creation.py 76.9 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import numpy as np
16
import math
17
import re
18 19
from paddle.common_ops_import import fill_constant
from ..fluid.layers import utils
Z
zhiboniu 已提交
20 21 22 23
from ..static import Variable, device_guard
from ..framework import _current_expected_place, _get_paddle_place
from ..framework import dygraph_only
from ..framework import core
24 25
from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
P
Pei Yang 已提交
26
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
Z
zhiboniu 已提交
27
from ..framework import convert_np_dtype_to_dtype_, _varbase_creator, OpProtoHolder
28
# TODO: define functions to get create a tensor
29
import paddle
30
from paddle import _C_ops, _legacy_C_ops
31 32
from ..fluid.framework import _in_legacy_dygraph, _in_eager_without_dygraph_check
import warnings
33

34 35
__all__ = []

W
wangchaochaohu 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
57
    Return fixed number of evenly spaced values within a given interval.
58 59 60 61 62 63 64 65 66 67

    Args:
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
68
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
69 70 71 72

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
73
        the value with input :attr:`start`.
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
94
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
95 96
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
97
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
98 99
    if not isinstance(num, Variable):
        with device_guard("cpu"):
100
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
101
    if in_dygraph_mode():
102 103
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, dtype,
                               _current_expected_place())
104
    if _in_legacy_dygraph():
105 106
        return _legacy_C_ops.linspace(tensor_start, tensor_stop, tensor_num,
                                      'dtype', dtype)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
128 129 130 131
    if ((stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]) or (
                (stop_dtype == "int64" or start_dtype == "int64")
                and out_dtype == "int32"):
132 133 134 135 136 137 138
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

139 140 141 142 143 144 145 146
    helper.append_op(type='linspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
147 148 149 150 151
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


152 153 154 155
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
156

157 158
    Notes:
        This API does not compute the gradient.
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
174
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
175 176 177 178 179

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
180
        just has the value with exponential of :attr:`start` with base :attr:`base`.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
214 215
        return _legacy_C_ops.logspace(tensor_start, tensor_stop, tensor_num,
                                      tensor_base, 'dtype', dtype)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
        check_dtype(base.dtype, 'base',
                    ['float32', 'float64', 'int32', 'int64'], 'logspace')
    else:
        check_type(base, 'base', (int, float), 'logspace')

    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'logspace')
    if ((stop_dtype == "float64" or start_dtype == "float64"
                                 or base_dtype == "float64")
                                 and out_dtype in ["float32", "int32"]) or \
       ((stop_dtype == "int64" or start_dtype == "int64"
                               or base_dtype == "int64")
                               and out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of logspace."
            .format(start_dtype, stop_dtype, base_dtype, dtype))

    out = helper.create_variable_for_type_inference(dtype=dtype)

259 260 261 262 263 264 265 266 267
    helper.append_op(type='logspace',
                     inputs={
                         'Start': tensor_start,
                         'Stop': tensor_stop,
                         'Num': tensor_num,
                         'Base': tensor_base
                     },
                     attrs={'dtype': dtype},
                     outputs={'Out': [out]})
268 269 270 271 272
    if isinstance(num, int):
        out.desc.set_shape((num, ))
    return out


273
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
274 275

    if not isinstance(data, np.ndarray):
276

277
        def _handle_dtype(data, dtype):
278 279 280 281 282
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

283 284 285 286
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
287
            if data.dtype == np.object_:
288 289 290 291
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
292 293 294 295 296 297
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
298
            data = data._copy_to(place, False)
299
            data = _handle_dtype(data, dtype)
300
            data.stop_gradient = stop_gradient
301
            return data
302
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
303
            # should't expose it to users, just for internal use.
304 305
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
306 307 308 309
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
310 311 312 313
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
314
            return data
315 316
        else:
            raise TypeError(
317 318
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor"
                .format(type(data)))
319 320 321 322 323 324 325 326 327 328 329 330 331 332
        if not dtype:
            if data.dtype in [
                    'float16', 'float32', 'float64', 'complex64', 'complex128'
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
                    default_type = 'complex64' if default_type in [
                        'float16', 'float32'
                    ] else 'complex128'
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
333 334

    if dtype and convert_dtype(dtype) != data.dtype:
335
        data = data.astype(convert_dtype(dtype))
336

