creation.py 78.6 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16
import math
17
import re
18 19
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
20 21 22 23
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
24 25
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
26
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
27
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
28
# TODO: define functions to get create a tensor
29
import paddle
30
from paddle import _C_ops, _legacy_C_ops
31 32
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
33

34 35
__all__ = []

W
wangchaochaohu 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
57
    Return fixed number of evenly spaced values within a given interval.
58 59 60 61 62 63 64 65 66 67

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
68
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
69 70 71 72

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
73
        the value with input :attr:`start`.
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
94
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
95 96
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
97
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
98 99
    if not isinstance(num, Variable):
        with device_guard("cpu"):
100
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
101
    if in_dygraph_mode():
102 103
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, dtype,
                               _current_expected_place())
104
    if _in_legacy_dygraph():
105 106
        return _legacy_C_ops.linspace(tensor_start, tensor_stop, tensor_num,
                                      'dtype', dtype)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
128 129 130 131
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
132 133 134 135 136 137 138
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

139 140 141 142 143 144 145 146
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
147 148 149 150 151
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


152 153 154 155
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
156

157 158
    Notes:
        This API does not compute the gradient.
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
174
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
175 176 177 178 179

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
180
        just has the value with exponential of :attr:`start` with base :attr:`base`.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
214 215
        return _legacy_C_ops.logspace(tensor_start, tensor_stop, tensor_num,
                                      tensor_base, 'dtype', dtype)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
        check_dtype(base.dtype, 'base',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(base, 'base', (int, float), 'logspace')

    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'logspace')
    if ((stop_dtype == "float64" or start_dtype == "float64"
                                 or base_dtype == "float64")
                                 and out_dtype in ["float32", "int32"]) or \
       ((stop_dtype == "int64" or start_dtype == "int64"
                               or base_dtype == "int64")
                               and out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of logspace."
            .format(start_dtype, stop_dtype, base_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

259 260 261 262 263 264 265 266 267
    helper.append_op(type='logspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num,
                         'Base': tensor_base
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
268 269 270 271 272
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


273
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
274 275

    if not isinstance(data, np.ndarray):
276

277
        def _handle_dtype(data, dtype):
278 279 280 281 282
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

283 284 285 286
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
287
            if data.dtype == np.object_:
288 289 290 291
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
292 293 294 295 296 297
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
298
            data = data._copy_to(place, False)
299
            data = _handle_dtype(data, dtype)
300
            data.stop_gradient = stop_gradient
301
            return data
302
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
303
            # should't expose it to users, just for internal use.
304 305
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
306 307 308 309
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
310 311 312 313
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
314
            return data
315 316
        else:
            raise TypeError(
317 318
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor"
                .format(type(data)))
319 320 321 322 323 324 325 326 327 328 329 330 331 332
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
333 334

    if dtype and convert_dtype(dtype) != data.dtype:
335
        data = data.astype(convert_dtype(dtype))
336

J
Jiabin Yang 已提交
337
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
338 339 340 341 342 343
        return core.eager.Tensor(value=data,
                                 place=place,
                                 persistable=False,
                                 zero_copy=False,
                                 name=None,
                                 stop_gradient=stop_gradient)
344
    else:
345 346 347 348 349
        return paddle.Tensor(value=data,
                             place=place,
                             persistable=False,
                             zero_copy=False,
                             stop_gradient=stop_gradient)
350 351


352 353 354 355 356
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
357 358 359 360 361 362 363 364 365 366 367 368 369 370

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

            if isinstance(data,
                          np.ndarray) and not dtype and data.dtype != 'object':
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

371 372
        if dtype:
            target_dtype = dtype
373
        elif hasattr(data, 'dtype') and data.dtype != 'object':
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

        if isinstance(data, np.ndarray) and len(data.shape) > 0 and any(
                isinstance(x, Variable) for x in data):
            if not all(
                [x.shape == (1, ) for x in data if isinstance(x, Variable)]):
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


405 406
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
407
    Constructs a ``paddle.Tensor`` from ``data`` ,
408 409 410 411 412 413 414 415
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
416
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
417
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
418
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
419
            except for python float number which gets dtype from ``get_default_type`` .
420 421 422
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
423 424 425 426 427 428 429 430 431 432
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
448
        #        [1])
449 450 451 452 453 454 455 456 457 458 459 460 461 462

