random.py 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

17 18 19 20 21 22 23 24 25
import paddle
from paddle import _C_ops, _legacy_C_ops
from paddle.fluid.framework import (
    _current_expected_place,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
from paddle.static import Variable

26 27 28
from ..fluid.data_feeder import (
    check_dtype,
    check_shape,
29 30
    check_type,
    check_variable_and_dtype,
31
)
32
from ..fluid.layers import utils
33 34 35 36 37
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
38
)
S
silingtong123 已提交
39

40 41
__all__ = []

S
silingtong123 已提交
42

L
Leo Chen 已提交
43
def bernoulli(x, name=None):
44
    r"""
L
Leo Chen 已提交
45

46
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
47

48
    .. math::
49 50
        p(y)=\begin{cases}
            x_i,&y=1\\
51 52
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
53 54

    Args:
55 56 57
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

58
    Returns:
59
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
60 61 62 63

    Examples:
        .. code-block:: python

64
            import paddle
L
Leo Chen 已提交
65

L
Leo Chen 已提交
66
            paddle.set_device('cpu')  # on CPU device
67
            paddle.seed(100)
L
Leo Chen 已提交
68

69
            x = paddle.rand([2,3])
L
Leo Chen 已提交
70 71 72
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
73

74
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
75 76 77
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
78 79 80

    """

H
hong 已提交
81
    if in_dygraph_mode():
82
        return _C_ops.bernoulli(x)
H
hong 已提交
83 84

    if _in_legacy_dygraph():
85
        return _legacy_C_ops.bernoulli(x)
L
Leo Chen 已提交
86 87 88 89 90

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
91 92 93 94 95
        dtype=x.dtype
    )  # maybe set out to int32 ?
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={}
    )
96
    out.stop_gradient = True
L
Leo Chen 已提交
97 98 99
    return out


100
def poisson(x, name=None):
101
    r"""
102
    Returns a tensor filled with random number from a Poisson Distribution.
103 104 105

    .. math::

106
        out_i \sim Poisson (lambda = x_i)
107 108

    Args:
109
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type
110 111 112 113
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
114
    Returns:
115 116 117 118 119 120
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
121
            paddle.set_device('cpu')
122
            paddle.seed(100)
123 124 125

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
126 127
            #[[2., 5., 0.],
            # [5., 1., 3.]]
128 129

    """
H
hong 已提交
130
    if in_dygraph_mode():
131
        return _C_ops.poisson(x)
132

Z
zhiboniu 已提交
133
    if paddle.in_dynamic_mode():
134
        return _legacy_C_ops.poisson(x)
135 136 137 138 139

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
140 141 142
    helper.append_op(
        type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={}
    )
143 144 145
    return out


P
pangyoki 已提交
146 147
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
148
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

168 169
            import paddle

C
cnn 已提交
170
            paddle.seed(100) # on CPU device
171
            x = paddle.rand([2,4])
172
            print(x)
173 174 175
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
176
            paddle.seed(200) # on CPU device
177
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
178
            print(out1)
179 180 181 182 183 184 185
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
186
            paddle.seed(300) # on CPU device
187
            out3 = paddle.multinomial(x, num_samples=3)
188
            print(out3)
189 190
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
191 192 193

    """

194
    assert (
195
        not core.is_compiled_with_rocm()
196
    ), "multinomial op is not supported on ROCM yet."
197

H
hong 已提交
198
    if in_dygraph_mode():
199
        return _C_ops.multinomial(x, num_samples, replacement)
H
hong 已提交
200 201

    if _in_legacy_dygraph():
202 203 204
        return _legacy_C_ops.multinomial(
            x, 'num_samples', num_samples, 'replacement', replacement
        )
P
pangyoki 已提交
205 206 207 208 209

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
210 211 212 213 214 215 216 217
        dtype=convert_np_dtype_to_dtype_('int64')
    )
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples, 'replacement': replacement},
    )
218
    out.stop_gradient = True
P
pangyoki 已提交
219 220 221
    return out


