analysis_predictor.cc 107.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16

17
#include <glog/logging.h>
18

19
#include <algorithm>
20
#include <cstdlib>
N
nhzlx 已提交
21
#include <fstream>
22
#include <memory>
23
#include <set>
24
#include <string>
25
#include <utility>
26
#include <vector>
27

W
Wilber 已提交
28
#include "paddle/fluid//platform/device/gpu/gpu_types.h"
29
#include "paddle/fluid/framework/feed_fetch_method.h"
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
32
#include "paddle/fluid/framework/ir/pass.h"
33
#include "paddle/fluid/framework/naive_executor.h"
34
#include "paddle/fluid/framework/op_proto_maker.h"
35
#include "paddle/fluid/framework/operator.h"
36
#include "paddle/fluid/framework/scope.h"
J
JingZhuangzhuang 已提交
37
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yan Chunwei 已提交
38
#include "paddle/fluid/framework/var_type_traits.h"
39
#include "paddle/fluid/framework/version.h"
40
#include "paddle/fluid/inference/analysis/helper.h"
41
#include "paddle/fluid/inference/analysis/pass_result_info.h"
42
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
Y
Yan Chunwei 已提交
43
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
44
#include "paddle/fluid/inference/api/helper.h"
45
#include "paddle/fluid/inference/api/infer_context.h"
46
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
47
#include "paddle/fluid/inference/api/paddle_inference_api.h"
L
luotao1 已提交
48
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
W
Wilber 已提交
49
#include "paddle/fluid/inference/api/resource_manager.h"
50
#include "paddle/fluid/inference/utils/io_utils.h"
51
#include "paddle/fluid/inference/utils/model_utils.h"
52
#include "paddle/fluid/inference/utils/singleton.h"
53
#include "paddle/fluid/memory/memcpy.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
55
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
56
#include "paddle/fluid/platform/device_context.h"
57
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
58
#include "paddle/fluid/platform/profiler.h"
59
#include "paddle/phi/api/include/tensor.h"
60 61
#include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
W
Wilber 已提交
62
#include "paddle/phi/common/place.h"
W
Wilber 已提交
63
#include "paddle/phi/core/enforce.h"
64
#include "paddle/phi/core/generator.h"
65
#include "paddle/phi/kernels/funcs/data_type_transform.h"
66 67
#include "paddle/utils/string/split.h"

68
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
69 70 71 72
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/fleet_executor_desc.pb.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#endif
T
tensor-tang 已提交
73

74 75 76 77
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

78 79 80 81
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

82 83 84 85
#ifdef PADDLE_WITH_ONNXRUNTIME
#include "paddle/fluid/inference/api/onnxruntime_predictor.h"
#endif

86
#ifdef PADDLE_WITH_TENSORRT
Y
Yan Chunwei 已提交
87
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
88
#include "paddle/fluid/inference/tensorrt/helper.h"
89
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
90 91
#endif

92 93 94 95
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/paddle_ipu_handler.h"
#endif

96 97
namespace paddle {

N
nhzlx 已提交
98
using inference::Singleton;
99
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
100 101
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
102
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
103
#endif
104

105 106
int AnalysisPredictor::clone_num_ = 1;

107 108 109 110
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
111 112
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
113 114 115 116
    return true;
  }
  return false;
}
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

phi::DataType ConvertPrecision(AnalysisConfig::Precision precision) {
  switch (precision) {
    case AnalysisConfig::Precision::kFloat32:
      return phi::DataType::FLOAT32;
    case AnalysisConfig::Precision::kHalf:
      return phi::DataType::FLOAT16;
    case AnalysisConfig::Precision::kBf16:
      return phi::DataType::BFLOAT16;
    case AnalysisConfig::Precision::kInt8:
      return phi::DataType::INT8;
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support precision. We now only support "
          "Float32, Half, Bfloat16 and Int8"));
      return phi::DataType::FLOAT32;
  }
}

136
phi::Backend ConvertBackend(paddle_infer::PlaceType backend) {
137
  switch (backend) {
138
    case paddle_infer::PlaceType::kGPU:
139 140
      // NOTE: phi also support phi::Backend::GPUDNN.
      return phi::Backend::GPU;
141
    case paddle_infer::PlaceType::kNPU:
142
      return phi::Backend::NPU;
143
    case paddle_infer::PlaceType::kXPU:
144
      return phi::Backend::XPU;
145
    case paddle_infer::PlaceType::kCPU:
146
      return phi::Backend::CPU;
147 148
    case paddle_infer::PlaceType::kIPU:
      return phi::Backend::IPU;
149 150
    case paddle_infer::PlaceType::kCUSTOM:
      return phi::Backend::CUSTOM;
151 152 153 154 155 156 157
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Paddle Inference not support backend, we now only support GPU, XPU, "
          "NPU and CPU."));
      return phi::Backend::CPU;
  }
}
158

159 160 161
bool PaddleTensorToDenseTensor(const PaddleTensor &pt,
                               phi::DenseTensor *t,
                               const platform::Place &place) {
162
  framework::DDim ddim = phi::make_ddim(pt.shape);
163 164 165 166 167 168 169
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
170 171
  } else if (pt.dtype == PaddleDType::FLOAT16) {
    input_ptr = t->mutable_data<float16>(ddim, place);
172 173 174 175
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }
176 177 178
  // NOTE(Aurelius84): Some kernels support zero shape input
  // without memory holder, we should skip enforce logic.
  bool has_zero_dim = (phi::product(ddim) == 0);
179 180 181
  VLOG(3) << "Found zero dim: " << has_zero_dim
          << " from input with ddim: " << ddim;
  if (!has_zero_dim) {
182 183 184 185 186 187 188 189
    PADDLE_ENFORCE_NOT_NULL(
        input_ptr,
        paddle::platform::errors::Fatal(
            "Cannot convert to LoDTensor because LoDTensor creation failed."));
    PADDLE_ENFORCE_NOT_NULL(
        pt.data.data(),
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor is illegal."));
190 191
    PADDLE_ENFORCE_EQ(
        pt.data.length(),
192
        t->numel() * phi::SizeOf(t->dtype()),
193 194
        paddle::platform::errors::InvalidArgument(
            "The data contained in the input PaddleTensor had wrong length."));
195
  }
196 197 198

