conv.py 71.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

L
LielinJiang 已提交
15
from ...device import get_cudnn_version
16
from ...static import Variable
17 18 19 20 21 22
from ...fluid.layers.utils import (
    convert_to_list,
    _is_symmetric_padding,
    _contain_var,
    _convert_to_tensor_list,
)
23
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
24
from ...fluid.layer_helper import LayerHelper
25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...fluid.layers import nn
27
from ...framework import no_grad
28
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
29 30
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
31 32
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
33
from paddle.device import get_all_custom_device_type
H
hong 已提交
34 35
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
36 37 38 39
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
40

41 42
__all__ = []

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
66 67 68 69
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
70 71 72 73 74 75 76 77 78 79 80 81 82 83
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
84 85
                    "is not supported.".format(padding)
                )
86
            padding_algorithm = "EXPLICIT"
87
            padding = _exclude_padding_in_batch_and_channel(
88 89
                padding, channel_last
            )
90
            if _is_symmetric_padding(padding, num_dims):
91 92 93 94
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
95 96
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
97 98 99 100
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
101
            padding = convert_to_list(padding, num_dims, 'padding')
102 103 104 105 106
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
107
        padding = convert_to_list(padding, num_dims, 'padding')
108 109
    if not all([p >= 0 for p in padding]):
        raise ValueError(
110 111 112 113
            "Invalid padding, all value should be larger than or equal to 0, but received: {}".format(
                padding
            )
        )
114 115 116
    return padding, padding_algorithm


117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
def _conv_nd(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    padding_algorithm=None,
    dilation=1,
    groups=1,
    data_format="NCHW",
    channel_dim=1,
    op_type="conv2d",
    use_cudnn=True,
    use_mkldnn=False,
    name=None,
):
L
LielinJiang 已提交
133

134
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
135
    if in_dygraph_mode() and op_type == "conv2d":
136 137 138 139 140 141 142
        pre_bias = _C_ops.conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            dilation,
143
            groups,
144 145
            data_format,
        )
H
hong 已提交
146
        if bias is not None:
147 148 149
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
150 151 152 153
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
154
            if len(bias.shape) < len(x.shape):
155
                bias = _C_ops.reshape(
156 157 158 159 160
                    bias,
                    [1 for i in range(channel_dim)]
                    + bias.shape
                    + [1 for i in range(len(x.shape) - channel_dim - 1)],
                )
161 162 163 164 165 166 167 168
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
            if 'npu' in get_all_custom_device_type():
                with no_grad():
                    bias_storage = _C_ops.npu_identity(
                        bias, 3
                    )  # ACL_FORMAT_NC1HWC0 = 3
                    bias_storage._share_underline_tensor_to(bias)
            return _C_ops.add(pre_bias, bias)
H
hong 已提交
169 170
        else:
            return pre_bias
171 172

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
173 174 175 176 177 178 179 180 181 182
        pre_bias = _C_ops.depthwise_conv2d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
183
        if bias is not None:
184 185 186
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
187
            tmp_bias = _C_ops.reshape(
188 189 190 191 192
                bias,
                [1 for i in range(channel_dim)]
                + bias.shape
                + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
193
            return _C_ops.add(pre_bias, tmp_bias)
194 195 196 197
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
198 199 200 201 202 203 204 205 206 207
        pre_bias = _C_ops.conv3d(
            x,
            weight,
            stride,
            padding,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
208
        if bias is not None:
209 210 211
            channel_dim = (
                channel_dim + len(x.shape) if channel_dim < 0 else channel_dim
            )
212
            tmp_bias = _C_ops.reshape(
213
                bias,
214 215
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)],
            )
216
            return _C_ops.add(pre_bias, tmp_bias)
217 218 219
        else:
            return pre_bias