J
Jiabin Yang 已提交
337
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
338 339 340 341 342 343
        return core.eager.Tensor(value=data,
                                 place=place,
                                 persistable=False,
                                 zero_copy=False,
                                 name=None,
                                 stop_gradient=stop_gradient)
344
    else:
345 346 347 348 349
        return paddle.Tensor(value=data,
                             place=place,
                             persistable=False,
                             zero_copy=False,
                             stop_gradient=stop_gradient)
350 351


352 353 354 355 356
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
357 358 359 360 361 362 363 364 365 366 367 368 369 370

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

            if isinstance(data,
                          np.ndarray) and not dtype and data.dtype != 'object':
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

371 372
        if dtype:
            target_dtype = dtype
373
        elif hasattr(data, 'dtype') and data.dtype != 'object':
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

        if isinstance(data, np.ndarray) and len(data.shape) > 0 and any(
                isinstance(x, Variable) for x in data):
            if not all(
                [x.shape == (1, ) for x in data if isinstance(x, Variable)]):
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


405 406
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
407
    Constructs a ``paddle.Tensor`` from ``data`` ,
408 409 410 411 412 413 414 415
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
416
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
417
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
418
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
419
            except for python float number which gets dtype from ``get_default_type`` .
420 421 422
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
423 424 425 426 427 428 429 430 431 432
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
433

434 435 436 437 438 439 440 441 442 443 444 445 446 447
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
448
        #        [1])
449 450 451 452 453 454 455 456 457 458 459 460 461 462

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
463 464 465 466
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

467 468 469 470 471
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
472
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
473 474 475
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
476
            return _to_tensor_static(data, dtype, stop_gradient)
477 478


479
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
480
    """
S
swtkiwi 已提交
481

482 483
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
484

P
Pei Yang 已提交
485
    Args:
486 487
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
488
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
489
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
490
            data type is the same as input.
491
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
492

P
Pei Yang 已提交
493
    Returns:
494
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
495

P
Pei Yang 已提交
496 497
    Examples:
        .. code-block:: python
498

P
Pei Yang 已提交
499
          import paddle
500

501
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
502
          output = paddle.full_like(input, 2.0)
503 504
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
505 506 507
    """

    if dtype is None:
508
        dtype = x.dtype
509
    else:
510 511 512
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

513
    if in_dygraph_mode():
514
        return _C_ops.full_like(x, fill_value, dtype, x.place)
515 516

    if _in_legacy_dygraph():
517 518
        return _legacy_C_ops.fill_any_like(x, 'value', fill_value, 'dtype',
                                           dtype)
P
Pei Yang 已提交
519

520
    helper = LayerHelper("full_like", **locals())
521
    check_variable_and_dtype(
522 523
        x, 'x',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
524
        'full_like')
525 526 527 528
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
        'full_like/zeros_like/ones_like')
529
    out = helper.create_variable_for_type_inference(dtype=dtype)
530

531 532 533 534 535 536 537
    helper.append_op(type='fill_any_like',
                     inputs={'X': [x]},
                     attrs={
                         'value': fill_value,
                         "dtype": dtype
                     },
                     outputs={'Out': [out]})
538
    out.stop_gradient = True
P
Pei Yang 已提交
539 540 541
    return out


542
def ones(shape, dtype=None, name=None):
543
    """
B
BrilliantYuKaimin 已提交
544
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
545 546

    Args:
B
BrilliantYuKaimin 已提交
547 548 549 550
        shape (tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape should be int32 or int64.
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
551

552
    Returns:
B
BrilliantYuKaimin 已提交
553
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
554 555 556 557

    Examples:
        .. code-block:: python

558
            import paddle
559 560

            # default dtype for ones OP
561
            data1 = paddle.ones(shape=[3, 2])
562 563 564 565
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

566
            data2 = paddle.ones(shape=[2, 2], dtype='int32')
567 568 569 570 571
            # [[1 1]
            #  [1 1]]