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
199 200 201 202
    if (input_ptr != nullptr) {
      std::memcpy(
          static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
    }
J
jianghaicheng 已提交
203 204
  } else if (platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
C
ccrrong 已提交
205 206
    std::memcpy(
        static_cast<void *>(input_ptr), pt.data.data(), pt.data.length());
J
jianghaicheng 已提交
207 208 209 210
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with WITH_IPU, should not reach here."));
#endif
211
  } else if (platform::is_gpu_place(place)) {
C
ccrrong 已提交
212 213
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place),
                      false,
214 215
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
216
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
217
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
218
    auto *dev_ctx = static_cast<const phi::GPUContext *>(pool.Get(place));
219
    auto dst_gpu_place = place;
C
ccrrong 已提交
220 221 222 223 224
    memory::Copy(dst_gpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
225 226 227 228 229
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
230 231
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
232
    auto dst_xpu_place = place;
C
ccrrong 已提交
233 234 235 236 237
    memory::Copy(dst_xpu_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length());
238 239 240
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
#endif
  } else if (platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    auto custom_place = place;
    auto *dev_ctx = static_cast<const paddle::platform::CustomDeviceContext *>(
        pool.Get(custom_place));
    memory::Copy(custom_place,
                 static_cast<void *>(input_ptr),
                 platform::CPUPlace(),
                 pt.data.data(),
                 pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUSTOM_DEVICE, should not reach here."));
258 259 260
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
261 262
        "The analysis predictor supports CPU, GPU, XPU and CUSTOM_DEVICE "
        "now."));
263 264 265 266 267 268 269 270 271
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}
272
}  // namespace
273

Y
Yan Chunwei 已提交
274
bool AnalysisPredictor::Init(
275 276
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
277
  VLOG(3) << "Predictor::init()";
278 279
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
280 281
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
282
    platform::EnableProfiler(tracking_device);
283
  } else {
284 285
    VLOG(2) << "Profiler is deactivated, and no profiling report will be "
               "generated.";
T
tensor-tang 已提交
286 287
  }

288 289 290 291
  if (!status_is_cloned_) {
    root_predictor_id_ = predictor_id_;
  }

292
  // no matter with or without MKLDNN
L
luotao1 已提交
293
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
294

295 296 297
  if (!PrepareScope(parent_scope)) {
    return false;
  }
298 299 300

  InitPlace();

301 302 303 304 305 306 307
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

308 309 310
  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

311 312 313
  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
314
  }
315

316 317 318 319 320 321 322 323 324 325 326 327 328
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // TODO(inference): Now only gpu with external stream support private
  // device_context.
  if (config_.use_gpu_ && config_.use_external_stream_) {
    private_context_ = true;
  }
  if (private_context_) {
    if (!status_is_cloned_) {
      predictor_stream_ = config_.GetExecStream();
    }
    // NOTE: If the external_stream equals to global_device_contexts's stream,
    // then fallback.
    auto global_stream =
L
Leo Chen 已提交
329
        static_cast<phi::GPUContext *>(
330 331 332 333 334 335
            platform::DeviceContextPool::Instance().Get(place_))
            ->stream();
    if (predictor_stream_ != global_stream) {
      InitResourceManager(predictor_stream_);
      InitDeviceContexts();
    }
Y
Yan Chunwei 已提交
336
  }
337
#endif
338
  inference::DisplayMemoryInfo(place_, "Init predictor");
339 340
  return true;
}
341

342
void AnalysisPredictor::InitPlace() {
343
  if (config_.use_gpu()) {
C
ccrrong 已提交
344 345
    PADDLE_ENFORCE_EQ(config_.use_xpu(),
                      false,
346 347
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
348
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
349
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
350
    if (config_.thread_local_stream_enabled()) {
W
Wilber 已提交
351 352
      LOG_FIRST_N(WARNING, 1) << "We will remove this interface in the future. "
                                 "Please use config.SetExecStream instead.";
353 354
    }
#endif
355
  } else if (config_.use_xpu()) {
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    if (config_.lite_engine_enabled()) {
#ifdef LITE_SUBGRAPH_WITH_XPU
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of Host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      place_ = paddle::platform::CPUPlace();
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use an XPU lite engine, but Paddle was not compiled "
          "with it."));
#endif  // LITE_SUBGRAPH_WITH_XPU
    } else {
#ifdef PADDLE_WITH_XPU
      place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
#else
      PADDLE_THROW(platform::errors::Unavailable(
          "You tried to use XPU forward propagation (inference without lite "
          "engine), but Paddle was not compiled "
          "with WITH_XPU."));
#endif  // PADDLE_WITH_XPU
    }
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  } else if (config_.NNAdapter().use_nnadapter) {
    if (config_.lite_engine_enabled()) {
      place_ = paddle::platform::CPUPlace();
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use an NNAdapter lite "
                                        "engine, but Paddle was not compiled "
                                        "with it."));
#endif  // LITE_SUBGRAPH_WITH_NNADAPTER
    } else {
      PADDLE_THROW(
          platform::errors::Unavailable("You tried to use NNadapter forward "
                                        "propagation (inference without lite "
                                        "engine), but Paddle was not compiled "
                                        "with LITE_WITH_NNADAPTER."));
    }
J
jianghaicheng 已提交
395 396 397 398 399 400 401
  } else if (config_.use_ipu()) {
#ifdef PADDLE_WITH_IPU
    place_ = paddle::platform::IPUPlace();
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use IPU forward propagation, but Paddle was not compiled "
        "with WITH_IPU."));
402 403 404 405 406 407 408 409 410
#endif
  } else if (config_.use_custom_device()) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    place_ = paddle::platform::CustomPlace(config_.custom_device_type());
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use CustomDevice forward propagation, but Paddle was not "
        "compiled "
        "with WITH_CUSTOM_DEVICE."));
J
jianghaicheng 已提交
411
#endif
412 413 414
  } else {
    place_ = paddle::platform::CPUPlace();
  }
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
}