Z
zhiboniu 已提交
220
    if in_dynamic_mode():
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            use_mkldnn,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            data_format,
        )
241
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
257
            "data_format": data_format,
L
LielinJiang 已提交
258
        }
259 260 261
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], op_type
        )
L
LielinJiang 已提交
262 263 264 265
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
266 267 268
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
269 270
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
271 272 273 274 275 276
            helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [bias]},
                outputs={'Out': [out]},
                attrs={'axis': channel_dim, 'use_mkldnn': use_mkldnn},
            )
L
LielinJiang 已提交
277 278 279 280 281
        else:
            out = pre_bias
    return out


282 283 284 285 286 287 288 289 290 291 292
def conv1d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format='NCL',
    name=None,
):
293
    r"""
W
whs 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
309
        Out = \sigma (W \ast X + b)
W
whs 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
336
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
337 338

    Args:
339
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
340 341
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
342
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
343
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
344
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
345
            contain one integers, (stride_size). Default: 1.
346
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
347 348 349 350 351 352
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
353
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
354 355 356 357 358 359
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
360
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
361 362 363
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
364 365
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
366 367 368
           None by default.

    Returns:
369
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
370 371 372 373 374 375 376
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
          x = paddle.to_tensor([[[4, 8, 1, 9],
                                 [7, 2, 0, 9],
                                 [6, 9, 2, 6]]], dtype="float32")
          w = paddle.to_tensor([[[9, 3, 4],
                                 [0, 0, 7],
                                 [2, 5, 6]],
                                [[0, 3, 4],
                                 [2, 9, 7],
                                 [5, 6, 8]]], dtype="float32")

          y = F.conv1d(x, w)
          print(y)
          # Tensor(shape=[1, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[133., 238.],
          #          [160., 211.]]])
W
whs 已提交
393 394 395 396 397 398 399 400
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
401 402 403 404
        raise ValueError(
            "Attr(data_format) should be 'NCL' or 'NLC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
W
whs 已提交
405

406
    channel_last = data_format == "NLC"
W
whs 已提交
407 408
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
409 410
    if len(x.shape) != 3:
        raise ValueError(
411 412 413 414
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
W
whs 已提交
415 416 417
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
418 419 420 421
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
422 423
    if groups <= 0:
        raise ValueError(
424 425 426 427
            "The groups of conv1d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
W
whs 已提交
428 429 430 431
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
432 433
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
W
whs 已提交
434 435 436 437
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
438 439
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
W
whs 已提交
440 441 442

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
443

W
whs 已提交
444
    if len(padding) == 2:
445
        padding = [0] * 2 + padding
W
whs 已提交
446
    elif len(padding) == 1:
447
        padding = [0] + padding
W
whs 已提交
448 449
    else:
        raise ValueError(
450 451 452 453
            "The size of padding's dimension should be 1 or 2. But got padding={}".format(
                padding
            )
        )
454 455 456
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
457 458

    l_type = "conv2d"
459 460

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
461 462 463 464 465 466
    if (
        is_compiled_with_cuda()
        and num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
W
whs 已提交
467 468 469
        l_type = 'depthwise_conv2d'
        use_cudnn = False

470
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
471
    if is_compiled_with_npu():
472
        if num_channels == groups and num_channels == num_filters:
473 474 475 476
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

477
    squeeze_aixs = -3 if channel_last else -2
478
    x = unsqueeze(x, axis=[squeeze_aixs])
479

480
    if in_dygraph_mode():
481 482 483 484 485 486 487 488 489 490 491 492
        if l_type == 'conv2d':
            out = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
                groups,
                conv2d_data_format,
            )
        else:
493
            out = _C_ops.depthwise_conv2d(
494 495 496 497 498 499 500 501 502 503 504 505 506
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                groups,
                dilation,
                conv2d_data_format,
                False,
                -1,
                False,
                False,
            )
507 508 509
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
        attrs = (
            'strides',
            stride,
            'paddings',
            padding,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'use_mkldnn',
            False,
            'fuse_relu_before_depthwise_conv',
            False,
            "padding_algorithm",
            padding_algorithm,
            "data_format",
            conv2d_data_format,
        )
530
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
544
            "data_format": conv2d_data_format,
W
whs 已提交
545
        }
546 547 548
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d'
        )
W
whs 已提交
549
        helper = LayerHelper(l_type, **locals())
550
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
551 552
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
553 554 555
        helper.append_op(
            type=l_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
W
whs 已提交
556 557
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
558
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
559 560 561
    return out