222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
def uniform_random_batch_size_like(
    input,
    shape,
    dtype='float32',
    input_dim_idx=0,
    output_dim_idx=0,
    min=-1.0,
    max=1.0,
    seed=0,
):
    """
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
    .. code-block:: text
        *Case 1:
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]
            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0,
            input_dim_idx = 0,
            result.shape[0] = input.shape[0],
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
       *Case 2:
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1,
           input_dim_idx = 1,
           result.shape[1] = input.shape[1],
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
    Args:
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0.
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
    Returns:
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            from paddle.tensor import random
            paddle.enable_static()
            # example 1:
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = random.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
            # example 2:
            out_2 = random.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]
    """
    check_variable_and_dtype(
        input,
        'Input',
        ("float32", 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )
    check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like')
    check_dtype(
        dtype,
        'dtype',
        ('float32', 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_variable_for_type_inference(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype,
        },
    )

    return out


317
def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
318
    """
319
    Returns a Tensor filled with random values sampled from a Gaussian
320 321 322
    distribution, with ``shape`` and ``dtype``.

    Args:
323 324 325
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
326 327
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
328
            is 1.0.
329 330
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
331 332 333
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
334
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
335 336 337

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
338
        distribution, with ``shape`` and ``dtype``.
339
    """
340 341
    op_type_for_check = 'gaussian/standard_normal/randn/normal'

342 343 344 345
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
346 347 348 349
                "{} only supports [float32, float64], but the default dtype is {}".format(
                    op_type_for_check, dtype
                )
            )
350 351 352
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

353 354 355
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
356
        return _C_ops.gaussian(
357 358
            shape, float(mean), float(std), seed, dtype, place
        )
359 360

    if _in_legacy_dygraph():
361
        shape = utils.convert_shape_to_list(shape)
362 363 364 365 366 367 368 369 370 371 372 373
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
374

375
    check_shape(shape, op_type_for_check)
376 377 378 379 380 381 382 383
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
384
        'use_mkldnn': False,
385
    }
386 387 388
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check
    )
389

390
    helper = LayerHelper('gaussian', **locals())
391
    out = helper.create_variable_for_type_inference(dtype)
392 393 394
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
395 396 397 398 399 400
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
401
    Returns a Tensor filled with random values sampled from a standard
402 403 404 405
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
406 407 408
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
409
        dtype (str|np.dtype, optional): The data type of the output Tensor.
410 411 412
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
413 414 415 416 417 418 419 420 421 422 423 424 425 426
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
427
            out1 = paddle.standard_normal(shape=[2, 3])
428 429 430 431
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
432 433
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
434
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
435 436 437 438 439 440 441 442
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
443
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
444
            out3 = paddle.standard_normal(shape_tensor)
445 446 447 448
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
449
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
450 451


Z
zhupengyang 已提交
452 453
def randn(shape, dtype=None, name=None):
    """
454
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
455 456 457 458
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
459 460 461
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
Z
zhupengyang 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
485 486
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
502 503 504 505


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
506
    Returns a Tensor filled with random values sampled from a normal
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
524 525 526 527
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. If ``mean`` or ``std``
            is a Tensor, the shape of the output Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

544
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
545 546 547
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

548
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
549 550 551 552
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
553
    if not paddle.in_dynamic_mode():
554 555 556 557
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
558 559 560 561 562
                mean.dtype,
                'mean',
                ['float32', 'float64'],
                'normal',
                "If mean is Tensor, it's data type only support float32, float64.",
563 564 565
            )
        if isinstance(std, Variable):
            check_dtype(
566 567 568 569 570
                std.dtype,
                'std',
                ['float32', 'float64'],
                'normal',
                "If std is Tensor, it's data type only support float32, float64.",
571 572
            )
        if shape is not None:
573
            check_shape(shape, 'normal')
574 575 576 577 578 579 580 581 582 583 584 585 586 587

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
588
        return gaussian(shape=shape, mean=mean, std=std, name=name)
589 590

    out = out * std + mean
Z
zhiboniu 已提交
591
    if not paddle.in_dynamic_mode():
592 593 594 595
        out.stop_grediant = True
    return out


596
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
597
    """
598
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
599 600 601
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
602

Z
zhupengyang 已提交
603
    .. code-block:: text
李灿 已提交
604

P
pangyoki 已提交
605 606 607 608 609 610
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
611 612 613
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
614 615 616 617
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
618 619 620 621
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
622
        seed(int, optional): Random seed used for generating samples. If seed is 0,
623
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
624
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
625
            time. Default is 0.
626 627
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
628 629 630 631 632 633 634

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
635
          :name: code-example1
636

