

  // get fetch variable
  if (!GetFetch(outputs, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
  }

  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
  tensor_array_batch_cleaner_.ResetNoTensorVars();

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
#if defined(PADDLE_WITH_MKLML)
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
  return true;
}

1111 1112
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
1113
  VLOG(3) << "Predictor::set_feed";
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
1124
    phi::DenseTensor *input = &feed_tensors_[i];
1125
    if (!PaddleTensorToDenseTensor(inputs[i], input, place_)) {
1126 1127 1128
      return false;
    }
    int idx = -1;
1129
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
1130 1131
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
1132 1133
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1134 1135
      }
      idx = feed_names_[name];
1136
    } else {
R
Ruibiao Chen 已提交
1137
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1138
    }
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    framework::SetFeedVariable(scope, *input, framework::kFeedOpType, idx);
  }
  return true;
}

bool AnalysisPredictor::SetFeed(const std::vector<paddle::Tensor> &inputs,
                                framework::Scope *scope) {
  VLOG(3) << "Predictor::set_feed";
  PADDLE_ENFORCE_EQ(inputs.size(),
                    feeds_.size(),
                    platform::errors::InvalidArgument(
                        "wrong feed input size, need %d but get %d.",
                        feeds_.size(),
                        inputs.size()));
  for (size_t i = 0; i < inputs.size(); ++i) {
    PADDLE_ENFORCE_EQ(inputs[i].initialized(),
                      true,
                      paddle::platform::errors::InvalidArgument(
                          "The input Tensor expected to be initialized."));
  }

  if (std::all_of(inputs.cbegin(), inputs.cend(), [&](const paddle::Tensor &t) {
        return !t.name().empty() && feed_names_.count(t.name());
      })) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, inputs[i].name());
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
  } else {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, idx2feeds_[i]);
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
1174 1175 1176 1177 1178
  }
  return true;
}

template <typename T>
1179
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1180 1181
                                    PaddleTensor *output) {
  // set shape.
1182
  auto shape = phi::vectorize(fetch.dims());
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1200
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1201 1202
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1203
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1204
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1205 1206
        static_cast<size_t>(idx),
        i,
1207
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1208 1209
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1210
            i));
1211
    framework::FetchType &fetch_var =
1212
        framework::GetFetchVariable(*scope, framework::kFetchOpType, idx);
1213
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1214
    auto type = framework::TransToProtoVarType(fetch.dtype());
1215
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1216
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1217
    if (type == framework::proto::VarType::FP32) {
1218 1219
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1220
    } else if (type == framework::proto::VarType::INT64) {
1221 1222
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1223 1224 1225
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1226 1227 1228
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1229
    } else {
1230 1231
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1232 1233
    }
  }
Y
Yan Chunwei 已提交
1234 1235
  return true;
}
1236

1237 1238 1239 1240 1241 1242 1243
bool AnalysisPredictor::GetFetch(std::vector<paddle::Tensor> *outputs,
                                 framework::Scope *scope) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    auto const &name = idx2fetches_[i];
    auto &t = framework::GetVariableTensor(*scope, name);
Y
Yuanle Liu 已提交
1244
    (*outputs)[i] = paddle::Tensor(std::make_shared<phi::DenseTensor>(t), name);
1245 1246 1247 1248
  }
  return true;
}

1249
void AnalysisPredictor::PrepareArgument() {
1250
  VLOG(3) << "AnalysisPredictor::PrepareArgument";
1251 1252 1253
  // Init std::unique_ptr argument_.
  argument_.reset(new Argument);
  argument_->SetUseGPU(config_.use_gpu());
1254
  argument_->SetUseCutlass(config_.use_cutlass_);
1255 1256 1257 1258 1259
  argument_->SetUseFcPadding(config_.use_fc_padding());
  argument_->SetGPUDeviceId(config_.gpu_device_id());
  argument_->SetEnableIrOptim(config_.enable_ir_optim_);
  argument_->SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_->SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1260
  // Analyze inference_program
1261 1262 1263
  argument_->SetPredictorID(predictor_id_);
  argument_->SetRootPredictorID(root_predictor_id_);
  argument_->SetOptimCacheDir(config_.opt_cache_dir_);
1264
  if (!config_.model_dir().empty()) {
1265
    argument_->SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1266
  } else {
C
ccrrong 已提交
1267 1268
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1269 1270
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1271