            # shape is a Tensor
            shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
572
            data3 = paddle.ones(shape=shape, dtype='int32')
573 574
            # [[1 1]
            #  [1 1]]
575
    """
576 577 578
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
579 580


581
def ones_like(x, dtype=None, name=None):
582
    """
C
Chen Long 已提交
583
    Returns a Tensor filled with the value 1, with the same shape and
584
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
585 586

    Args:
587 588
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
589
        dtype(str|np.dtype, optional): The data type of the
590 591 592
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
593
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
594

595
    Returns:
596 597 598
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

599 600 601
    Examples:
        .. code-block:: python

602
            import paddle
603

604
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
605 606
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
607

608 609
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
610 611


612
def zeros(shape, dtype=None, name=None):
613
    """
C
Chen Long 已提交
614
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
615 616

    Args:
617
        shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
618
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
619 620 621
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
622 623

    Returns:
624
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
625 626 627 628 629

    Examples:
        .. code-block:: python

          import paddle
630 631

          data = paddle.zeros(shape=[3, 2], dtype='float32')
632 633 634
          # [[0. 0.]
          #  [0. 0.]
          #  [0. 0.]]
635
          data = paddle.zeros(shape=[2, 2])
636 637
          # [[0. 0.]
          #  [0. 0.]]
638

639
          # shape is a Tensor
640
          shape = paddle.full(shape=[2], dtype='int32', fill_value=2)
641
          data3 = paddle.zeros(shape=shape, dtype='int32')
642 643
          # [[0 0]
          #  [0 0]]
644
    """
645 646 647
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
648 649


650
def zeros_like(x, dtype=None, name=None):
651
    """
652
    Returns a Tensor filled with the value 0, with the same shape and
653
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
654 655

    Args:
656 657
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
658
        dtype(str|np.dtype, optional): The data type of the
659 660 661
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
662
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
663 664

    Returns:
665 666
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
667

668

669 670 671
    Examples:
        .. code-block:: python

672
            import paddle
673

Z
zhupengyang 已提交
674
            x = paddle.to_tensor([1, 2, 3])
675 676
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
677

678 679
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
680 681


682
def eye(num_rows, num_columns=None, dtype=None, name=None):
683
    """
684

685
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
686

687
    Args:
688 689
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
690
            If None, default: num_rows.
W
wangchaochaohu 已提交
691
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
692 693
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
694
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
695

696
    Returns:
697
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
698

699 700
    Examples:
        .. code-block:: python
701

702
          import paddle
703

704
          data = paddle.eye(3, dtype='int32')
705 706 707
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
708
          data = paddle.eye(2, 3, dtype='int32')
709 710
          # [[1 0 0]
          #  [0 1 0]]
711 712
    """

713 714 715 716 717 718 719 720
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

721 722
    if dtype is None:
        dtype = 'float32'
723 724 725
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
726
        _check_attr(num_columns, "num_columns")
727 728 729 730
    else:
        num_columns = num_rows

    if _non_static_mode():
731
        if in_dygraph_mode():
732 733
            out = _C_ops.eye(num_rows, num_columns, dtype,
                             _current_expected_place())
734
        elif _in_legacy_dygraph():
735 736
            out = _legacy_C_ops.eye('dtype', dtype, 'num_rows', num_rows,
                                    'num_columns', num_columns)
737 738 739 740 741 742

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        out = helper.create_variable_for_type_inference(dtype=dtype)
743 744 745 746 747 748 749 750 751
        helper.append_op(type='eye',
                         inputs={},
                         outputs={'Out': [out]},
                         attrs={
                             'num_rows': num_rows,
                             'num_columns': num_columns,
                             'dtype': dtype
                         },
                         stop_gradient=True)
752 753 754

    out.stop_gradient = True
    return out
755 756


757
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
758
    """
S
swtkiwi 已提交
759

760
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
761

W
wangchaochaohu 已提交
762
    Args:
763
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
W
wangchaochaohu 已提交
764 765
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
766
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
767 768
        fill_value(bool|float|int|Tensor): The constant value
            used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor.
W
wangchaochaohu 已提交
769
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
770
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
771 772
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
773