P
pangyoki 已提交
637 638 639 640
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
641 642 643 644
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
645 646 647

            # example 2:
            # attr shape is a list which contains Tensor.
648 649
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
650 651 652
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
653 654 655

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
656
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
657 658 659
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
660
    """
661 662 663 664
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
665 666 667 668
                "uniform/rand only supports [float32, float64], but the default dtype is {}".format(
                    dtype
                )
            )
669

P
pangyoki 已提交
670 671 672
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

673 674
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
675
        return _C_ops.uniform(
676 677 678 679 680 681 682
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
683 684

    if _in_legacy_dygraph():
685
        shape = utils.convert_shape_to_list(shape)
686 687 688 689 690 691 692 693 694 695 696 697
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
P
pangyoki 已提交
698

699 700
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
701 702
    check_type(min, 'min', (float, int, Variable), 'uniform/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform/rand')
P
pangyoki 已提交
703 704 705

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
706 707 708
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand'
    )
P
pangyoki 已提交
709

710
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
711
    out = helper.create_variable_for_type_inference(dtype)
712 713 714
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
715
    out.stop_gradient = True
P
pangyoki 已提交
716 717 718
    return out


J
JYChen 已提交
719 720 721
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
722
    This is the inplace version of OP ``uniform``, which returns a Tensor filled
J
JYChen 已提交
723 724
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
725

J
JYChen 已提交
726 727 728 729 730 731
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
732 733
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
734 735 736 737 738 739 740 741 742 743
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
744

J
JYChen 已提交
745 746 747 748 749 750 751 752 753
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
754
    if in_dygraph_mode():
755
        return _C_ops.uniform_inplace_(x, min, max, seed, 0, 0, 1.0)
756
    else:
757 758 759
        return _legacy_C_ops.uniform_random_inplace_(
            x, 'min', min, 'max', max, 'seed', seed
        )
J
JYChen 已提交
760 761


762
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
763
    """
764
    Returns a Tensor filled with random integers from a discrete uniform
765 766
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
767 768

    Args:
769
        low (int, optional): The lower bound on the range of random values to generate.
770 771
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
772
        high (int, optional): The upper bound on the range of random values to
773 774
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
775 776 777
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. Default is [1].
778
        dtype (str|np.dtype, optional): The data type of the
779 780
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
781
        name (str, optional): The default value is None.  Normally there is no
782 783
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
784

785
    Returns:
786 787
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
788 789 790

    Examples:
        .. code-block:: python
791

792
            import paddle
793

794 795
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
796
            out1 = paddle.randint(low=-5, high=5, shape=[2, 3])
797 798 799 800
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
801 802
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
803
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
804 805 806 807 808
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
809
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
810
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
811 812
            # [[ 2, -3, -1],    # random
            #  [-3, -2,  1]])   # random
813 814 815

            # example 4:
            # data type is int32
816
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
817 818 819 820 821
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
822
            out5 = paddle.randint(10)
823
            # [7]  # random
S
silingtong123 已提交
824

825 826
    """
    if high is None:
827 828
        if low <= 0:
            raise ValueError(
829 830 831 832
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
833 834
        high = low
        low = 0
S
silingtong123 已提交
835 836
    if dtype is None:
        dtype = 'int64'
837 838
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
839

F
From00 已提交
840 841 842
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
843
        return _C_ops.randint(low, high, shape, dtype, place)
F
From00 已提交
844
    if _in_legacy_dygraph():
845
        shape = utils.convert_shape_to_list(shape)
846 847 848
        return _legacy_C_ops.randint(
            'shape', shape, 'low', low, 'high', high, 'seed', 0, 'dtype', dtype
        )
S
silingtong123 已提交
849

850
    check_shape(shape, 'randint')
851 852
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
853 854
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
855 856
            "high = {1}".format(low, high)
        )
S
silingtong123 已提交
857

858 859
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
860 861 862
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint'
    )
863 864 865

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
866 867 868
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
869
    out.stop_gradient = True
S
silingtong123 已提交
870
    return out
C
cc 已提交
871 872


873 874
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
875
    Returns a Tensor filled with random integers from a discrete uniform
876
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
877
    (use ``dtype`` if ``dtype`` is not None)
878 879 880
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
881
        x (Tensor): The input tensor which specifies shape. The dtype of ``x``
882 883 884 885 886 887 888 889
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
890
            output tensor. Supported data types: bool, int32, int64, float16,
891 892 893 894 895 896
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