1272 1273
    argument_->SetModelProgramPath(config_.prog_file());
    argument_->SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1274
  }
1275
  // For JITLayer
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
  argument_->SetSkipLoadParams(config_.skip_load_params_);

  argument_->SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
  argument_->SetTensorRtUseOSS(config_.trt_use_varseqlen_);
  argument_->SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_->SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_->SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
  argument_->SetMinInputShape(config_.min_input_shape_);
  argument_->SetMaxInputShape(config_.max_input_shape_);
  argument_->SetOptimInputShape(config_.optim_input_shape_);
  argument_->SetTensorRtTunedDynamicShape(
1287
      config_.tuned_tensorrt_dynamic_shape());
1288
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1289
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    argument_->SetUseTensorRT(true);
    argument_->SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_->SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
    argument_->SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
    argument_->SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
    argument_->SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_->SetTensorRtDLACore(config_.trt_dla_core_);
    argument_->SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
    argument_->SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
    argument_->SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
    argument_->SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_->SetTensorRtAllowBuildAtRuntime(
1302
        config_.trt_allow_build_at_runtime());
1303 1304
    argument_->SetTensorRtUseInspector(config_.trt_use_inspector_);
    argument_->SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1305
  }
1306

D
denglin-github 已提交
1307 1308
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
1309 1310 1311 1312 1313 1314
    argument_->SetUseDlnne(true);
    argument_->SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
    argument_->SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_->SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_->SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_->SetDlnneDisableNodesByOutputs(
D
denglin-github 已提交
1315
        config_.dlnne_disable_nodes_by_outputs_);
1316 1317 1318
    argument_->SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_->SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
    argument_->SetDlnnePrecisionMode(config_.dlnne_precision_mode_);
D
denglin-github 已提交
1319 1320
  }

Z
zhupengyang 已提交
1321
  argument_->SetUseXpu(config_.use_xpu_);
石晓伟 已提交
1322
  if (config_.lite_engine_enabled()) {
1323
    argument_->SetCpuMathLibraryNumThreads(
W
Wilber 已提交
1324
        config_.cpu_math_library_num_threads());
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    argument_->SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_->SetLitePassesFilter(config_.lite_passes_filter_);
    argument_->SetLiteOpsFilter(config_.lite_ops_filter_);
    argument_->SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
    argument_->SetXpuLocked(config_.xpu_locked_);
    argument_->SetXpuAutotune(config_.xpu_autotune_);
    argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_->SetXpuPrecision(config_.xpu_precision_);
    argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
    argument_->SetXpuDeviceId(config_.xpu_device_id_);
    argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
    argument_->SetUseOpenCL(config_.use_opencl_);
1338
    // NNAdapter related
1339 1340
    argument_->SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_->SetNNAdapterDeviceNames(
1341
        config_.NNAdapter().nnadapter_device_names);
1342
    argument_->SetNNAdapterContextProperties(
1343
        config_.NNAdapter().nnadapter_context_properties);
1344
    argument_->SetNNAdapterModelCacheDir(
1345
        config_.NNAdapter().nnadapter_model_cache_dir);
1346
    argument_->SetNNAdapterSubgraphPartitionConfigBuffer(
1347
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
1348
    argument_->SetNNAdapterSubgraphPartitionConfigPath(
1349 1350 1351 1352 1353 1354 1355
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
1356 1357
    argument_->SetNNAdapterModelCacheToken(buffer_keys);
    argument_->SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1358 1359 1360
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1361
#ifdef PADDLE_WITH_IPU
1362 1363 1364 1365 1366 1367 1368 1369
  argument_->SetUseIpu(config_.use_ipu_);
  argument_->SetIpuDeviceNum(config_.ipu_device_num());
  argument_->SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
  argument_->SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_->SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
  argument_->SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_->SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_->SetIpuAvailableMemoryProportion(
1370
      config_.ipu_available_memory_proportion_);
1371 1372
  argument_->SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
  argument_->SetIpuEnableModelRuntimeExecutor(
1373
      config_.ipu_enable_model_runtime_executor_);
1374 1375
  argument_->SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_->SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1376
#endif
J
jianghaicheng 已提交
1377

1378 1379
  argument_->SetUseNpu(config_.use_npu_);
  argument_->SetNPUDeviceId(config_.npu_device_id());
1380

1381
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1382
    LOG(INFO) << "MKLDNN is enabled";
1383
    argument_->SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
1384 1385
  }

1386
  if (config_.use_cinn_compiler_) {
1387
    argument_->SetUseCinnCompiler(config_.use_cinn_compiler_);
1388 1389
  }

1390 1391 1392
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
1393
    argument_->SetQuantizeEnabledOpTypes(
1394
        config_.mkldnn_quantizer_config()->enabled_op_types());
1395
    argument_->SetQuantizeExcludedOpIds(
1396 1397
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1398 1399
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
1400
    argument_->SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
1401
  }
B
baoachun 已提交
1402 1403 1404

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
1405 1406 1407
    argument_->SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_->SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_->SetQuantVarScales({});
B
baoachun 已提交
1408
  }
1409 1410
#endif