562 563 564 565 566 567 568 569 570 571 572
def conv2d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCHW",
    name=None,
):
573
    r"""
S
swtkiwi 已提交
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

592
    ..  math::
593

594
        Out = \sigma (W \ast X + b)
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

619
        ..  math::
620

621 622
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
623 624

    Args:
625
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
626
            of input is float16 or float32 or float64.
627
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
628
            the number of output channels, g is the number of groups, kH is the filter's
629
            height, kW is the filter's width.
630
        bias (Tensor, optional): The bias with shape [M,].
631 632
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
633
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
634 635 636 637
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
638 639
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
640
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
641
            when `data_format` is `"NHWC"`, `padding` can be in the form
642 643
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
644
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
645 646
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
647
            Default: dilation = 1.
C
cnn 已提交
648
        groups (int): The groups number of the Conv2D Layer. According to grouped
649 650 651 652
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
653
        data_format (str, optional): Specify the data format of the input, and the data format of the output
654 655 656
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
657 658
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
659 660 661
           None by default.

    Returns:
662
        A Tensor representing the conv2d result, whose data type is the same with input.
663 664 665 666

    Examples:
        .. code-block:: python

667
          import paddle
668 669
          import paddle.nn.functional as F

670 671
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
672 673 674 675

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

676 677 678 679 680
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
681 682 683 684
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
685

686
    channel_last = data_format == "NHWC"
687
    channel_dim = -1 if channel_last else 1
688 689
    if len(x.shape) != 4:
        raise ValueError(
690 691 692 693
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
694
    num_channels = x.shape[channel_dim]
695 696
    num_filters = weight.shape[0]
    if num_channels < 0:
697 698 699 700
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
701 702
    if groups <= 0:
        raise ValueError(
703 704 705 706
            "The groups of conv2d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
707 708 709 710
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
711 712
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
713 714 715 716
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
717 718
            ", the groups is {}".format(num_filters, weight.shape, groups)
        )
719

720 721
    cudnn_version = get_cudnn_version()

722 723 724 725 726
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
727

728 729
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
730 731
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
732 733

    l_type = "conv2d"
734 735 736 737 738
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters % num_channels == 0
    ):
739
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
740
        if is_compiled_with_rocm():
741 742 743
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
744 745
    else:
        if in_dygraph_mode():
746 747 748 749 750 751 752
            pre_bias = _C_ops.conv2d(
                x,
                weight,
                stride,
                padding,
                padding_algorithm,
                dilation,
753
                groups,
754 755
                data_format,
            )
H
hong 已提交
756
            if bias is not None:
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
                channel_dim = (
                    channel_dim + len(x.shape)
                    if channel_dim < 0
                    else channel_dim
                )
                if len(bias.shape) < len(x.shape):
                    bias = _C_ops.reshape(
                        bias,
                        [1 for i in range(channel_dim)]
                        + bias.shape
                        + [1 for i in range(len(x.shape) - channel_dim - 1)],
                    )
                # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
                if 'npu' in get_all_custom_device_type():
                    with no_grad():
                        bias_storage = _C_ops.npu_identity(
                            bias, 3
                        )  # ACL_FORMAT_NC1HWC0 = 3
                        bias_storage._share_underline_tensor_to(bias)
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
777 778 779 780
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
781

782
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
783
    if is_compiled_with_npu():
784
        if num_channels == groups and num_channels == num_filters:
785 786 787 788
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

789 790 791 792 793 794
    if (
        is_compiled_with_cuda()
        and get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
795
        use_cudnn = False
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        l_type,
        use_cudnn,
        use_mkldnn,
        name,
    )


def conv1d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format="NCL",
    name=None,
):
828
    r"""
829 830 831 832 833 834 835 836 837 838 839 840 841 842
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
843
        Out = \sigma (W \ast X + b)
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
879
          and :math:`L^\prime_{out} + stride`.
880 881 882 883 884 885 886 887 888