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
463 464 465 466
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

467 468 469 470 471
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
472
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
473 474 475
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
476
            return _to_tensor_static(data, dtype, stop_gradient)
477 478


479
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
480
    """
S
swtkiwi 已提交
481

482 483
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
484

P
Pei Yang 已提交
485
    Args:
486 487
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
488
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
489
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
490
            data type is the same as input.
491
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
492

P
Pei Yang 已提交
493
    Returns:
494
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
495

P
Pei Yang 已提交
496 497
    Examples:
        .. code-block:: python
498

P
Pei Yang 已提交
499
          import paddle
500

501
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
502
          output = paddle.full_like(input, 2.0)
503 504
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
505 506 507
    """

    if dtype is None:
508
        dtype = x.dtype
509
    else:
510 511 512
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

513
    if in_dygraph_mode():
514
        return _C_ops.full_like(x, fill_value, dtype, x.place)
515 516

    if _in_legacy_dygraph():
517 518
        return _legacy_C_ops.fill_any_like(x, 'value', fill_value, 'dtype',
                                           dtype)
P
Pei Yang 已提交
519

520
    helper = LayerHelper("full_like", **locals())
521
    check_variable_and_dtype(
522 523
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
524
        'full_like')
525 526 527 528
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
529
    out = helper.create_variable_for_type_inference(dtype=dtype)
530

531 532 533 534 535 536 537
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={
                         'value': fill_value,
                         "dtype": dtype
                     },
                     outputs={'Out': [out]})
538
    out.stop_gradient = True
P
Pei Yang 已提交
539 540 541
    return out


542
def ones(shape, dtype=None, name=None):
543
    """
B
BrilliantYuKaimin 已提交
544
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
545 546

    Args:
B
BrilliantYuKaimin 已提交
547 548 549 550
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
551

552
    Returns:
B
BrilliantYuKaimin 已提交
553
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
554 555 556 557

    Examples:
        .. code-block:: python

558
            import paddle
559 560

            # default dtype for ones OP
561
            data1 = paddle.ones(shape=[3, 2])
562 563 564 565
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

566
            data2 = paddle.ones(shape=[2, 2], dtype='int32')
567 568 569 570 571
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
572
            data3 = paddle.ones(shape=shape, dtype='int32')
573 574
            # [[1 1]
            #  [1 1]]
575
    """
576 577 578
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
579 580


581
def ones_like(x, dtype=None, name=None):
582
    """
C
Chen Long 已提交
583
    Returns a Tensor filled with the value 1, with the same shape and
584
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
585 586

    Args:
587 588
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
589
        dtype(str|np.dtype, optional): The data type of the
590 591 592
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
593
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
594

595
    Returns:
596 597 598
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

599 600 601
    Examples:
        .. code-block:: python

602
            import paddle
603

604
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
605 606
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
607

608 609
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
610 611


612
def zeros(shape, dtype=None, name=None):
613
    """
C
Chen Long 已提交
614
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
615 616

    Args:
617
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
618
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
619 620 621
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
622 623

    Returns:
624
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
625 626 627 628 629

    Examples:
        .. code-block:: python

          import paddle
630 631

          data = paddle.zeros(shape=[3, 2], dtype='float32')
632 633 634
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
635
          data = paddle.zeros(shape=[2, 2])
636 637
          # [[0. 0.]
          #  [0. 0.]]
638

639
          # shape is a Tensor
640
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
641
          data3 = paddle.zeros(shape=shape, dtype='int32')
642 643
          # [[0 0]
          #  [0 0]]
644
    """
645 646 647
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
648 649


650
def zeros_like(x, dtype=None, name=None):
651
    """
652
    Returns a Tensor filled with the value 0, with the same shape and
653
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
654 655

    Args:
656 657
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
658
        dtype(str|np.dtype, optional): The data type of the
659 660 661
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
662
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
663 664

    Returns:
665 666
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
667

668

669 670 671
    Examples:
        .. code-block:: python

672
            import paddle
673

Z
zhupengyang 已提交
674
            x = paddle.to_tensor([1, 2, 3])
675 676
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
677