1411
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1412
  argument_->SetUseCustomDevice(config_.use_custom_device());
1413 1414
  if (config_.use_custom_device()) {
    LOG(INFO) << "CustomDevice is enabled";
1415 1416
    argument_->SetCustomDeviceType(config_.custom_device_type());
    argument_->SetCustomDeviceId(config_.custom_device_id());
1417 1418
  }
#endif
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
#ifdef PADDLE_WITH_XPU
  argument_->SetUseXpu(config_.use_xpu_);
  argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
  argument_->SetXpuLocked(config_.xpu_locked_);
  argument_->SetXpuAutotune(config_.xpu_autotune_);
  argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_);
  argument_->SetXpuPrecision(config_.xpu_precision_);
  argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
  argument_->SetXpuDeviceId(config_.xpu_device_id_);
  argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
#endif

1431
  auto *pass_builder = config_.pass_builder();
1432 1433
  // TODO(inference): Need to reconstruct the pass_builder, pass should be
  // processed in a single
1434 1435
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
Z
zhupengyang 已提交
1436
              << ", we will use a new PassStrategy. Note that only GPU/XPU "
1437
                 "backend is supported for now.";
1438 1439 1440
    if (!config_.use_cinn_compiler_) {
      const auto &deleted_passes = pass_builder->GetAllDeletedPasses();
      if (config_.tensorrt_engine_enabled()) {
1441
        pass_builder->ClearPasses();
1442 1443 1444 1445 1446
        for (const auto &pass : kTrtLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
      } else if (config_.use_gpu()) {
1447
        pass_builder->ClearPasses();
1448 1449 1450 1451
        for (const auto &pass : kGpuLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
1452 1453 1454 1455
      } else if (config_.use_xpu()) {
        // All passes support fp16. Not reset pass_builder.
      } else {
        pass_builder->ClearPasses();
1456 1457 1458
      }
    }
  }
1459

Y
Yan Chunwei 已提交
1460
  if (!config_.ir_optim()) {
1461
    argument_->SetEnableIrOptim(false);
1462
    if (config_.enable_gpu_mixed_) {
1463
      argument_->SetEnableIrOptim(true);
1464
      pass_builder->ClearPasses();
1465
      pass_builder->AppendPass("auto_mixed_precision_pass");
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
      LOG(INFO)
          << "This model run in Paddle-GPU mixed precision mode with no ir "
             "optimization.";
    } else {
      LOG(INFO) << "ir_optim is turned off, no IR pass will be executed.";
    }
  } else {
    if (config_.ir_debug_) {
      pass_builder->TurnOnDebug();
    }
1476
    if (config_.enable_gpu_mixed_) {
1477 1478
      LOG(INFO) << "This model run in Paddle-GPU mixed precision mode.";
    }
Y
Yan Chunwei 已提交
1479
  }
1480 1481 1482 1483 1484 1485 1486 1487 1488

  argument_->SetEnableCustomDeviceMixed(config_.enable_custom_device_mixed());
  if (config_.enable_custom_device_mixed_) {
    argument_->SetEnableIrOptim(true);
    pass_builder->ClearPasses();
    pass_builder->AppendPass("auto_mixed_precision_pass");
    LOG(INFO) << "This model run in Custom Device mixed precision mode.";
  }

1489 1490 1491 1492
  argument_->SetDisableLogs(config_.glog_info_disabled());
  argument_->SetIrAnalysisPasses(pass_builder->AllPasses());
  argument_->SetAnalysisPasses(pass_builder->AnalysisPasses());
  argument_->SetScopeNotOwned(scope_.get());
1493

1494
  // mixed precison.
1495 1496 1497 1498
  argument_->SetModelPrecision(static_cast<int>(model_precision_));
  argument_->SetMixedBlackList(config_.mixed_black_list_);
  argument_->SetEnableGPUMixed(config_.enable_gpu_mixed_);
  argument_->SetMixedPrecisionMode(static_cast<int>(
1499
      paddle::ConvertPrecision(config_.mixed_precision_mode_)));
1500 1501 1502 1503 1504
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1505 1506 1507 1508 1509 1510 1511 1512
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif
1513
  Analyzer().Run(argument_.get());
1514
  PADDLE_ENFORCE_EQ(
1515
      argument_->scope_valid(),
C
ccrrong 已提交
1516
      true,
1517
      platform::errors::InvalidArgument("The argument scope should be valid."));
1518
  VLOG(5) << "to prepare executor";
1519
  ARGUMENT_CHECK_FIELD((argument_.get()), ir_analyzed_program);
Y
Yan Chunwei 已提交
1520
  inference_program_.reset(
1521
      new framework::ProgramDesc(argument_->ir_analyzed_program()),
1522 1523 1524
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1525
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1526 1527 1528 1529
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1530
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1531
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1532
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1544 1545 1546
#endif
        delete prog;
      });
1547 1548 1549
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  config_.PartiallyRelease();
X
xiaoxiaohehe001 已提交
1550
#if defined(PADDLE_WITH_TESTING)
1551
  fusion_statis_ = *argument_->fusion_statis_ptr();
X
xiaoxiaohehe001 已提交
1552 1553
#endif