774
    Returns:
775
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
776

W
wangchaochaohu 已提交
777 778 779
    Examples:
        .. code-block:: python

780
            import paddle
W
wangchaochaohu 已提交
781

782
            data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64')
783 784 785 786 787 788 789 790 791 792
            #[[0]
            # [0]]

            # attr shape is a list which contains Tensor.
            positive_2 = paddle.full([1], 2, "int32")
            data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5)
            # [[1.5 1.5]]

            # attr shape is a Tensor.
            shape = paddle.full([2], 2, "int32")
793 794
            data4 = paddle.full(shape=shape, dtype='bool', fill_value=True)
            # [[True True]
795
            #  [True True]]
796

797 798 799
            # attr fill_value is a Tensor.
            val = paddle.full([1], 2.0, "float32")
            data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32')
800
            # [[2.0]
801
            #  [2.0]]
W
wangchaochaohu 已提交
802 803 804 805 806
    """

    if dtype is None:
        dtype = 'float32'

807
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
808 809


810
def arange(start=0, end=None, step=1, dtype=None, name=None):
811
    """
812
    Returns a 1-D Tensor with spaced values within a given interval.
813

814 815
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
816

817 818
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
819 820

    Parameters:
821 822 823 824 825 826 827 828 829 830 831 832
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
            If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 0.
        end(float|int|Tensor, optional): End of interval. The interval does not
            include this value. If ``end`` is a Tensor, it is a 1-D Tensor with
            shape [1], with data type int32, int64, float32, float64. If ``end``
            is None, the half-open interval is [0, ``start``). Default is None.
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
            If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with
            data type int32, int64, float32, float64. Default is 1.
833
        dtype(str|np.dtype, optional): The data type of the
834 835
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
836
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
837

838
    Returns:
839
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
840 841
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
842

Z
zhupengyang 已提交
843
    Examples:
844 845
        .. code-block:: python

Z
zhupengyang 已提交
846
            import paddle
847

Z
zhupengyang 已提交
848 849
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
850

Z
zhupengyang 已提交
851 852
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
853

Z
zhupengyang 已提交
854 855 856
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
857

Z
zhupengyang 已提交
858 859 860
            start_var = paddle.to_tensor([3])
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
861

862 863 864 865 866 867
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
868

869 870 871 872 873
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
896
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
897 898

    if _in_legacy_dygraph():
899
        out = _legacy_C_ops.range(start, end, step)
900 901 902 903 904 905 906
        out.stop_gradient = True
        return out

    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
907 908 909 910 911 912 913
    helper.append_op(type='range',
                     inputs={
                         'Start': start,
                         'End': end,
                         'Step': step
                     },
                     outputs={'Out': out})
914
    out.stop_gradient = True
915 916
    if out_shape is not None:
        out.desc.set_shape(out_shape)
917
    return out
W
WuHaobo 已提交
918 919 920 921 922 923


def _tril_triu_op(helper):
    """Base op of tril_op and triu_op
    """
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
924
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
925 926

    assert x is not None, 'x cannot be None in {}'.format(op_type)
927 928
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
W
WuHaobo 已提交
929
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
930
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
931 932 933 934 935 936 937 938
    diagonal = helper.kwargs.get('diagonal', 0)
    if not isinstance(diagonal, (int, )):
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
939 940 941
        out = helper.create_variable(name=name,
                                     dtype=x.dtype,
                                     persistable=False)
W
WuHaobo 已提交
942 943 944 945 946 947 948 949

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
950 951
        outputs={"Out": out},
    )
W
WuHaobo 已提交
952 953 954 955

    return out


Y
yaoxuefeng 已提交
956
def tril(x, diagonal=0, name=None):
957
    r"""
958
    Returns the lower triangular part of a matrix (2-D tensor) or batch
959 960
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
961 962 963
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
964
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
965
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
966 967 968 969 970 971 972
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
973
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
974 975

    Returns:
Y
yaoxuefeng 已提交
976
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
977
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
978 979 980 981