void AnalysisPredictor::InitResourceManager(void *stream) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  predictor_stream_ =
      ResourceManager::Instance().InitGPUResource(place_, stream);
#endif
}

void AnalysisPredictor::InitDeviceContexts() {
// Init GPUContext.
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    device_contexts_.emplace(
        place_, std::async(std::launch::deferred, [=] {
          auto *gpu_resource =
              ResourceManager::Instance().GetGPUResource(predictor_stream_);
W
Wilber 已提交
432
          auto *gpu_context = new InferGPUContext(place_);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
          gpu_context->SetAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(place_, gpu_resource->GetStream())
                  .get());
          gpu_context->SetPinnedAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(paddle::platform::CUDAPinnedPlace())
                  .get());
          gpu_context->SetHostAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetAllocator(platform::CPUPlace())
                  .get());
          gpu_context->SetZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(place_)
                  .get());
449 450 451 452
          gpu_context->SetHostZeroAllocator(
              memory::allocation::AllocatorFacade::Instance()
                  .GetZeroAllocator(platform::CPUPlace())
                  .get());
453
          gpu_context->SetGenerator(
454 455
              phi::DefaultCUDAGenerator(place_.GetDeviceId()).get());
          gpu_context->SetHostGenerator(phi::DefaultCPUGenerator().get());
456 457

          gpu_context->SetStream(gpu_resource->GetStream());
458
          gpu_context->SetBlasHandle(gpu_resource->GetBlasHandleCreator());
459
          gpu_context->SetBlasTensorCoreHandle(
460 461 462 463 464 465 466 467
              gpu_resource->GetBlasTensorCoreHandleCreator());
          gpu_context->SetBlasTF32Handle(
              gpu_resource->GetBlasTF32TensorCoreHandleCreator());
          gpu_context->SetDnnHandle(gpu_resource->GetDnnHandleCreator());
          gpu_context->SetSolverHandle(
              gpu_resource->GetSolverDnHandleCreator());
          gpu_context->SetSparseHandle(gpu_resource->GetSparseHandleCreator());
          gpu_context->SetEigenDevice(gpu_resource->GetGpuEigenDeviceCreator());
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
          gpu_context->SetComputeCapability(
              gpu_resource->GetGpuComputeCapability());
          gpu_context->SetMaxThreadsPerBlock(
              gpu_resource->GetGpuMaxThreadsPerBlock());
          gpu_context->SetMaxThreadsPerMultiProcessor(
              gpu_resource->GetGpuMaxThreadsPerMp());
          gpu_context->SetMaxGridDimSize(gpu_resource->GetGpuMaxGridDimSize());
          gpu_context->SetMultiProcessors(
              gpu_resource->GetGPUMultiProcessors());
          gpu_context->SetDriverVersion(gpu_resource->GetGpuDriverVersion());
          gpu_context->SetRuntimeVersion(gpu_resource->GetGpuRuntimeVersion());
          VLOG(1) << "thread id is " << std::this_thread::get_id()
                  << ", stream id is "
                  << reinterpret_cast<void *>(gpu_resource->GetStream())
                  << ", allotor ptr is "
                  << reinterpret_cast<void *>(
                         memory::allocation::AllocatorFacade::Instance()
                             .GetAllocator(place_, gpu_resource->GetStream())
                             .get());
          return std::unique_ptr<phi::DeviceContext>(gpu_context);
        }));
  }
#endif
  // TODO(Inference): Support other backends.
}

void *AnalysisPredictor::GetExecStream() const {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (place_.GetType() == phi::AllocationType::GPU) {
    if (private_context_) {
      return predictor_stream_;
    } else {
      paddle::platform::DeviceContextPool &pool =
          paddle::platform::DeviceContextPool::Instance();
      return reinterpret_cast<const phi::GPUContext *>(pool.Get(place_))
          ->stream();
    }
  }
506 507 508 509 510 511 512 513 514
#endif
#if defined(PADDLE_WITH_XPU)
  if (place_.GetType() == phi::AllocationType::XPU) {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    return reinterpret_cast<const phi::XPUContext *>(pool.Get(place_))
        ->stream();
  }
#endif
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  // TODO(inference): Support other backends.
  return nullptr;
}

const void *AnalysisPredictor::GetDeviceContexts() const {
  if (private_context_) {
    return &device_contexts_;
  } else {
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    const auto &dev_ctxs = pool.device_contexts();
    return &dev_ctxs;
  }
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
  if (parent_scope) {
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
    scope_ = parent_scope;
    status_is_cloned_ = true;
  } else {
540
    paddle::framework::InitMemoryMethod();
541
    paddle::framework::InitDevices();
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    paddle::framework::InitDefaultKernelSignatureMap();
    // TODO(wilber): we need to release memory occupied by weights.
    scope_.reset(new paddle::framework::Scope());
    status_is_cloned_ = false;
  }
  sub_scope_ = &scope_->NewScope();
  return true;
}

bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
  if (!program) {
    if (!LoadProgramDesc()) return false;
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
567 568
    model_precision_ =
        paddle::inference::GetModelPrecision(*inference_program_);
569 570 571 572 573
    OptimizeInferenceProgram();
  } else {
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
    inference_program_ = program;
574 575 576 577 578
    if (config_.apply_optim_) {
      VLOG(3)
          << "apply_optim is enabled, will call OptimizeInferenceProgram().";
      OptimizeInferenceProgram();
    }
579 580 581 582 583 584
  }
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);
  return true;
}

bool AnalysisPredictor::CreateExecutor() {
585 586 587
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
W
wenbin 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

static bool IsPrepareDataOptTargetOp(framework::OpDesc *op) {
  // here is prepare data optimization related bad cases:
  // let's assume an op behind conditional_block and if conditional_block
  // chooses branch 1, the op need to call prepare data. else the op don't need
  // to call prepare data. In running, if predictor chooses branch 2, then
  // optimization takes effect, later issue is followed if predictor chooses
  // branch 1, because the op lost chance to prepare data.
  std::vector<std::string> op_type = {"conditional_block_infer",
                                      "select_input"};
  for (const auto &type : op_type) {
    if (op->Type() == type) {
      return true;
    }
  }
  return false;
}

static void DisablePrepareDataOpt(
C
ccrrong 已提交
607 608
    std::shared_ptr<framework::ProgramDesc> inference_program,
    int block,
W
wenbin 已提交
609 610 611 612 613 614 615 616 617
    bool pre_disable_opt) {
  bool disable_opt = false;
  auto &infer_block = inference_program->Block(block);
  for (auto *op : infer_block.AllOps()) {
    if (disable_opt || pre_disable_opt) {
      op->SetAttr("inference_force_prepare_data", true);
    }
    if (op->HasAttr("sub_block")) {
      int blockID = op->GetBlockAttrId("sub_block");
C
ccrrong 已提交
618 619
      DisablePrepareDataOpt(
          inference_program, blockID, disable_opt || pre_disable_opt);
W
wenbin 已提交
620 621
    }
    // disable prepare data if unfriendly op is found
W
wenbin 已提交
622 623 624
    if (!disable_opt) {
      disable_opt = IsPrepareDataOptTargetOp(op);
    }
W
wenbin 已提交
625 626 627
  }
}

628
bool AnalysisPredictor::PrepareExecutor() {
629
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
630 631 632 633 634
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "use_dist_model is enabled, will init FleetExecutor.";
    return PrepareFleetExecutor();
  }
#endif
W
wenbin 已提交
635 636
  DisablePrepareDataOpt(inference_program_, 0, false);

C
ccrrong 已提交
637 638
  executor_->Prepare(
      sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_);
639

640 641 642 643 644 645 646 647 648
  if (config_.enable_memory_optim_) {
    auto *pass_res_info =
        inference::analysis::PassResultInfoForRuntime::Instance();
    auto reuse_table =
        pass_res_info->Get<std::unordered_map<std::string, std::string>>(
            root_predictor_id_, "memory_optimize_pass");
    executor_->MakeReusePlan(reuse_table);
  }

649 650 651
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
652

653 654 655
  return true;
}

656
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
bool AnalysisPredictor::PrepareFleetExecutor() {
  VLOG(3) << "AnalysisPredictor::PrepareFleetExecutor()";
  if (config_.dist_config().nranks() > 1 && !CommInit()) {
    return false;
  }
  task_node_.reset(new distributed::TaskNode(inference_program_.get(),
                                             config_.dist_config().rank()));
  // With auto cut, there is no concept of pp, no need to add dependency.
  task_node_->SetType("Compute");
  task_node_->Init(config_.use_feed_fetch_ops_enabled());
  executor_desc_ = distributed::FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.dist_config().rank());
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.dist_config().nranks(); ++i) {
    distributed::RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.dist_config().trainer_endpoints()[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe_.reset(new distributed::FleetExecutor(executor_desc_));
  // NOTE: Vars of feed fetch ops are not persistable,
  // which will result in that those vars will be created in
  // the subscope (microscope) in fleet executor. This will
  // cause that the GetInputTensor/GetOutputTensor funct
  // in analysis predictor cannot find those vars in the scope
  // returned by the DistModel, since DistModel only return the
  // root scope. So, those vars must  to be created in the root
  // scope instead of in the microscope
  std::vector<std::string> feed_fetch_vars;
  for (auto pair : idx2feeds_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  for (auto pair : idx2fetches_) {
    feed_fetch_vars.emplace_back(pair.second);
  }
  fleet_exe_->Init(config_.dist_config().carrier_id(),
C
ccrrong 已提交
693 694 695 696 697 698 699
                   *(inference_program_.get()),
                   scope_.get(),
                   place_,
                   1,
                   {task_node_.get()},
                   id_to_rank,
                   feed_fetch_vars);
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
  return true;
}