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
889
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
890 891 892 893 894 895 896
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
897
             If it is a list/tuple, it must contain one integer. Default: 0.
898 899 900 901 902 903 904
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
905
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
906 907
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
908
            tuple/list, it must contain one integer, `(feature_length)`. None if use
909
            filter_size(shape of weight), padding, and stride to calculate output_size.
910
        data_format (str, optional): Specify the data format of the input, and the data format of the output
911 912 913
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
914 915
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
916 917 918 919 920 921 922 923 924 925 926 927 928
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
929

930
          # shape: (1, 2, 4)
931 932
          x = paddle.to_tensor([[[4, 0, 9, 7],
                                [8, 0, 9, 2,]]], dtype="float32")
933
          # shape: (2, 1, 2)
934 935 936 937 938 939 940
          w = paddle.to_tensor([[[7, 0]],
                                [[4, 2]]], dtype="float32")

          y = F.conv1d_transpose(x, w)
          print(y)
          # Tensor(shape=[1, 1, 5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
          #        [[[60., 16., 99., 75., 4. ]]])
941 942 943 944 945 946 947 948 949 950 951
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
952 953 954 955
                data_format
            )
        )
    channel_last = data_format == "NLC"
956
    channel_dim = -1 if channel_last else 1
957 958
    if len(x.shape) != 3:
        raise ValueError(
959 960 961 962
            "Input x should be 3D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
963 964 965

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
966 967 968 969
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
970 971
    if groups <= 0:
        raise ValueError(
972 973 974 975
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
976 977 978 979
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
980 981
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
982 983 984 985 986 987 988 989 990 991

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
992 993 994 995
            "The size of padding's dimension should 1 or 2. But got padding={}".format(
                padding
            )
        )
996

997 998
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
999 1000 1001 1002

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1003
        if output_padding != 0:
1004 1005 1006 1007
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1008
        if isinstance(output_size, (list, tuple, int)):
1009
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
1010 1011
        else:
            raise ValueError(
1012 1013
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1014 1015 1016 1017

    if output_padding == 0:
        output_padding = []
    else:
1018 1019 1020
        output_padding = convert_to_list(
            output_padding, 1, 'output_padding'
        ) + [0]
L
LielinJiang 已提交
1021 1022 1023 1024

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
1025
            "But got output_padding={} and stride={}".format(
1026 1027 1028
                output_padding[0], stride[0]
            )
        )
1029 1030 1031

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1032 1033 1034 1035 1036 1037
    if (
        num_channels == groups
        and num_channels != 1
        and num_filters == 1
        and not use_cudnn
    ):
1038 1039 1040 1041 1042 1043
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

1044 1045
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
1046

1047
    if in_dygraph_mode():
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        out = getattr(_C_ops, op_type)(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            conv2d_data_format,
        )
1060 1061 1062
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            conv2d_data_format,
        )
1083
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1084 1085 1086 1087 1088
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
1089
            'output_padding': output_padding,
1090 1091 1092 1093 1094 1095 1096
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1097
            'data_format': conv2d_data_format,
1098
        }
1099 1100 1101
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1102
        helper = LayerHelper(op_type, **locals())
1103
        dtype = helper.input_dtype(input_param_name='x')
1104 1105
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
1106 1107 1108
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1109 1110 1111
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

1112
    out = squeeze(out, axis=[squeeze_axis])
1113 1114 1115
    return out


1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
def conv2d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    dilation=1,
    groups=1,
    output_size=None,
    data_format='NCHW',
    name=None,
):
1129
    r"""
S
swtkiwi 已提交
1130

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1142
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
1143 1144 1145

    For each input :math:`X`, the equation is:

1146
    ..  math::
1147

1148
        Out = \sigma (W \ast X + b)
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

1173
        ..  math::
1174 1175 1176 1177 1178 1179 1180

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
1181 1182
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
1183
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
1184 1185 1186
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
1187
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
1188 1189