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
982
            import paddle
W
WuHaobo 已提交
983

984 985 986 987 988
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
989

990 991 992 993 994
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
995 996

            # example 2, positive diagonal value
997 998 999 1000 1001
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1002 1003

            # example 3, negative diagonal value
1004 1005 1006 1007 1008
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1009
    """
F
From00 已提交
1010
    if in_dygraph_mode():
1011
        return _C_ops.tril_triu(x, diagonal, True)
F
From00 已提交
1012 1013

    if _in_legacy_dygraph():
1014
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1015
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1016 1017 1018 1019

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1020
def triu(x, diagonal=0, name=None):
1021
    r"""
1022
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1023
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1024 1025 1026 1027
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1028
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1029 1030 1031 1032 1033 1034 1035 1036
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1037
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1038 1039

    Returns:
Y
yaoxuefeng 已提交
1040
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1041
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1042 1043 1044 1045 1046

    Examples:
        .. code-block:: python

            import numpy as np
Y
yaoxuefeng 已提交
1047
            import paddle
W
WuHaobo 已提交
1048 1049 1050 1051 1052

            data = np.arange(1, 13, dtype="int64").reshape(3,-1)
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 9, 10, 11, 12]])
Y
yaoxuefeng 已提交
1053

W
WuHaobo 已提交
1054 1055

            # example 1, default diagonal
1056
            x = paddle.to_tensor(data)
Y
yaoxuefeng 已提交
1057
            triu1 = paddle.tensor.triu(x)
W
WuHaobo 已提交
1058 1059 1060 1061 1062
            # array([[ 1,  2,  3,  4],
            #        [ 0,  6,  7,  8],
            #        [ 0,  0, 11, 12]])

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1063
            triu2 = paddle.tensor.triu(x, diagonal=2)
W
WuHaobo 已提交
1064 1065 1066 1067 1068
            # array([[0, 0, 3, 4],
            #        [0, 0, 0, 8],
            #        [0, 0, 0, 0]])

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1069
            triu3 = paddle.tensor.triu(x, diagonal=-1)
W
WuHaobo 已提交
1070 1071 1072 1073 1074
            # array([[ 1,  2,  3,  4],
            #        [ 5,  6,  7,  8],
            #        [ 0, 10, 11, 12]])

    """
F
From00 已提交
1075
    if in_dygraph_mode():
1076
        return _C_ops.tril_triu(x, diagonal, False)
F
From00 已提交
1077 1078

    if _in_legacy_dygraph():
1079
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1080
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1081 1082

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1083 1084


1085
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1086
    """
C
Chen Long 已提交
1087
    Takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids.
1088

S
suytingwan 已提交
1089
    Args:
1090
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1091
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1092
        **kwargs (optional): Currently, only accept name in **kwargs
1093
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1094
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1095

S
suytingwan 已提交
1096
    Returns:
Y
yaoxuefeng 已提交
1097
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1098 1099 1100 1101 1102 1103

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1104 1105 1106 1107
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1108

Y
yaoxuefeng 已提交
1109 1110
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1111 1112 1113 1114 1115 1116

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1117 1118
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1119
    if _in_legacy_dygraph():
1120
        num = len(args)
1121
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1122
        return out
Y
YuanRisheng 已提交
1123
    if in_dygraph_mode():
1124
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1125

1126
    name = kwargs.get("name", None)
S
suytingwan 已提交
1127 1128
    helper = LayerHelper('meshgrid', **locals())

1129 1130
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1131

1132
    for id, input_ in enumerate(args):
S
suytingwan 已提交
1133 1134 1135 1136
        check_dtype(input_.dtype, 'create data type',
                    ['float16', 'float32', 'float64', 'int32', 'int64'],
                    'meshgrid')

1137
    num = len(args)
S
suytingwan 已提交
1138
    out = [
1139
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1140 1141
        for i in range(num)
    ]
1142 1143 1144
    helper.append_op(type='meshgrid',
                     inputs={'X': list(args)},
                     outputs={'Out': out})
S
suytingwan 已提交
1145 1146

    return out
1147 1148


L
Li Min 已提交
1149 1150
def diagflat(x, offset=0, name=None):
    """
1151
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1167
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1168 1169 1170 1171 1172 1173