1554 1555 1556
#if defined(_WIN32)
  argument_->PartiallyRelease();
#else
X
xiaoxiaohehe001 已提交
1557 1558 1559
  if (config_.mkldnn_enabled() ||
      (config_.tensorrt_engine_enabled() &&
       config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8)) {
1560 1561 1562 1563 1564
    argument_->PartiallyRelease();
  } else {
    argument_.reset(nullptr);
  }
#endif
1565
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1566
}
1567 1568

template <>
1569 1570 1571
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
1572
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1573 1574
      config.is_valid(),
      true,
1575 1576
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1577

1578 1579 1580 1581
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1582
                 []() { inference::RegisterAllCustomOperator(); });
1583

1584 1585 1586 1587 1588 1589
  auto SetGflags = [](const AnalysisConfig &config) {
    auto SetGflag = [](const char *name, const char *value) {
      std::string ret = ::GFLAGS_NAMESPACE::SetCommandLineOption(name, value);
      PADDLE_ENFORCE_EQ(
          ret.empty(),
          false,
1590
          platform::errors::InvalidArgument(
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
              "Fail to set gflag: %s, please make sure the gflag exists.",
              name));
      VLOG(3) << "set gflag: --" << name << "=" << value;
    };
    // TODO(NHZlX): Should add the link to the doc of
    // paddle_infer::CreatePredictor<paddle_infer::Config>
    if (config.glog_info_disabled()) {
      FLAGS_logtostderr = 1;
      FLAGS_minloglevel = 2;  // GLOG_ERROR
    }
1601

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    if (config.use_gpu()) {
      static std::once_flag gflags_initialized;
      static bool process_level_allocator_enabled;

      std::call_once(gflags_initialized, [&]() {
        PADDLE_ENFORCE_GE(
            config.memory_pool_init_size_mb(),
            0.f,
            platform::errors::InvalidArgument(
                "The size of memory pool should be greater than 0."));
        PADDLE_ENFORCE_GE(config.gpu_device_id(),
                          0,
                          platform::errors::InvalidArgument(
                              "Invalid device id (%d). The device id should be "
                              "greater than 0.",
                              config.gpu_device_id()));

        float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
        if (fraction_of_gpu_memory > 0.95f) {
          LOG(ERROR)
              << "Allocate too much memory for the GPU memory pool, assigned "
              << config.memory_pool_init_size_mb() << " MB";
          LOG(ERROR) << "Try to shink the value by setting "
                        "AnalysisConfig::EnableUseGpu(...)";
        }
        if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
          std::string value = std::to_string(fraction_of_gpu_memory);
          SetGflag("fraction_of_gpu_memory_to_use", value.data());
        }
1631

1632 1633 1634 1635 1636 1637 1638 1639
        // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
        // allocator when multi-stream is enabled.
        if (config.thread_local_stream_enabled()) {
          SetGflag("allocator_strategy", "thread_local");
          process_level_allocator_enabled = false;
        } else {
          process_level_allocator_enabled = true;
        }
1640

1641 1642 1643
        // for inference, the following default values are better.
        if (std::getenv("FLAGS_conv_workspace_size_limit") == nullptr) {
          SetGflag("conv_workspace_size_limit", "32");
1644
        }
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
        if (std::getenv("FLAGS_initial_cpu_memory_in_mb") == nullptr) {
          SetGflag("initial_cpu_memory_in_mb", "0");
        }
      });

      if (config.thread_local_stream_enabled() &&
          process_level_allocator_enabled) {
        PADDLE_THROW(platform::errors::Fatal(
            "When binding threads and streams, the use of "
            "process-level allocators will result in undefined result "
            "errors due to memory asynchronous operations."
            "The thread and stream binding configuration of all "
            "predictors should be the same in a single process."));
1658
      }
1659
    }
1660 1661 1662 1663
  };
  SetGflags(config);

  VLOG(3) << "create AnalysisPredictor";
1664 1665

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1666 1667
  // Each config can only be used for one predictor.
  config.SetInValid();
1668 1669
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1670 1671 1672 1673
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1674 1675 1676 1677 1678
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1679 1680
    return nullptr;
  }
1681

G
Gabor Buella 已提交
1682
  return predictor;
1683 1684
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1697
void AnalysisPredictor::PrepareFeedFetch() {
1698 1699 1700
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1701
  CreateFeedFetchVar(sub_scope_);
1702
  for (auto *op : inference_program_->Block(0).AllOps()) {
1703
    if (op->Type() == framework::kFeedOpType) {
R
Ruibiao Chen 已提交
1704
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1705 1706 1707 1708 1709
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1710
      idx2feeds_[idx] = op->Output("Out")[0];
1711
    } else if (op->Type() == framework::kFetchOpType) {
R
Ruibiao Chen 已提交
1712
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1713 1714
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1715
      }
Y
Yan Chunwei 已提交
1716
      fetches_[idx] = op;
N
nhzlx 已提交
1717
      idx2fetches_[idx] = op->Input("X")[0];
1718 1719 1720 1721
    }
  }
}