bool AnalysisPredictor::CommInit() {
  std::map<int64_t, std::vector<int64_t>> ring_id_to_ranks{};
  std::map<int64_t, std::vector<int64_t>> rank_to_ring_ids{};
  if (!LoadConverterConfig(&ring_id_to_ranks, &rank_to_ring_ids)) {
    VLOG(3) << "Load converter config failed, DistModel init failed.";
    return false;
  }
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
  std::vector<int64_t> &ring_ids =
      rank_to_ring_ids[config_.dist_config().rank()];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = ring_id_to_ranks[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = ring_id_to_ranks[ring_id];
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        break;
      }
      rank_in_group += 1;
    }
    std::vector<std::string> peer_endpoints;
    for (int64_t rank : ranks) {
      if (config_.dist_config().rank() == rank) {
        continue;
      }
      peer_endpoints.emplace_back(
          config_.dist_config().trainer_endpoints()[rank]);
    }
C
ccrrong 已提交
736 737 738 739 740 741
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
742 743 744 745 746 747 748 749 750 751 752
    order += 1;
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
  return true;
}

void AnalysisPredictor::InsertCommOp(
C
ccrrong 已提交
753 754 755 756 757
    std::string tmp_var_name,
    int nranks,
    int rank,
    const std::vector<std::string> &peer_endpoints,
    framework::BlockDesc *block,
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
    int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  const std::string &endpoint = config_.dist_config().current_endpoint();
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.use_gpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
  } else if (config_.use_xpu()) {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_bkcl_id_op = block->AppendOp();
    gen_bkcl_id_op->SetType("c_gen_bkcl_id");
    gen_bkcl_id_op->SetOutput("Out", {tmp_var_name});
    gen_bkcl_id_op->SetAttr("rank", rank);
    gen_bkcl_id_op->SetAttr("endpoint",
                            config_.dist_config().current_endpoint());
    gen_bkcl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_bkcl_id_op->SetAttr("ring_id", ring_id);
    gen_bkcl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_bkcl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
825 826 827 828 829 830 831 832 833 834 835 836 837
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

bool AnalysisPredictor::LoadConverterConfig(
    std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
    std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids) {
  VLOG(3) << "Going to load converter config from: "
          << config_.dist_config().comm_init_config() << "\n";
  std::ifstream fin(config_.dist_config().comm_init_config(), std::ios::in);
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
838 839
      static_cast<bool>(fin.is_open()),
      true,
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          config_.dist_config().comm_init_config()));
  std::string line;
  bool ring_to_rank{true};
  // Reading config from file, the config file should like these format
  //  [ring_id -> ranks]
  //  0,0,1,2,3
  //  1,0,1
  //  2,2,3
  //  21,0,1
  //  22,1,2
  //  23,2,3
  //  [rank -> ring_ids]
  //  0,0,1,21
  //  1,0,1,21,22
  //  2,0,2,22,23
  //  3,0,2,23
  while (std::getline(fin, line)) {
    std::vector<std::string> one_line = paddle::string::Split(line, ',');
    if (one_line.size() == 1) {
      // start a new section of the config
      if (line == "[ring_id -> ranks]") {
        ring_to_rank = true;
      } else if (line == "[rank -> ring_ids]") {
        ring_to_rank = false;
      }
    } else {
      // parse key - values pairs in one section
      int64_t key = std::stoll(one_line[0]);
      for (size_t i = 1; i < one_line.size(); ++i) {
        int64_t val = std::stoll(one_line[i]);
        if (ring_to_rank) {
          if (ring_id_to_ranks->find(key) == ring_id_to_ranks->end()) {
            ring_id_to_ranks->insert({key, std::vector<int64_t>()});
          }
          ring_id_to_ranks->at(key).emplace_back(val);
        } else {
          if (rank_to_ring_ids->find(key) == rank_to_ring_ids->end()) {
            rank_to_ring_ids->insert({key, std::vector<int64_t>()});
          }
          rank_to_ring_ids->at(key).emplace_back(val);
        }
        // NOTE: add more configuration sections here
      }
    }
  }
  std::stringstream ss;
  ss << "Loaded the following converter config:\n";
  ss << "ring_id_to_ranks:\n";
  for (auto pair : *ring_id_to_ranks) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  ss << "rank_to_ring_ids:\n";
  for (auto pair : *rank_to_ring_ids) {
    int64_t key = pair.first;
    ss << "\t" << key << "\t->\t";
    for (auto value : pair.second) {
      ss << value << "\t";
    }
    ss << "\n";
  }
  VLOG(3) << ss.str();
  return true;
}
#endif

912 913
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
914 915 916 917 918 919 920 921
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

922 923 924 925 926 927 928 929 930 931 932
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<paddle::Tensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(phi::vectorize<int>(inputs[i].dims()));
  }
  MkldnnPreSet(inputs_shape);
#endif
}

W
Wilber 已提交
933 934 935 936
void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
937
          << phi::OneDNNContext::tls().get_cur_mkldnn_session_id();
938 939 940
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
941 942
    phi::OneDNNContext::tls().set_cur_mkldnn_session_id(
        phi::OneDNNContextThreadLocals::kMKLDNNSessionID_CacheClearing);
943 944
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
945 946 947
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
948 949 950
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
951
    phi::OneDNNContext::tls().set_cur_input_shape_str(ss.str());
952
  }
953
  phi::OneDNNContext::tls().set_cur_input_shape_cache_capacity(
954 955
      config_.mkldnn_cache_capacity_);

956 957 958 959 960 961
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
962
  if (config_.mkldnn_cache_capacity_ > 0 &&
963
      static_cast<phi::OneDNNContext *>(
964 965
          (&platform::DeviceContextPool::Instance())->Get(platform::CPUPlace()))
              ->GetCachedObjectsNumber() > 0) {
966
    if (VLOG_IS_ON(2)) {
967
      auto shape_blob_size = static_cast<phi::OneDNNContext *>(
968 969 970 971 972 973
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
974 975 976
    // We cannot reset to the default cache settings
    // as there maybe CopyToCPU method used and oneDNN
    // primitives are used there so cache would grow
977 978 979 980
  }
#endif
}