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1174
            :name: code-example-1
L
Li Min 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0]
            #  [1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]]
L
Li Min 已提交
1198 1199

        .. code-block:: python
1200
            :name: code-example-2
L
Li Min 已提交
1201

1202
            import paddle
L
Li Min 已提交
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
            print(y.numpy())
            # [[1 0 0 0]
            #  [0 2 0 0]
            #  [0 0 3 0]
            #  [0 0 0 4]]

            y = paddle.diagflat(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0 0]
            #  [0 0 2 0 0]
            #  [0 0 0 3 0]
            #  [0 0 0 0 4]
            #  [0 0 0 0 0]]

            y = paddle.diagflat(x, offset=-1)
            print(y.numpy())
            # [[0 0 0 0 0]
            #  [1 0 0 0 0]
            #  [0 2 0 0 0]
            #  [0 0 3 0 0]
            #  [0 0 0 4 0]]
L
Li Min 已提交
1227 1228
    """
    padding_value = 0
1229 1230
    if in_dygraph_mode():
        if len(x.shape) == 1:
1231
            return _C_ops.diag(x, offset, padding_value)
1232
        else:
1233 1234
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1235 1236

    if _in_legacy_dygraph():
L
Li Min 已提交
1237
        if len(x.shape) == 1:
1238 1239
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1240
        else:
1241 1242 1243 1244
            y, _ = _legacy_C_ops.flatten_contiguous_range(
                x, "start_axis", 0, "stop_axis", -1)
            return _legacy_C_ops.diag_v2(y, "offset", offset, "padding_value",
                                         padding_value)
L
Li Min 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

    check_type(x, 'x', (Variable), 'diagflat')
    check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                'diagflat')
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1257 1258 1259 1260 1261 1262 1263
        helper.append_op(type='diag_v2',
                         inputs={'X': x},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1264
    else:
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        helper.append_op(type='flatten_contiguous_range',
                         inputs={'X': x},
                         outputs={
                             'Out': out1,
                             'XShape': out1_shape
                         },
                         attrs={
                             'start_axis': 0,
                             'stop_axis': -1
                         })
L
Li Min 已提交
1275 1276
        out1.stop_gradient = True

1277 1278 1279 1280 1281 1282 1283
        helper.append_op(type='diag_v2',
                         inputs={'X': out1},
                         outputs={'Out': out2},
                         attrs={
                             'offset': offset,
                             'padding_value': padding_value
                         })
L
Li Min 已提交
1284 1285 1286 1287
    out2.stop_gradient = True
    return out2


1288 1289
def diag(x, offset=0, padding_value=0, name=None):
    """
1290
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1306
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1307

1308 1309 1310 1311 1312
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1313
            :name: code-example-1
1314

1315
            import paddle
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
            print(y.numpy())
            # [[1 0 0]
            #  [0 2 0]
            #  [0 0 3]]

            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [[0 1 0 0]
            #  [0 0 2 0]
            #  [0 0 0 3]
            #  [0 0 0 0]]

            y = paddle.diag(x, padding_value=6)
            print(y.numpy())
            # [[1 6 6]
            #  [6 2 6]
            #  [6 6 3]]
1337 1338

        .. code-block:: python
1339
            :name: code-example-2
1340

1341
            import paddle
1342

1343 1344 1345 1346 1347
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
            print(y.numpy())
            # [1 5]
1348

1349 1350 1351
            y = paddle.diag(x, offset=1)
            print(y.numpy())
            # [2 6]
1352

1353 1354 1355
            y = paddle.diag(x, offset=-1)
            print(y.numpy())
            # [4]
1356
    """
J
Jiabin Yang 已提交
1357
    if in_dygraph_mode():
1358
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1359 1360
    else:
        if _in_legacy_dygraph():
1361 1362
            return _legacy_C_ops.diag_v2(x, "offset", offset, "padding_value",
                                         padding_value)
J
Jiabin Yang 已提交
1363 1364 1365 1366 1367 1368 1369 1370
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
            check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'],
                        'diag_v2')
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1371 1372
                    "The dimension of input x must be either 1 or 2, but received {}"
                    .format(len(x.shape)))
1373