1722
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1723 1724 1725
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1726
  auto *var = scope->Var(framework::kFeedOpType);
1727
  var->GetMutable<framework::FeedList>();
1728
  var = scope->Var(framework::kFetchOpType);
1729
  var->GetMutable<framework::FetchList>();
1730 1731
}

N
nhzlx 已提交
1732 1733 1734 1735 1736 1737 1738 1739
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1740 1741 1742 1743 1744 1745
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1746 1747 1748
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1749 1750 1751 1752 1753
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1785 1786 1787 1788 1789 1790 1791 1792
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetOutputTensorShape() {
  std::map<std::string, std::vector<int64_t>> output_shapes;
  std::vector<std::string> names = GetOutputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::PreconditionNotMet(
                                "Output %s does not exist.", name));
    output_shapes[name] = var->GetShape();
  }
  return output_shapes;
}

std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetOutputTypes() {
  std::map<std::string, paddle_infer::DataType> output_type;
  std::vector<std::string> names = GetOutputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Output %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      output_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      output_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      output_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      output_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      output_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      output_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get output dtype ", dtype));
    }
  }
  return output_type;
}

1838 1839
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1840
  framework::Scope *scope;
1841
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1842 1843 1844
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1845
    scope = executor_->GetScope();
1846 1847
  }
#else
1848
  scope = executor_->GetScope();
1849
#endif
1850
  PADDLE_ENFORCE_NOT_NULL(
1851
      scope->FindVar(name),
1852
      platform::errors::PreconditionNotMet(
1853
          "The variable named %s is not found in the scope of the executor.",
1854
          name));
1855 1856
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1857 1858
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1859 1860
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1861 1862 1863 1864
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1865
  } else if (platform::is_xpu_place(place_)) {
1866 1867 1868 1869 1870 1871 1872 1873
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1874
      auto xpu_place = place_;
1875 1876
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1877
  } else if (platform::is_npu_place(place_)) {
1878
    auto npu_place = place_;
W
Wilber 已提交
1879
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1880 1881 1882 1883
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1884 1885
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1886 1887
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
1888
  } else {
1889
    auto gpu_place = place_;
N
nhzlx 已提交
1890 1891
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1892 1893 1894 1895 1896
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1897
  framework::Scope *scope;
1898
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1899 1900 1901
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1902
    scope = executor_->GetScope();
1903 1904
  }
#else
1905
  scope = executor_->GetScope();
1906
#endif
1907
  PADDLE_ENFORCE_NOT_NULL(
1908
      scope->FindVar(name),
1909
      platform::errors::PreconditionNotMet(
1910
          "The variable named %s is not found in the scope of the executor.",
1911
          name));
1912 1913
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1914 1915
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1916 1917
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1918 1919 1920 1921
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1922
  } else if (platform::is_xpu_place(place_)) {
1923 1924 1925 1926 1927 1928 1929 1930
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1931
      auto xpu_place = place_;
1932 1933
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
W
Wilber 已提交
1934
  } else if (platform::is_npu_place(place_)) {
1935
    auto npu_place = place_;
W
Wilber 已提交
1936
    res->SetPlace(PaddlePlace::kNPU, npu_place.GetDeviceId());
1937 1938 1939 1940
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1941 1942
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1943 1944
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
1945
  } else {
1946
    auto gpu_place = place_;
N
nhzlx 已提交
1947 1948
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1949 1950 1951 1952
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1953
  inference::DisplayMemoryInfo(place_, "before run");
1954
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1965 1966 1967
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1968
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1990
  executor_->Run();
1991
  inference::DisplayMemoryInfo(place_, "after run");
1992 1993 1994 1995 1996

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1997
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1998
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1999
  tensor_array_batch_cleaner_.ResetTensorArray();
2000 2001 2002 2003

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
2004 2005 2006
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
2007 2008 2009
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
2010
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
2011 2012 2013 2014 2015
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
2016 2017 2018
  return true;
}

W
Wilber 已提交
2019 2020
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
2046 2047 2048 2049
  return ZeroCopyRun();
}
#endif

2050 2051
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
2052 2053
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
2054 2055
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2056 2057
    auto *dev_ctx = pool.Get(place_);
    auto stream = static_cast<phi::GPUContext *>(dev_ctx)->stream();
2058
#ifdef PADDLE_WITH_HIP
2059
    hipStreamSynchronize(stream);
2060
#else
2061
    cudaStreamSynchronize(stream);
2062 2063 2064 2065 2066 2067 2068
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
2069
    if (!var->IsType<phi::DenseTensor>()) {
2070 2071
      continue;
    }
2072
    auto tensor = var->Get<phi::DenseTensor>();
2073
    if (!tensor.initialized()) continue;
2074
    framework::DDim dim = tensor.dims();
2075 2076 2077
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
2078 2079 2080 2081 2082 2083 2084