981 982 983
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
984
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
985 986 987
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
988
  VLOG(3) << "Predictor::predict";
989 990 991 992
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
C
ccrrong 已提交
993 994 995
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
996 997
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
998
    return false;
999
  }
M
Michal Gallus 已提交
1000

1001 1002 1003 1004 1005 1006 1007 1008 1009
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1010 1011 1012
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
1013

1014 1015 1016 1017
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
1018
  }
Y
Yan Chunwei 已提交
1019

M
minqiyang 已提交
1020
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
1021

Y
Yan Chunwei 已提交
1022 1023 1024 1025 1026
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
1027 1028 1029
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
1030
  tensor_array_batch_cleaner_.ResetNoTensorVars();
1031 1032 1033 1034

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
1035 1036
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
1037
#endif
1038
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
1039 1040 1041 1042
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
1043
#endif
1044 1045
  return true;
}
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
bool AnalysisPredictor::Run(const std::vector<paddle::Tensor> &inputs,
                            std::vector<paddle::Tensor> *outputs) {
  inference::DisplayMemoryInfo(place_, "before run");
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
  VLOG(3) << "predict start";
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::PreconditionNotMet("The scope should not be nullptr."));
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();

  inference::DisplayMemoryInfo(place_, "after run");

  // get fetch variable
  if (!GetFetch(outputs, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
  }

  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
  tensor_array_batch_cleaner_.ResetNoTensorVars();

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
#if defined(PADDLE_WITH_MKLML)
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
  return true;
}

1111 1112
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
1113
  VLOG(3) << "Predictor::set_feed";
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
1124
    phi::DenseTensor *input = &feed_tensors_[i];
1125
    if (!PaddleTensorToDenseTensor(inputs[i], input, place_)) {
1126 1127 1128
      return false;
    }
    int idx = -1;
1129
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
1130 1131
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
1132 1133
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
1134 1135
      }
      idx = feed_names_[name];
1136
    } else {
R
Ruibiao Chen 已提交
1137
      idx = PADDLE_GET_CONST(int, feeds_[i]->GetAttr("col"));
1138
    }
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    framework::SetFeedVariable(scope, *input, framework::kFeedOpType, idx);
  }
  return true;
}

bool AnalysisPredictor::SetFeed(const std::vector<paddle::Tensor> &inputs,
                                framework::Scope *scope) {
  VLOG(3) << "Predictor::set_feed";
  PADDLE_ENFORCE_EQ(inputs.size(),
                    feeds_.size(),
                    platform::errors::InvalidArgument(
                        "wrong feed input size, need %d but get %d.",
                        feeds_.size(),
                        inputs.size()));
  for (size_t i = 0; i < inputs.size(); ++i) {
    PADDLE_ENFORCE_EQ(inputs[i].initialized(),
                      true,
                      paddle::platform::errors::InvalidArgument(
                          "The input Tensor expected to be initialized."));
  }

  if (std::all_of(inputs.cbegin(), inputs.cend(), [&](const paddle::Tensor &t) {
        return !t.name().empty() && feed_names_.count(t.name());
      })) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, inputs[i].name());
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
  } else {
    for (size_t i = 0; i < inputs.size(); ++i) {
      auto &t = framework::GetVariableTensor(*scope, idx2feeds_[i]);
      t.ShareDataWith(
          *std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl()));
    }
1174 1175 1176 1177 1178
  }
  return true;
}

template <typename T>
1179
void AnalysisPredictor::GetFetchOne(const phi::DenseTensor &fetch,
1180 1181
                                    PaddleTensor *output) {
  // set shape.
1182
  auto shape = phi::vectorize(fetch.dims());
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
1200
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
1201 1202
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
1203
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
1204
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1205 1206
        static_cast<size_t>(idx),
        i,
1207
        platform::errors::InvalidArgument(
C
ccrrong 已提交
1208 1209
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
1210
            i));
1211
    framework::FetchType &fetch_var =
1212
        framework::GetFetchVariable(*scope, framework::kFetchOpType, idx);
1213
    auto &fetch = PADDLE_GET(phi::DenseTensor, fetch_var);
1214
    auto type = framework::TransToProtoVarType(fetch.dtype());
1215
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
1216
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
1217
    if (type == framework::proto::VarType::FP32) {
1218 1219
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
1220
    } else if (type == framework::proto::VarType::INT64) {
1221 1222
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
1223 1224 1225
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
1226 1227 1228
    } else if (type == framework::proto::VarType::FP16) {
      GetFetchOne<float16>(fetch, output);
      output->dtype = PaddleDType::FLOAT16;
1229
    } else {
1230 1231
      LOG(ERROR) << "unknown type, only support float32, float16, int64 and "
                    "int32 now.";
1232 1233
    }
  }
Y
Yan Chunwei 已提交
1234 1235
  return true;
}
1236

1237 1238 1239 1240 1241 1242 1243
bool AnalysisPredictor::GetFetch(std::vector<paddle::Tensor> *outputs,
                                 framework::Scope *scope) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    auto const &name = idx2fetches_[i];
    auto &t = framework::GetVariableTensor(*scope, name);
Y
Yuanle Liu 已提交
1244
    (*outputs)[i] = paddle::Tensor(std::make_shared<phi::DenseTensor>(t), name);
1245 1246 1247 1248
  }
  return true;
}