678 679
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
680 681


682
def eye(num_rows, num_columns=None, dtype=None, name=None):
683
    """
684

685
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
686

687
    Args:
688 689
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
690
            If None, default: num_rows.
W
wangchaochaohu 已提交
691
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
692 693
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
694
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
695

696
    Returns:
697
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
698

699 700
    Examples:
        .. code-block:: python
701

702
          import paddle
703

704
          data = paddle.eye(3, dtype='int32')
705 706 707
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
708
          data = paddle.eye(2, 3, dtype='int32')
709 710
          # [[1 0 0]
          #  [0 1 0]]
711 712
    """

713 714 715 716 717 718 719 720
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

721 722
    if dtype is None:
        dtype = 'float32'
723 724 725
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
726
        _check_attr(num_columns, "num_columns")
727 728 729 730
    else:
        num_columns = num_rows

    if _non_static_mode():
731
        if in_dygraph_mode():
732 733
            out = _C_ops.eye(num_rows, num_columns, dtype,
                             _current_expected_place())
734
        elif _in_legacy_dygraph():
735 736
            out = _legacy_C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                                    'num_columns', num_columns)
737 738 739 740 741 742

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        out = helper.create_variable_for_type_inference(dtype=dtype)
743 744 745 746 747 748 749 750 751
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
752 753 754

    out.stop_gradient = True
    return out
755 756


757
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
758
    """
S
swtkiwi 已提交
759

760
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
761

W
wangchaochaohu 已提交
762
    Args:
763
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
764 765
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
766
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
767 768
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
769
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
770
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
771 772
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
773

774
    Returns:
775
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
776

W
wangchaochaohu 已提交
777 778 779
    Examples:
        .. code-block:: python

780
            import paddle
W
wangchaochaohu 已提交
781

782
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
783 784 785 786 787 788 789 790 791 792
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
793 794
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
            # [[True True]
795
            #  [True True]]
796

797 798 799
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
800
            # [[2.0]
801
            #  [2.0]]
W
wangchaochaohu 已提交
802 803 804 805 806
    """

    if dtype is None:
        dtype = 'float32'

807
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
808 809


810
def arange(start=0, end=None, step=1, dtype=None, name=None):
811
    """
812
    Returns a 1-D Tensor with spaced values within a given interval.
813

814 815
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
816

817 818
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
819 820

    Parameters:
821 822 823 824 825 826 827 828 829 830 831 832
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
833
        dtype(str|np.dtype, optional): The data type of the
834 835
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
836
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
837

838
    Returns:
839
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
840 841
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
842

Z
zhupengyang 已提交
843
    Examples:
844 845
        .. code-block:: python

Z
zhupengyang 已提交
846
            import paddle
847

Z
zhupengyang 已提交
848 849
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
850

Z
zhupengyang 已提交
851 852
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
853

Z
zhupengyang 已提交
854 855 856
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
857

Z
zhupengyang 已提交
858 859 860
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
861

862 863 864 865 866 867
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
868

869 870 871 872 873
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
896
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
897 898

    if _in_legacy_dygraph():
899
        out = _legacy_C_ops.range(start, end, step)
900 901 902 903 904 905 906
        out.stop_gradient = True
        return out

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
907 908 909 910 911 912 913
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
914
    out.stop_gradient = True
915 916
    if out_shape is not None:
        out.desc.set_shape(out_shape)
917
    return out
W
WuHaobo 已提交
918 919 920 921 922 923


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
924
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
925 926

    assert x is not None, 'x cannot be None in {}'.format(op_type)
927
    check_variable_and_dtype(
H
Hui Zhang 已提交
928 929
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type)
W
WuHaobo 已提交
930
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
931
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
932 933 934 935 936 937 938 939
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
940 941 942
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
W
WuHaobo 已提交
943 944 945 946 947 948 949 950

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
951 952
        outputs={"Out": out},
    )
W
WuHaobo 已提交
953 954 955 956

    return out


Y
yaoxuefeng 已提交
957
def tril(x, diagonal=0, name=None):
958
    r"""
959
    Returns the lower triangular part of a matrix (2-D tensor) or batch
960 961
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
962 963 964
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
965
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
966
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
967 968 969 970 971 972 973
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
974
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
975 976