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
2085 2086
    if ((tensor.dtype() == phi::DataType::INT32 ||
         tensor.dtype() == phi::DataType::INT64) &&
2087 2088
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

      if (platform::is_cpu_place(tensor.place())) {
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          auto *cpu_ctx = pool.Get(platform::CPUPlace());
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::CPUContext &>(*cpu_ctx),
              tensor,
              DataType::INT32);
        }
2099 2100 2101
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
2102 2103 2104
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int));
      } else if (platform::is_gpu_place(tensor.place())) {
2105
#if defined(PADDLE_WITH_CUDA)
2106 2107 2108 2109 2110 2111 2112 2113
        auto *dev_ctx = pool.Get(tensor.place());
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::GPUContext &>(*dev_ctx),
              tensor,
              DataType::INT32);
        }
2114 2115
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
2116 2117 2118
                             int32_tensor.place(),
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int),
2119 2120 2121 2122 2123
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
2124 2125 2126 2127 2128 2129 2130
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
2186 2187
}

2188 2189
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
2190
  std::string filename;
2191 2192
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
2193
  } else if (!config_.prog_file().empty()) {
2194 2195 2196
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
2197
    filename = config_.prog_file();
2198
  } else {
2199
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
2200 2201 2202 2203
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
2204
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
2205 2206
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
2207
        config_.params_file());
2208 2209
    return false;
  }
2210 2211 2212

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
2213
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
2214 2215 2216
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
2217
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
2218 2219
        static_cast<bool>(fin.is_open()),
        true,
2220 2221 2222
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
2223 2224 2225 2226 2227 2228 2229 2230
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
2231
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
2232
  }
2233 2234 2235 2236 2237 2238
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
2239 2240
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
2241

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

2262
      if (!config_.params_file().empty()) {
2263 2264 2265 2266 2267 2268
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
2269
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
2270 2271 2272 2273 2274
        op->CheckAttrs();
      }
    }
  }

2275
  if (!config_.params_file().empty()) {
2276 2277 2278 2279 2280 2281
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
2282
    op->SetAttr("file_path", {config_.params_file()});
2283 2284 2285 2286
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
2287
  framework::NaiveExecutor e(place_);
2288 2289 2290 2291
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

2292 2293
  return true;
}
2294

2295 2296 2297 2298 2299
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

2300 2301 2302 2303 2304 2305 2306 2307
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
2308
      auto *variable = executor_->GetScope()->FindVar(name);
2309
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2310
          name != framework::kFeedOpType && name != framework::kFetchOpType) {
2311
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2312
        auto *t = variable->GetMutable<phi::DenseTensor>();
2313 2314 2315 2316 2317 2318
        t->clear();
      }
    }
  }
}

2319
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2320
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2321 2322
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2323 2324
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2325 2326 2327
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2328
      std::string engine_name = PADDLE_GET_CONST(
2329
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2330
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2331 2332 2333 2334
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2335 2336
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2337
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2338
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2339 2340
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2341 2342 2343
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2344

N
nhzlx 已提交
2345
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2346 2347 2348
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2349

N
nhzlx 已提交
2350
      std::string model_opt_cache_dir =
2351 2352 2353
          argument_->Has("model_dir") ? argument_->model_dir()
                                      : inference::analysis::GetDirRoot(
                                            argument_->model_program_path());
N
nhzlx 已提交
2354

N
nhzlx 已提交
2355
      std::string calibration_table_data_path =
N
nhzlx 已提交
2356 2357 2358 2359
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2360 2361 2362 2363 2364

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2365 2366 2367 2368
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2369
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2370 2371
  return true;
}
N
nhzlx 已提交
2372
#endif
N
nhzlx 已提交
2373

2374
AnalysisPredictor::~AnalysisPredictor() {
2375
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2376
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2377 2378
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2379 2380
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2381
#endif
2382
  if (config_.with_profile_) {
2383 2384 2385 2386
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2396 2397
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2398

2399 2400 2401 2402 2403 2404
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2405

2406 2407 2408
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2409 2410 2411 2412 2413
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
2414 2415 2416
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2417
  device_contexts_.clear();
2418 2419 2420 2421 2422 2423 2424

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .releaseContextMemory(predictor_id_);
  }
#endif
2425 2426
}

2427
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
2428
  VLOG(3) << "AnalysisPredictor::Clone";
Y
Yan Chunwei 已提交
2429
  std::lock_guard<std::mutex> lk(clone_mutex_);
2430
  auto *x = new AnalysisPredictor(config_);
2431
  x->status_is_cloned_ = true;
2432
  x->root_predictor_id_ = this->root_predictor_id_;
2433
  x->config_.apply_optim_ = false;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2444
  x->Init(scope_, inference_program_);
2445
#ifdef PADDLE_WITH_TENSORRT
2446
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2447
#endif
2448 2449 2450
  return std::unique_ptr<PaddlePredictor>(x);
}