    Args:
L
LielinJiang 已提交
1190
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
1191
            whose data type is float32 or float64.
L
LielinJiang 已提交
1192
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
1193 1194
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
1195
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
1196 1197
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
1198
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
1199 1200
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
1201
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
1202
            it could be in three forms: `[pad_height, pad_width]` or
1203
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
1204
            and when `data_format` is `"NCHW"`, `padding` can be in the form
1205
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
1206
            when `data_format` is `"NHWC"`, `padding` can be in the form
1207 1208
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1209 1210
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1211
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1212 1213 1214 1215 1216
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1217 1218
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1219
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1220
        output_size(int|tuple|list, optional): The output image size. If output size is a
1221
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1222
            filter_size(shape of weight), padding, and stride to calculate output_size.
1223
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1224 1225 1226
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1227 1228
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1229 1230 1231
           None by default.

    Returns:
1232
        A Tensor representing the conv2d_transpose, whose
1233 1234
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1235
        transposed convolution result.
1236 1237 1238 1239

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1240 1241
          import paddle
          import paddle.nn.functional as F
1242

1243 1244
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1245

1246
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1247
          y_np = y_var.numpy()
1248

1249
          print(y_np.shape)
1250 1251 1252 1253 1254 1255 1256
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
1257 1258 1259 1260
                data_format
            )
        )
    channel_last = data_format == "NHWC"
1261
    channel_dim = -1 if channel_last else 1
1262 1263
    if len(x.shape) != 4:
        raise ValueError(
1264 1265 1266 1267
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1268
    num_channels = x.shape[channel_dim]
1269
    if num_channels < 0:
1270 1271 1272 1273
        raise ValueError(
            "The channel dimension of the input({}) "
            "should be defined. Received: {}.".format(x.shape, num_channels)
        )
1274 1275
    if groups <= 0:
        raise ValueError(
1276 1277 1278 1279
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1280 1281 1282 1283
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
1284 1285
            ", the groups is {}".format(num_channels, x.shape, groups)
        )
L
LielinJiang 已提交
1286 1287 1288

    cudnn_version = get_cudnn_version()

1289 1290 1291 1292 1293
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1294 1295 1296

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1297 1298
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1299

1300 1301 1302
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1303
        if output_padding != 0:
1304 1305 1306 1307
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
1308 1309 1310 1311 1312 1313
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1314
            output_size = convert_to_list(output_size, 2, 'output_size')
1315
        elif isinstance(output_size, Variable):
1316 1317 1318 1319 1320 1321 1322 1323 1324
            check_dtype(
                output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'conv2d_transpose',
            )
            if len(output_size.shape) == 1 and (
                output_size.shape[0] == 1 or output_size.shape[0] == 2
            ):
1325 1326 1327 1328
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
1329 1330
                    "output_size must contain one or two integers."
                )
L
LielinJiang 已提交
1331 1332
        else:
            raise ValueError(
1333 1334
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1335 1336 1337 1338

    if output_padding == 0:
        output_padding = []
    else:
1339
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1340 1341 1342

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
1343
    if num_channels == groups and num_channels != 1 and num_filters == 1:
1344
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1345
        use_cudnn = False
1346

F
From00 已提交
1347
    if in_dygraph_mode():
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        op = (
            _C_ops.conv2d_transpose
            if op_type == 'conv2d_transpose'
            else _C_ops.depthwise_conv2d_transpose
        )
        pre_bias = op(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format,
        )
F
From00 已提交
1365 1366 1367 1368 1369 1370
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            'data_format',
            data_format,
        )
1391
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1392
        if bias is not None:
L
LielinJiang 已提交
1393
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1394
        else:
L
LielinJiang 已提交
1395
            out = pre_bias
1396
    else:
L
LielinJiang 已提交
1397
        inputs = {'Input': [x], 'Filter': [weight]}
1398
        attrs = {
L
LielinJiang 已提交
1399
            'output_padding': output_padding,
1400 1401 1402 1403 1404 1405 1406
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1407
            'data_format': data_format,
1408
        }
1409 1410 1411
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv2d_transpose'
        )
1412
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1413
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1414
        outputs = {"Output": [pre_bias]}
1415 1416 1417
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
L
LielinJiang 已提交
1418