    Returns:
Y
yaoxuefeng 已提交
977
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
978
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
979 980 981 982

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
983
            import paddle
W
WuHaobo 已提交
984

985 986 987 988 989
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
990

991 992 993 994 995
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
996 997

            # example 2, positive diagonal value
998 999 1000 1001 1002
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1003 1004

            # example 3, negative diagonal value
1005 1006 1007 1008 1009
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1010
    """
F
From00 已提交
1011
    if in_dygraph_mode():
1012
        return _C_ops.tril_triu(x, diagonal, True)
F
From00 已提交
1013 1014

    if _in_legacy_dygraph():
1015
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1016
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1017 1018 1019 1020

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1021
def triu(x, diagonal=0, name=None):
1022
    r"""
1023
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1024
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1025 1026 1027 1028
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1029
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1030 1031 1032 1033 1034 1035 1036 1037
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1038
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1039 1040

    Returns:
Y
yaoxuefeng 已提交
1041
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1042
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1043 1044 1045 1046

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1047
            import paddle
W
WuHaobo 已提交
1048

1049 1050 1051 1052 1053
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1054 1055

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1056
            triu1 = paddle.tensor.triu(x)
1057 1058 1059 1060
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1061 1062

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1063
            triu2 = paddle.tensor.triu(x, diagonal=2)
1064 1065 1066 1067
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1068 1069

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1070
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1071 1072 1073 1074
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1075 1076

    """
F
From00 已提交
1077
    if in_dygraph_mode():
1078
        return _C_ops.tril_triu(x, diagonal, False)
F
From00 已提交
1079 1080

    if _in_legacy_dygraph():
1081
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1082
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1083 1084

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1085 1086


1087
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1088
    """
C
Chen Long 已提交
1089
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
1090

S
suytingwan 已提交
1091
    Args:
1092
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1093
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1094
        **kwargs (optional): Currently, only accept name in **kwargs
1095
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1096
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1097

S
suytingwan 已提交
1098
    Returns:
Y
yaoxuefeng 已提交
1099
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1100 1101 1102 1103 1104 1105

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1106 1107 1108 1109
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1110

Y
yaoxuefeng 已提交
1111 1112
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1113 1114 1115 1116 1117 1118

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1119 1120
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1121
    if _in_legacy_dygraph():
1122
        num = len(args)
1123
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1124
        return out
Y
YuanRisheng 已提交
1125
    if in_dygraph_mode():
1126
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1127

1128
    name = kwargs.get("name", None)
S
suytingwan 已提交
1129 1130
    helper = LayerHelper('meshgrid', **locals())

1131 1132
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1133

1134
    for id, input_ in enumerate(args):
S
suytingwan 已提交
1135 1136 1137 1138
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

1139
    num = len(args)
S
suytingwan 已提交
1140
    out = [
1141
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1142 1143
        for i in range(num)
    ]
1144 1145 1146
    helper.append_op(type='meshgrid',
                     inputs={'X': list(args)},
                     outputs={'Out': out})
S
suytingwan 已提交
1147 1148

    return out
1149 1150


L
Li Min 已提交
1151 1152
def diagflat(x, offset=0, name=None):
    """
1153
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1169
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1170 1171 1172 1173 1174 1175

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1176
            :name: code-example-1
L
Li Min 已提交
1177

1178 1179 1180 1181
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1182 1183 1184 1185 1186
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1187 1188

            y = paddle.diagflat(x, offset=1)
1189 1190 1191 1192 1193 1194
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1195 1196

            y = paddle.diagflat(x, offset=-1)
1197 1198 1199 1200 1201 1202
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1203 1204