2451
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2452 2453 2454
  return inference_program_->Proto()->SerializeAsString();
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
void AnalysisPredictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  static std::once_flag register_hook_flag;
  std::call_once(register_hook_flag, [this] {
    executor_->RegisterOutputHook([this](framework::OperatorBase *op) {
      for (auto &output : op->Outputs()) {
        for (auto &var_name : output.second) {
          auto *var = this->sub_scope_->FindVar(var_name);
          if (!var || !var->IsType<phi::DenseTensor>()) continue;
          auto dense_tensor = var->Get<phi::DenseTensor>();
          if (!dense_tensor.initialized()) continue;
          auto tensor = this->GetOutputTensor(var_name);
          for (auto &hookfunc : this->hookfuncs_) {
            hookfunc(op->Type(), var_name, *tensor);
          }
        }
      }
    });
  });
  hookfuncs_.push_back(hookfunc);
}

Y
Yan Chunwei 已提交
2515
template <>
2516 2517
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2518
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2519 2520
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2521 2522
}

2523
}  // namespace paddle
2524

2525
#ifdef PADDLE_WITH_TENSORRT
2526
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2527 2528 2529
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2530 2531
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2532
USE_TRT_CONVERTER(elementwise_pow_weight);
2533
USE_TRT_CONVERTER(elementwise_mod_weight);
W
wenbin 已提交
2534
USE_TRT_CONVERTER(elementwise_floordiv_weight);
2535 2536 2537 2538 2539 2540 2541
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
W
wenbin 已提交
2542
USE_TRT_CONVERTER(elementwise_floordiv_tensor);
2543
USE_TRT_CONVERTER(elementwise_mod_tensor);
2544 2545 2546 2547 2548 2549
USE_TRT_CONVERTER(less_than);
USE_TRT_CONVERTER(greater_than);
USE_TRT_CONVERTER(logical_or);
USE_TRT_CONVERTER(logical_xor);
USE_TRT_CONVERTER(logical_and);
USE_TRT_CONVERTER(less_equal);
2550
USE_TRT_CONVERTER(greater_equal);
2551
USE_TRT_CONVERTER(transpose);
2552
USE_TRT_CONVERTER(transpose2);
2553
USE_TRT_CONVERTER(flatten);
2554
USE_TRT_CONVERTER(flatten_contiguous_range);
2555
USE_TRT_CONVERTER(matrix_multiply);
2556
USE_TRT_CONVERTER(bmm);
2557 2558 2559 2560 2561 2562 2563 2564 2565
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2566 2567 2568
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(pad3d);
#endif
2569 2570
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2571
USE_TRT_CONVERTER(split);
2572
USE_TRT_CONVERTER(fill_any_like);
2573 2574
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2575
USE_TRT_CONVERTER(leaky_relu);
2576
USE_TRT_CONVERTER(shuffle_channel);
2577
USE_TRT_CONVERTER(where);
2578
USE_TRT_CONVERTER(bitwise_not);
2579 2580
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
2581
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2582
USE_TRT_CONVERTER(silu);
2583
USE_TRT_CONVERTER(group_norm);
2584
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2585 2586 2587
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2588
USE_TRT_CONVERTER(multihead_matmul_roformer);
2589
USE_TRT_CONVERTER(skip_layernorm);
2590
USE_TRT_CONVERTER(slice);
2591
USE_TRT_CONVERTER(scale);
2592
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2593
USE_TRT_CONVERTER(clip);
2594
USE_TRT_CONVERTER(gather);
2595
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2596
USE_TRT_CONVERTER(yolo_box);
2597
USE_TRT_CONVERTER(yolo_box_head);
2598
USE_TRT_CONVERTER(arg_max);
2599
USE_TRT_CONVERTER(arg_min);
2600
USE_TRT_CONVERTER(roi_align);
2601
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2602
USE_TRT_CONVERTER(multiclass_nms);
2603
USE_TRT_CONVERTER(multiclass_nms3);
2604
USE_TRT_CONVERTER(nearest_interp);
2605
USE_TRT_CONVERTER(nearest_interp_v2);
2606
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2607
USE_TRT_CONVERTER(reshape);
2608
USE_TRT_CONVERTER(reshape2);
2609
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2610
USE_TRT_CONVERTER(reduce_mean);
2611
USE_TRT_CONVERTER(reduce_max);
2612
USE_TRT_CONVERTER(reduce_min);
2613
USE_TRT_CONVERTER(reduce_sum);
2614
USE_TRT_CONVERTER(reduce_prod);
W
wenbin 已提交
2615
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2616 2617
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2618
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2619
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2620
USE_TRT_CONVERTER(pool3d)
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
USE_TRT_CONVERTER(square);
// unary op
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
USE_TRT_CONVERTER(sqrt);
USE_TRT_CONVERTER(reciprocal);
USE_TRT_CONVERTER(abs);
USE_TRT_CONVERTER(sin);
USE_TRT_CONVERTER(cos);
USE_TRT_CONVERTER(tan);
USE_TRT_CONVERTER(sinh);
USE_TRT_CONVERTER(cosh);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(asin);
USE_TRT_CONVERTER(acos);
USE_TRT_CONVERTER(atan);
USE_TRT_CONVERTER(asinh);
USE_TRT_CONVERTER(acosh);
USE_TRT_CONVERTER(atanh);
USE_TRT_CONVERTER(ceil);
USE_TRT_CONVERTER(floor);
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(round);
USE_TRT_CONVERTER(sign);
#endif
USE_TRT_CONVERTER(rsqrt);
2647
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2648
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
2649
USE_TRT_CONVERTER(preln_skip_layernorm)
W
Wang Bojun 已提交
2650
USE_TRT_CONVERTER(fused_bias_dropout_residual_layer_norm)
2651
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2652
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2653
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2654 2655
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2656
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2657
USE_TRT_CONVERTER(cast)
2658 2659
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2660
USE_TRT_CONVERTER(equal);
S
Sanbu 已提交
2661
USE_TRT_CONVERTER(not_equal);
2662 2663
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2664
USE_TRT_CONVERTER(range)
2665 2666
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2667 2668
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2669
USE_TRT_CONVERTER(fill_constant)
2670
USE_TRT_CONVERTER(fused_token_prune)
2671
USE_TRT_CONVERTER(celu)
W
wenbin 已提交
2672
USE_TRT_CONVERTER(layernorm_shift_partition)
W
Wang Bojun 已提交
2673
USE_TRT_CONVERTER(reverse_roll)
W
wenbin 已提交
2674
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2675
USE_TRT_CONVERTER(merge_layernorm)
2676
USE_TRT_CONVERTER(trans_layernorm)
W
wenbin 已提交
2677
USE_TRT_CONVERTER(skip_merge_layernorm)
W
weishengying 已提交
2678 2679
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2680
USE_TRT_CONVERTER(fuse_eleadd_transpose)
2681 2682
USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid)
2683
USE_TRT_CONVERTER(lookup_table)
2684
USE_TRT_CONVERTER(expand_v2)
2685
USE_TRT_CONVERTER(expand_as_v2)
2686
USE_TRT_CONVERTER(take_along_axis)
W
wenbin 已提交
2687 2688
USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
2689
USE_TRT_CONVERTER(cumsum)
2690 2691 2692
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
2693
USE_TRT_CONVERTER(qk_multihead_matmul)
2694
#endif
2695 2696 2697
#if IS_TRT_VERSION_GE(8510)
USE_TRT_CONVERTER(grid_sampler)
#endif
X
xjmxyt 已提交
2698 2699
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(set_value)
X
xjmxyt 已提交
2700
USE_TRT_CONVERTER(index_select);
2701
USE_TRT_CONVERTER(temporal_shift)
X
xjmxyt 已提交
2702
#endif
2703 2704 2705 2706
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2707
#endif
W
Wilber 已提交
2708 2709 2710 2711 2712 2713