1249
void AnalysisPredictor::PrepareArgument() {
1250
  VLOG(3) << "AnalysisPredictor::PrepareArgument";
1251 1252 1253
  // Init std::unique_ptr argument_.
  argument_.reset(new Argument);
  argument_->SetUseGPU(config_.use_gpu());
1254
  argument_->SetUseCutlass(config_.use_cutlass_);
1255 1256 1257 1258 1259
  argument_->SetUseFcPadding(config_.use_fc_padding());
  argument_->SetGPUDeviceId(config_.gpu_device_id());
  argument_->SetEnableIrOptim(config_.enable_ir_optim_);
  argument_->SetEnableMemoryOptim(config_.enable_memory_optim());
  argument_->SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
1260
  // Analyze inference_program
1261 1262 1263
  argument_->SetPredictorID(predictor_id_);
  argument_->SetRootPredictorID(root_predictor_id_);
  argument_->SetOptimCacheDir(config_.opt_cache_dir_);
1264
  if (!config_.model_dir().empty()) {
1265
    argument_->SetModelDir(config_.model_dir());
T
Tao Luo 已提交
1266
  } else {
C
ccrrong 已提交
1267 1268
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(),
                      false,
1269 1270
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
1271

1272 1273
    argument_->SetModelProgramPath(config_.prog_file());
    argument_->SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
1274
  }
1275
  // For JITLayer
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
  argument_->SetSkipLoadParams(config_.skip_load_params_);

  argument_->SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
  argument_->SetTensorRtUseOSS(config_.trt_use_varseqlen_);
  argument_->SetTensorRtWithInterleaved(config_.trt_with_interleaved_);
  argument_->SetTensorRtTransformerPosid(config_.tensorrt_transformer_posid_);
  argument_->SetTensorRtTransformerMaskid(config_.tensorrt_transformer_maskid_);
  argument_->SetMinInputShape(config_.min_input_shape_);
  argument_->SetMaxInputShape(config_.max_input_shape_);
  argument_->SetOptimInputShape(config_.optim_input_shape_);
  argument_->SetTensorRtTunedDynamicShape(
1287
      config_.tuned_tensorrt_dynamic_shape());
1288
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
1289
    LOG(INFO) << "TensorRT subgraph engine is enabled";
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    argument_->SetUseTensorRT(true);
    argument_->SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_->SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
    argument_->SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
    argument_->SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
    argument_->SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_->SetTensorRtDLACore(config_.trt_dla_core_);
    argument_->SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
    argument_->SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
    argument_->SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
    argument_->SetTensorRtShapeRangeInfoPath(config_.shape_range_info_path());
    argument_->SetTensorRtAllowBuildAtRuntime(
1302
        config_.trt_allow_build_at_runtime());
1303 1304
    argument_->SetTensorRtUseInspector(config_.trt_use_inspector_);
    argument_->SetTrtEngineMemorySharing(config_.trt_engine_memory_sharing());
W
Wojciech Uss 已提交
1305
  }
1306

D
denglin-github 已提交
1307 1308
  if (config_.dlnne_enabled()) {
    LOG(INFO) << "Dlnne subgraph is enabled";
1309 1310 1311 1312 1313 1314
    argument_->SetUseDlnne(true);
    argument_->SetDlnneMinSubgraphSize(config_.dlnne_min_subgraph_size_);
    argument_->SetDlnneMaxBatchSize(config_.dlnne_max_batchsize_);
    argument_->SetDlnneUseStaticBatch(config_.dlnne_use_static_batch_);
    argument_->SetDlnneWeightShareMode(config_.dlnne_weight_share_mode_);
    argument_->SetDlnneDisableNodesByOutputs(
D
denglin-github 已提交
1315
        config_.dlnne_disable_nodes_by_outputs_);
1316 1317 1318
    argument_->SetDlnneInputShapeDict(config_.dlnne_input_shape_dict_);
    argument_->SetDlnneUseCalibMode(config_.dlnne_use_calib_mode_);
    argument_->SetDlnnePrecisionMode(config_.dlnne_precision_mode_);
D
denglin-github 已提交
1319 1320
  }

Z
zhupengyang 已提交
1321
  argument_->SetUseXpu(config_.use_xpu_);
石晓伟 已提交
1322
  if (config_.lite_engine_enabled()) {
1323
    argument_->SetCpuMathLibraryNumThreads(
W
Wilber 已提交
1324
        config_.cpu_math_library_num_threads());
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    argument_->SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_->SetLitePassesFilter(config_.lite_passes_filter_);
    argument_->SetLiteOpsFilter(config_.lite_ops_filter_);
    argument_->SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
    argument_->SetXpuLocked(config_.xpu_locked_);
    argument_->SetXpuAutotune(config_.xpu_autotune_);
    argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_);
    argument_->SetXpuPrecision(config_.xpu_precision_);
    argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
    argument_->SetXpuDeviceId(config_.xpu_device_id_);
    argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
    argument_->SetUseOpenCL(config_.use_opencl_);
1338
    // NNAdapter related
1339 1340
    argument_->SetUseNNAdapter(config_.NNAdapter().use_nnadapter);
    argument_->SetNNAdapterDeviceNames(
1341
        config_.NNAdapter().nnadapter_device_names);
1342
    argument_->SetNNAdapterContextProperties(
1343
        config_.NNAdapter().nnadapter_context_properties);
1344
    argument_->SetNNAdapterModelCacheDir(
1345
        config_.NNAdapter().nnadapter_model_cache_dir);
1346
    argument_->SetNNAdapterSubgraphPartitionConfigBuffer(
1347
        config_.NNAdapter().nnadapter_subgraph_partition_config_buffer);
1348
    argument_->SetNNAdapterSubgraphPartitionConfigPath(
1349 1350 1351 1352 1353 1354 1355
        config_.NNAdapter().nnadapter_subgraph_partition_config_path);
    std::vector<std::string> buffer_keys;
    std::vector<std::vector<char>> buffer_vals;
    for (auto it : config_.NNAdapter().nnadapter_model_cache_buffers) {
      buffer_keys.emplace_back(it.first);
      buffer_vals.emplace_back(it.second);
    }
1356 1357
    argument_->SetNNAdapterModelCacheToken(buffer_keys);
    argument_->SetNNAdapterModelCacheBuffer(buffer_vals);
石晓伟 已提交
1358 1359 1360
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