897
    Returns:
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
1000 1001 1002 1003
                "If high is None, low must be greater than 0, but received low = {0}.".format(
                    low
                )
            )
1004 1005 1006 1007 1008 1009
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1010
    shape = paddle.shape(x)
1011 1012 1013 1014

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
1015 1016
            "high = {1}".format(low, high)
        )
1017

Z
zhiboniu 已提交
1018
    if paddle.in_dynamic_mode():
1019
        shape = utils.convert_shape_to_list(shape)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        out = _legacy_C_ops.randint(
            'shape',
            shape,
            'low',
            low,
            'high',
            high,
            'seed',
            0,
            'dtype',
            core.VarDesc.VarType.INT64,
        )
1032 1033 1034 1035
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
1036 1037 1038 1039 1040 1041
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'randint_like',
    )
1042

1043
    inputs = {"ShapeTensor": shape}
1044 1045 1046 1047
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
1048
        'dtype': core.VarDesc.VarType.INT64,
1049 1050 1051 1052
    }

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
1053 1054 1055 1056 1057
        dtype=core.VarDesc.VarType.INT64
    )
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
1058 1059 1060 1061 1062
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


1063
def randperm(n, dtype="int64", name=None):
C
cc 已提交
1064
    """
1065
    Returns a 1-D Tensor filled with random permutation values from 0
1066
    to n-1, with ``dtype``.
C
cc 已提交
1067 1068

    Args:
1069 1070
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
1071 1072
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
1073
        name (str, optional): The default value is None. Normally there is no
1074 1075
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
1076 1077

    Returns:
1078 1079
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
1080 1081 1082 1083

    Examples:
        .. code-block:: python

1084
            import paddle
C
cc 已提交
1085

1086
            out1 = paddle.randperm(5)
1087
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
1088

1089
            out2 = paddle.randperm(7, 'int32')
1090
            # [1, 6, 2, 0, 4, 3, 5]  # random
1091

C
cc 已提交
1092
    """
1093 1094 1095
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
1096
    if in_dygraph_mode():
1097
        return _C_ops.randperm(n, dtype, _current_expected_place())
Z
zyfncg 已提交
1098
    if _in_legacy_dygraph():
1099
        return _legacy_C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
1100 1101 1102

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
1103 1104 1105
    check_dtype(
        dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm'
    )
C
cc 已提交
1106 1107

    helper = LayerHelper("randperm", **locals())
1108 1109
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
1110 1111 1112
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs
    )
1113
    out.stop_gradient = True
C
cc 已提交
1114
    return out
X
Xing Wu 已提交
1115 1116


1117
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
1118
    """
1119
    Returns a Tensor filled with random values sampled from a uniform
1120
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1121 1122

    Args:
1123 1124 1125
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1126
        dtype (str|np.dtype, optional): The data type of the output Tensor.
1127 1128 1129
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
1130
        name (str, optional): The default value is None. Normally there is no
1131 1132
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1133

X
Xing Wu 已提交
1134
    Returns:
1135 1136
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1137 1138 1139 1140

    Examples:
        .. code-block:: python

1141
            import paddle
1142

1143
            # example 1: attr shape is a list which doesn't contain Tensor.
1144
            out1 = paddle.rand(shape=[2, 3])
1145 1146 1147 1148
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
1149 1150
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
1151
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1152 1153 1154 1155 1156 1157 1158 1159
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1160
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1161
            out3 = paddle.rand(shape_tensor)
1162 1163
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1164
    """
1165
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1166 1167 1168


def exponential_(x, lam=1.0, name=None):
1169
    r"""
1170 1171
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

1172 1173
    ``lam`` is :math:`\lambda` parameter of Exponential Distribution.

1174 1175 1176 1177 1178 1179
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1180
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1181 1182 1183
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1184
    Returns:
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1200
    if in_dygraph_mode():
1201
        return _C_ops.exponential_(x, lam)
1202
    elif paddle.in_dynamic_mode():
1203
        return _legacy_C_ops.exponential_(x, "lambda", lam)
1204 1205 1206 1207

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
1208 1209 1210 1211 1212 1213
    helper.append_op(
        type='exponential',
        inputs={"X": x},
        outputs={'Out': x},
        attrs={"lambda": lam},
    )
1214
    return x