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2724 2725 2726 2727
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2728 2729 2730 2731 2732 2733 2734 2735 2736
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2737 2738 2739 2740
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2741 2742 2743 2744 2745
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2746

2747 2748 2749 2750
std::map<std::string, std::vector<int64_t>> Predictor::GetInputTensorShape() {
  return predictor_->GetInputTensorShape();
}

2751 2752 2753
std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2754 2755

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2756
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2757 2758 2759 2760 2761 2762 2763
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2764
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2765 2766
}

2767 2768 2769 2770 2771 2772 2773 2774
std::map<std::string, std::vector<int64_t>> Predictor::GetOutputTensorShape() {
  return predictor_->GetOutputTensorShape();
}

std::map<std::string, DataType> Predictor::GetOutputTypes() {
  return predictor_->GetOutputTypes();
}

W
Wilber 已提交
2775 2776
bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2777 2778 2779 2780 2781
bool Predictor::Run(const std::vector<paddle::Tensor> &inputs,
                    std::vector<paddle::Tensor> *outputs) {
  return predictor_->Run(inputs, outputs);
}

2782 2783
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2784 2785 2786 2787 2788 2789 2790 2791
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2792 2793
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2794 2795 2796 2797
void Predictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  predictor_->RegisterOutputHook(hookfunc);
}

2798 2799
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2834 2835 2836 2837
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2838 2839 2840 2841 2842
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
2843
                             paddle_infer::PlaceType backend,
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2869 2870
      size,
      1UL,
W
Wilber 已提交
2871 2872 2873 2874 2875 2876 2877 2878
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
2879
      preds_.emplace_back(new Predictor(config_tmp));
W
Wilber 已提交
2880
    } else {
2881
      preds_.emplace_back(main_pred_->Clone());
W
Wilber 已提交
2882 2883 2884 2885 2886 2887
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2888 2889
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2890
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2891 2892
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2893 2894 2895 2896 2897 2898 2899
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2920

2921 2922 2923 2924 2925 2926
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2942 2943 2944 2945 2946
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
2947
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2957
}  // namespace experimental
W
Wilber 已提交
2958
}  // namespace paddle_infer