        .. code-block:: python
1205
            :name: code-example-2
L
Li Min 已提交
1206

1207
            import paddle
L
Li Min 已提交
1208

1209 1210
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1211 1212 1213 1214 1215 1216
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1217 1218

            y = paddle.diagflat(x, offset=1)
1219 1220 1221 1222 1223 1224 1225
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1226 1227

            y = paddle.diagflat(x, offset=-1)
1228 1229 1230 1231 1232 1233 1234
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1235 1236
    """
    padding_value = 0
1237 1238
    if in_dygraph_mode():
        if len(x.shape) == 1:
1239
            return _C_ops.diag(x, offset, padding_value)
1240
        else:
1241 1242
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1243 1244

    if _in_legacy_dygraph():
L
Li Min 已提交
1245
        if len(x.shape) == 1:
1246 1247
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1248
        else:
1249 1250 1251 1252
            y, _ = _legacy_C_ops.flatten_contiguous_range(
                x, "start_axis", 0, "stop_axis", -1)
            return _legacy_C_ops.diag_v2(y, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1265 1266 1267 1268 1269 1270 1271
        helper.append_op(type='diag_v2',
                         inputs={'X': x},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1272
    else:
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
        helper.append_op(type='flatten_contiguous_range',
                         inputs={'X': x},
                         outputs={
                             'Out': out1,
                             'XShape': out1_shape
                         },
                         attrs={
                             'start_axis': 0,
                             'stop_axis': -1
                         })
L
Li Min 已提交
1283 1284
        out1.stop_gradient = True

1285 1286 1287 1288 1289 1290 1291
        helper.append_op(type='diag_v2',
                         inputs={'X': out1},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1292 1293 1294 1295
    out2.stop_gradient = True
    return out2


1296 1297
def diag(x, offset=0, padding_value=0, name=None):
    """
1298
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1314
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1315

1316 1317 1318 1319 1320
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1321
            :name: code-example-1
1322

1323
            import paddle
1324

1325 1326 1327
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1328 1329 1330 1331 1332
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1333 1334

            y = paddle.diag(x, offset=1)
1335 1336 1337 1338 1339 1340
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1341 1342

            y = paddle.diag(x, padding_value=6)
1343 1344 1345 1346 1347
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1348 1349

        .. code-block:: python
1350
            :name: code-example-2
1351

1352
            import paddle
1353

1354 1355 1356
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1357 1358 1359
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1360

1361
            y = paddle.diag(x, offset=1)
1362 1363 1364
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1365

1366
            y = paddle.diag(x, offset=-1)
1367 1368 1369
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1370
    """
J
Jiabin Yang 已提交
1371
    if in_dygraph_mode():
1372
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1373 1374
    else:
        if _in_legacy_dygraph():
1375 1376
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
J
Jiabin Yang 已提交
1377 1378 1379 1380 1381 1382 1383 1384
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1385 1386
                    "The dimension of input x must be either 1 or 2, but received {}"
                    .format(len(x.shape)))
1387

J
Jiabin Yang 已提交
1388
            helper = LayerHelper("diag_v2", **locals())
1389

J
Jiabin Yang 已提交
1390
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1391

1392 1393 1394 1395 1396 1397 1398
            helper.append_op(type='diag_v2',
                             inputs={'X': x},
                             outputs={'Out': out},
                             attrs={
                                 'offset': offset,
                                 'padding_value': padding_value
                             })
1399

J
Jiabin Yang 已提交
1400 1401
            out.stop_gradient = True
            return out
1402 1403 1404 1405


def empty(shape, dtype=None, name=None):
    """
1406
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1417
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1418

1419 1420 1421 1422 1423 1424
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1425
            import paddle
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1451 1452 1453 1454 1455 1456 1457
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1458 1459
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1460 1461
        out = _C_ops.empty(shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1462 1463 1464 1465
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1466
        shape = utils.convert_shape_to_list(shape)
1467 1468
        out = _legacy_C_ops.empty('shape', shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1484 1485 1486 1487
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty')
1488 1489 1490

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1491 1492 1493 1494 1495
    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1496 1497
    out.stop_gradient = True
    return out
1498 1499 1500 1501


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1502
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1503
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1504

1505 1506 1507
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1508
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1509
            data type is the same as input.
1510
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1532
    if in_dygraph_mode():
1533 1534
        out = _C_ops.empty(x.shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1535 1536 1537 1538
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1539 1540
        out = _legacy_C_ops.empty('shape', x.shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty_like')

    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1567 1568
    out.stop_gradient = True
    return out
1569 1570 1571 1572


def assign(x, output=None):
    """
1573

1574
    Copy value of the :attr:`x` to the :attr:`output`.
1575

1576
    Parameters:
1577 1578
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1579
            data limitation.
1580
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1581