J
Jiabin Yang 已提交
1374
            helper = LayerHelper("diag_v2", **locals())
1375

J
Jiabin Yang 已提交
1376
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1377

1378 1379 1380 1381 1382 1383 1384
            helper.append_op(type='diag_v2',
                             inputs={'X': x},
                             outputs={'Out': out},
                             attrs={
                                 'offset': offset,
                                 'padding_value': padding_value
                             })
1385

J
Jiabin Yang 已提交
1386 1387
            out.stop_gradient = True
            return out
1388 1389 1390 1391


def empty(shape, dtype=None, name=None):
    """
1392
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402
    Args:
        shape(list|tuple|Tensor): Shape of the Tensor to be created.
                The data type of dimension of shape is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Tensor, it should be an 1-D Tensor.
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1403
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1404

1405 1406 1407 1408 1409 1410
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1411
            import paddle
1412

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
            paddle.set_device("cpu")  # and use cpu device

            # example 1: argument ``shape`` is a list which doesn't contain Tensor.
            data1 = paddle.empty(shape=[2, 3], dtype='float32')
            print(data1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.00000000, 0.        , 0.00000000],
            #         [0.        , 0.29652897, 0.09356152]])       # uninitialized

            # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
            shape_data = paddle.to_tensor([2, 3]).astype('int32')
            data2 = paddle.empty(shape=shape_data, dtype='float32')
            print(data2)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.50543123, -0.09872390, -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized

            # example 3: argument ``shape`` is a list which contains Tensor.
            dim2 = paddle.to_tensor([3]).astype('int32')
            data3 = paddle.empty(shape=[2, dim2], dtype='float32')
            print(data3)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.00000000,  0.        , -0.92634487],
            #         [-0.51007903, -0.02454148,  1.29315734]])    # uninitialized
1437 1438 1439 1440 1441 1442 1443
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1444 1445
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1446 1447
        out = _C_ops.empty(shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1448 1449 1450 1451
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1452
        shape = utils.convert_shape_to_list(shape)
1453 1454
        out = _legacy_C_ops.empty('shape', shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty')
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1470 1471 1472 1473
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty')
1474 1475 1476

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1477 1478 1479 1480 1481
    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1482 1483
    out.stop_gradient = True
    return out
1484 1485 1486 1487


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1488
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1489
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1490

1491 1492 1493
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1494
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1495
            data type is the same as input.
1496
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1518
    if in_dygraph_mode():
1519 1520
        out = _C_ops.empty(x.shape, convert_np_dtype_to_dtype_(dtype),
                           _current_expected_place())
1521 1522 1523 1524
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1525 1526
        out = _legacy_C_ops.empty('shape', x.shape, 'dtype',
                                  convert_np_dtype_to_dtype_(dtype))
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
        x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'empty_like')
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='empty_like')

    helper.append_op(type='empty',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs,
                     stop_gradient=True)
1553 1554
    out.stop_gradient = True
    return out
1555 1556 1557 1558


def assign(x, output=None):
    """
1559

1560
    Copy value of the :attr:`x` to the :attr:`output`.
1561

1562
    Parameters:
1563 1564
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1565
            data limitation.
1566
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1567