1419
        if bias is not None:
L
LielinJiang 已提交
1420
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1421
        else:
L
LielinJiang 已提交
1422 1423
            out = pre_bias

1424 1425 1426
    return out


1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
def conv3d(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    dilation=1,
    groups=1,
    data_format="NCDHW",
    name=None,
):
1438
    r"""
S
swtkiwi 已提交
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1451
    ..  math::
1452

1453
        Out = \sigma (W \ast X + b)
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1477
        ..  math::
1478 1479 1480 1481 1482 1483

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1484
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1485
            type of input is float16 or float32 or float64.
1486
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1487 1488
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1489
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1490 1491
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1492
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1493
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1494 1495 1496 1497
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1498
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1499
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1500
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1501 1502
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1503
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1504
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1505
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1506
            Default: dilation = 1.
1507
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1508 1509 1510 1511
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1512
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1513 1514 1515
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1516 1517
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1518 1519 1520
           None by default.

    Returns:
1521 1522 1523
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1524 1525 1526 1527 1528
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1529 1530
            import paddle
            import paddle.nn.functional as F
1531

1532 1533
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1534

1535 1536
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1537

1538
            print(y_np.shape)
1539 1540 1541 1542 1543 1544
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1545 1546
            "Attr(data_format): {}.".format(data_format)
        )
1547

1548
    channel_last = data_format == "NDHWC"
1549
    channel_dim = -1 if channel_last else 1
1550 1551
    if len(x.shape) != 5:
        raise ValueError(
1552 1553 1554 1555
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
1556
    num_channels = x.shape[channel_dim]
1557 1558 1559
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1560
            "The channel dimension of the input({}) should be defined. "
1561 1562
            "Received: {}.".format(x.shape, num_channels)
        )
1563 1564
    if groups <= 0:
        raise ValueError(
1565 1566 1567 1568
            "The groups of conv3d should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1569 1570 1571
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1572
            "Received: number of channels({}), groups({}).".format(
1573 1574 1575
                num_channels, groups
            )
        )
1576 1577 1578
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1579
            "Received: number of filters({}), groups({}).".format(
1580 1581 1582
                num_filters, groups
            )
        )
1583

1584
    cudnn_version = get_cudnn_version()
1585 1586 1587 1588 1589
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1590

1591
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1592 1593
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1594 1595
    op_type = "conv3d"

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
    return _conv_nd(
        x,
        weight,
        bias,
        stride,
        padding,
        padding_algorithm,
        dilation,
        groups,
        data_format,
        channel_dim,
        op_type,
        use_cudnn,
        False,
        name,
    )


def conv3d_transpose(
    x,
    weight,
    bias=None,
    stride=1,
    padding=0,
    output_padding=0,
    groups=1,
    dilation=1,
    output_size=None,
    data_format='NCDHW',
    name=None,
):
1627
    r"""
L
LielinJiang 已提交
1628
    The convolution3d transpose layer calculates the output based on the input,
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1639
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1640 1641 1642

    For each input :math:`X`, the equation is:

1643
    ..  math::
1644

1645
        Out = \sigma (W \ast X + b)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1670
        ..  math::
1671 1672 1673 1674 1675 1676 1677 1678 1679

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1680 1681
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1682 1683
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1684 1685 1686 1687
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1688
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1689 1690

    Args:
1691
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1692
            of input is float32 or float64.
L
LielinJiang 已提交
1693
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1694 1695
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1696
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1697 1698 1699
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1700
            Default: stride = 1.
1701
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1702 1703 1704
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1705
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1706
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1707
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1708
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1709 1710
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1711 1712
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1713
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1714 1715 1716 1717 1718
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1719 1720 1721
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1722
            Default: dilation = 1.
L
LielinJiang 已提交
1723
        output_size(int|list|tuple, optional): The output image size. If output size is a
1724
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1725
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1726
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1727 1728 1729
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1730 1731
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1732 1733 1734
           None by default.