1582
    Returns:
1583
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1584

1585 1586
    Examples:
        .. code-block:: python
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1598
    """
1599 1600
    input = x
    helper = LayerHelper('assign', **locals())
1601 1602
    check_type(input, 'input',
               (Variable, np.ndarray, list, tuple, float, int, bool), 'assign')
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1614
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1615
        if in_dygraph_mode():
1616
            if output is None:
1617
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1618
            else:
1619
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1620 1621 1622
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1623
            _legacy_C_ops.assign(input, output)
1624 1625 1626 1627 1628 1629 1630 1631
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1632 1633 1634
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
1635
    elif isinstance(input, np.ndarray):
1636
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1637
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1638
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1639 1640 1641 1642
            if not all([
                    x.shape == (1, ) for x in input
                    if isinstance(x, (Variable, core.eager.Tensor))
            ]):
1643 1644 1645 1646 1647
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1648
                if not isinstance(x, (Variable, core.eager.Tensor)):
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
            """ may be this form [[Var], [Var], [3], [4]], we reject them.
            """
1660
            raise TypeError(
1661
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1662
            )
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1693 1694 1695
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
1696 1697
            _C_ops.assign_value_(output, list(input.shape), dtype, values,
                                 _current_expected_place())
1698 1699 1700
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1701 1702
            _legacy_C_ops.assign_value(output, 'shape', list(input.shape),
                                       'dtype', dtype, value_name, values)
1703
        else:
1704 1705 1706
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1707 1708 1709 1710 1711 1712 1713
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
1714

Z
zyfncg 已提交
1715
    if is_inplace and _in_legacy_dygraph():
1716 1717 1718
        output._bump_inplace_version()

    return output
1719 1720


1721 1722
def clone(x, name=None):
    """
1723 1724
    Returns a copy of input Tensor. It will always have a Tensor copy.

1725 1726 1727 1728
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1729
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1730

1731
    Returns:
1732
        Tensor, A Tensor copied from ``input``.
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1751
#NOTE(zhiqiu): not public
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1765
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1766 1767 1768 1769 1770

    Examples:
        .. code-block:: python

          import paddle
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1804 1805 1806 1807
    helper.append_op(type='memcpy',
                     inputs={'X': [input]},
                     outputs={'Out': [output]},
                     attrs=attrs)
1808
    return output
F
Feiyu Chan 已提交
1809 1810 1811 1812 1813 1814 1815 1816


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1817
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
1832 1833 1834 1835
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
1836
    """
1837
    if in_dygraph_mode():
1838
        return _C_ops.complex(real, imag)
1839

Z
zhiboniu 已提交
1840
    if paddle.in_dynamic_mode():
1841
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
1855 1856 1857 1858


def tril_indices(row, col, offset=0, dtype='int64'):
    """
1859 1860
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
1861 1862
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
1863

1864 1865 1866 1867 1868
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

1869 1870 1871 1872
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
1883

1884 1885 1886
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
1887
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
1888 1889 1890 1891 1892
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
1893
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
1918 1919
        out = _C_ops.tril_indices(row, col, offset, dtype,
                                  _current_expected_place())
1920 1921 1922
        return out

    if _in_legacy_dygraph():
1923 1924
        out = _legacy_C_ops.tril_indices('rows', row, 'cols', col, 'offset',
                                         offset, "dtype", dtype)
1925 1926 1927 1928 1929 1930 1931
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

1932 1933 1934 1935 1936 1937 1938 1939 1940
        helper.append_op(type='tril_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'rows': row,
                             'cols': col,
                             'offset': offset,
                             'dtype': dtype
                         })
1941
    return out
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2003 2004
        out = _C_ops.triu_indices(row, col, offset, dtype,
                                  _current_expected_place())
2005 2006 2007
        return out

    if _in_legacy_dygraph():
2008 2009
        out = _legacy_C_ops.triu_indices('row', row, 'col', col, 'offset',
                                         offset, "dtype", dtype)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

        helper.append_op(type='triu_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'row': row,
                             'col': col,
                             'offset': offset,
                             'dtype': dtype
                         })
    return out