1568
    Returns:
1569
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1570

1571 1572
    Examples:
        .. code-block:: python
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1584
    """
1585 1586
    input = x
    helper = LayerHelper('assign', **locals())
1587 1588
    check_type(input, 'input',
               (Variable, np.ndarray, list, tuple, float, int, bool), 'assign')
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1600
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1601
        if in_dygraph_mode():
1602
            if output is None:
1603
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1604
            else:
1605
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1606 1607 1608
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1609
            _legacy_C_ops.assign(input, output)
1610 1611 1612 1613 1614 1615 1616 1617
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1618 1619 1620
            helper.append_op(type='assign',
                             inputs={'X': [input]},
                             outputs={'Out': [output]})
1621
    elif isinstance(input, np.ndarray):
1622
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1623
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1624
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1625 1626 1627 1628
            if not all([
                    x.shape == (1, ) for x in input
                    if isinstance(x, (Variable, core.eager.Tensor))
            ]):
1629 1630 1631 1632 1633
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1634
                if not isinstance(x, (Variable, core.eager.Tensor)):
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
            """ may be this form [[Var], [Var], [3], [4]], we reject them.
            """
1646
            raise TypeError(
1647
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1648
            )
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
                "received %s." % convert_dtype(dtype))
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1679 1680 1681
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
1682 1683
            _C_ops.assign_value_(output, list(input.shape), dtype, values,
                                 _current_expected_place())
1684 1685 1686
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1687 1688
            _legacy_C_ops.assign_value(output, 'shape', list(input.shape),
                                       'dtype', dtype, value_name, values)
1689
        else:
1690 1691 1692
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
1693 1694 1695 1696 1697 1698 1699
            helper.append_op(type='assign_value',
                             outputs={'Out': [output]},
                             attrs={
                                 'dtype': dtype,
                                 'shape': list(input.shape),
                                 value_name: values
                             })
1700

Z
zyfncg 已提交
1701
    if is_inplace and _in_legacy_dygraph():
1702 1703 1704
        output._bump_inplace_version()

    return output
1705 1706


1707 1708
def clone(x, name=None):
    """
1709 1710
    Returns a copy of input Tensor. It will always have a Tensor copy.

1711 1712 1713 1714
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1715
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1716

1717
    Returns:
1718
        Tensor, A Tensor copied from ``input``.
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1737
#NOTE(zhiqiu): not public
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1751
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    Examples:
        .. code-block:: python

          import paddle
          import numpy as np
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
            'uint8', 'bool'
        ], 'memcpy', '(When the type of input in memcpy is Variable.)')
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1790 1791 1792 1793
    helper.append_op(type='memcpy',
                     inputs={'X': [input]},
                     outputs={'Out': [output]},
                     attrs=attrs)
1794
    return output
F
Feiyu Chan 已提交
1795 1796 1797 1798 1799 1800 1801 1802


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
1803
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
            print(z.numpy())

            # [[0.+0.j 0.+1.j 0.+2.j]
            #  [1.+0.j 1.+1.j 1.+2.j]]
    """
1823
    if in_dygraph_mode():
1824
        return _C_ops.complex(real, imag)
1825

Z
zhiboniu 已提交
1826
    if paddle.in_dynamic_mode():
1827
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
        dtype=_real_to_complex_dtype(real.dtype))
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
1841 1842 1843 1844


def tril_indices(row, col, offset=0, dtype='int64'):
    """
1845 1846
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
1847 1848
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
1849

1850 1851 1852 1853 1854
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

1855 1856 1857 1858
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
1869

1870 1871 1872
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
1873
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
1874 1875 1876 1877 1878
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
1879
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
1904 1905
        out = _C_ops.tril_indices(row, col, offset, dtype,
                                  _current_expected_place())
1906 1907 1908
        return out

    if _in_legacy_dygraph():
1909 1910
        out = _legacy_C_ops.tril_indices('rows', row, 'cols', col, 'offset',
                                         offset, "dtype", dtype)
1911 1912 1913 1914 1915 1916 1917
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

1918 1919 1920 1921 1922 1923 1924 1925 1926
        helper.append_op(type='tril_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'rows': row,
                             'cols': col,
                             'offset': offset,
                             'dtype': dtype
                         })
1927
    return out
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
1989 1990
        out = _C_ops.triu_indices(row, col, offset, dtype,
                                  _current_expected_place())
1991 1992 1993
        return out

    if _in_legacy_dygraph():
1994 1995
        out = _legacy_C_ops.triu_indices('row', row, 'col', col, 'offset',
                                         offset, "dtype", dtype)
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

        helper.append_op(type='triu_indices',
                         inputs={},
                         outputs={'out': [out]},
                         attrs={
                             'row': row,
                             'col': col,
                             'offset': offset,
                             'dtype': dtype
                         })
    return out