    Returns:
1735
        A Tensor representing the conv3d_transpose, whose data
1736 1737 1738
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1739 1740 1741 1742
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1743

L
LielinJiang 已提交
1744
          import paddle
1745 1746
          import paddle.nn.functional as F

1747 1748
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1749

1750
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1751
          y_np = y_var.numpy()
1752

1753
          print(y_np.shape)
1754 1755 1756 1757 1758 1759
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1760 1761
            "Attr(data_format): {}.".format(data_format)
        )
1762

1763
    channel_last = data_format == "NDHWC"
1764
    channel_dim = -1 if channel_last else 1
1765 1766
    if len(x.shape) != 5:
        raise ValueError(
1767 1768 1769 1770
            "Input x should be 5D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
L
LielinJiang 已提交
1771
    num_channels = x.shape[channel_dim]
1772 1773 1774
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1775
            "The channel dimension of the input({}) should be defined. "
1776 1777
            "Received: {}.".format(x.shape, num_channels)
        )
1778 1779
    if groups <= 0:
        raise ValueError(
1780 1781 1782 1783
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}".format(
                groups
            )
        )
1784 1785 1786
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1787
            "Received: number of channels({}), groups({}).".format(
1788 1789 1790
                num_channels, groups
            )
        )
1791 1792

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1793 1794
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1795 1796 1797
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1798
        if output_padding != 0:
1799 1800 1801 1802
            raise ValueError(
                'output_padding option is mutually exclusive with '
                'output_size'
            )
L
LielinJiang 已提交
1803
        if isinstance(output_size, (list, tuple, int)):
1804
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1805 1806
        else:
            raise ValueError(
1807 1808
                "output_size should be int, or list, tuple of ints"
            )
L
LielinJiang 已提交
1809 1810 1811 1812

    if output_padding == 0:
        output_padding = []
    else:
1813
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1814 1815 1816

    cudnn_version = get_cudnn_version()

1817 1818 1819 1820 1821 1822
    # TODO(LielinJiang): whether to use cudnn according to the version of cudnn
    use_cudnn = (
        True
        if (is_compiled_with_cuda() and cudnn_version is not None)
        else False
    )
1823 1824 1825 1826

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1827
    if in_dygraph_mode():
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        pre_bias = _C_ops.conv3d_transpose(
            x,
            weight,
            stride,
            padding,
            output_padding,
            output_size,
            padding_algorithm,
            groups,
            dilation,
            data_format_,
        )
F
From00 已提交
1840 1841 1842 1843 1844 1845
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
        attrs = (
            'output_padding',
            output_padding,
            'output_size',
            output_size,
            'paddings',
            padding,
            "padding_algorithm",
            padding_algorithm,
            'strides',
            stride,
            'dilations',
            dilation,
            'groups',
            groups,
            'use_cudnn',
            use_cudnn,
            "data_format",
            data_format_,
        )
1866
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1867
        if bias is not None:
L
LielinJiang 已提交
1868
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1869
        else:
L
LielinJiang 已提交
1870
            out = pre_bias
1871
    else:
L
LielinJiang 已提交
1872
        inputs = {'Input': [x], 'Filter': [weight]}
1873
        attrs = {
L
LielinJiang 已提交
1874
            'output_padding': output_padding,
1875 1876 1877 1878 1879 1880 1881
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1882
            "data_format": data_format_,
1883 1884
        }
        helper = LayerHelper(op_type, **locals())
1885 1886 1887
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'conv3d'
        )
1888

L
LielinJiang 已提交
1889
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1890 1891
        outputs = {"Output": [pre_bias]}

1892 1893 1894
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=attrs
        )
1895
        if bias is not None:
L
LielinJiang 已提交
1896
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1897
        else:
L
LielinJiang 已提交
1898
            out = pre_bias
1899 1900

    return out