1361
#ifdef PADDLE_WITH_IPU
1362 1363 1364 1365 1366 1367 1368 1369
  argument_->SetUseIpu(config_.use_ipu_);
  argument_->SetIpuDeviceNum(config_.ipu_device_num());
  argument_->SetIpuMicroBatchSize(config_.ipu_micro_batch_size_);
  argument_->SetIpuEnablePipelining(config_.ipu_enable_pipelining_);
  argument_->SetIpuBatchesPerStep(config_.ipu_batches_per_step_);
  argument_->SetIpuEnableFp16(config_.ipu_enable_fp16_);
  argument_->SetIpuReplicaNum(config_.ipu_replica_num_);
  argument_->SetIpuAvailableMemoryProportion(
1370
      config_.ipu_available_memory_proportion_);
1371 1372
  argument_->SetIpuEnableHalfPartial(config_.ipu_enable_half_partial_);
  argument_->SetIpuEnableModelRuntimeExecutor(
1373
      config_.ipu_enable_model_runtime_executor_);
1374 1375
  argument_->SetIpuCustomOpsInfo(config_.ipu_custom_ops_info_);
  argument_->SetIpuCustomPatterns(config_.ipu_custom_patterns_);
1376
#endif
J
jianghaicheng 已提交
1377

1378 1379
  argument_->SetUseNpu(config_.use_npu_);
  argument_->SetNPUDeviceId(config_.npu_device_id());
1380

1381
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
1382
    LOG(INFO) << "MKLDNN is enabled";
1383
    argument_->SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
1384 1385
  }

1386
  if (config_.use_cinn_compiler_) {
1387
    argument_->SetUseCinnCompiler(config_.use_cinn_compiler_);
1388 1389
  }

1390 1391 1392
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
1393
    argument_->SetQuantizeEnabledOpTypes(
1394
        config_.mkldnn_quantizer_config()->enabled_op_types());
1395
    argument_->SetQuantizeExcludedOpIds(
1396 1397
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
1398 1399
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
1400
    argument_->SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
1401
  }
B
baoachun 已提交
1402 1403 1404

  if (config_.use_mkldnn_int8_) {
    LOG(INFO) << "Int8 is enabled";
1405 1406 1407
    argument_->SetQuantizeEnabledOpTypes(config_.quantize_enabled_op_types_);
    argument_->SetQuantizeExcludedOpIds(config_.quantize_excluded_op_ids_);
    argument_->SetQuantVarScales({});
B
baoachun 已提交
1408
  }
1409 1410
#endif

1411
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1412
  argument_->SetUseCustomDevice(config_.use_custom_device());
1413 1414
  if (config_.use_custom_device()) {
    LOG(INFO) << "CustomDevice is enabled";
1415 1416
    argument_->SetCustomDeviceType(config_.custom_device_type());
    argument_->SetCustomDeviceId(config_.custom_device_id());
1417 1418
  }
#endif
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
#ifdef PADDLE_WITH_XPU
  argument_->SetUseXpu(config_.use_xpu_);
  argument_->SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
  argument_->SetXpuLocked(config_.xpu_locked_);
  argument_->SetXpuAutotune(config_.xpu_autotune_);
  argument_->SetXpuAutotuneFile(config_.xpu_autotune_file_);
  argument_->SetXpuPrecision(config_.xpu_precision_);
  argument_->SetXpuAdaptiveSeqlen(config_.xpu_adaptive_seqlen_);
  argument_->SetXpuDeviceId(config_.xpu_device_id_);
  argument_->SetXpuEnableMultiStream(config_.xpu_enable_multi_stream_);
Z
zhupengyang 已提交
1429 1430 1431 1432
  argument_->SetXpuQuantPostDynamicWeightBits(
      config_.xpu_quant_post_dynamic_weight_bits_);
  argument_->SetXpuQuantPostDynamicOpTypss(
      config_.xpu_quant_post_dynamic_op_types_);
1433 1434
#endif

1435
  auto *pass_builder = config_.pass_builder();
1436 1437
  // TODO(inference): Need to reconstruct the pass_builder, pass should be
  // processed in a single
1438 1439
  if (model_precision_ != phi::DataType::FLOAT32) {
    LOG(INFO) << "Model is mixed precision type with " << model_precision_
Z
zhupengyang 已提交
1440
              << ", we will use a new PassStrategy. Note that only GPU/XPU "
1441
                 "backend is supported for now.";
1442 1443 1444
    if (!config_.use_cinn_compiler_) {
      const auto &deleted_passes = pass_builder->GetAllDeletedPasses();
      if (config_.tensorrt_engine_enabled()) {
1445
        pass_builder->ClearPasses();
1446 1447 1448 1449 1450
        for (const auto &pass : kTrtLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
      } else if (config_.use_gpu()) {
1451
        pass_builder->ClearPasses();
1452 1453 1454 1455
        for (const auto &pass : kGpuLowerPrecisionPasses) {
          if (deleted_passes.count(pass)) continue;
          pass_builder->AppendPass(pass);
        }
1456 1457 1458 1459
      } else if (config_.use_xpu()) {
        // All passes support fp16. Not reset pass_builder.
      } else {
        pass_builder->ClearPasses();
1460 1461 1462
      }
    }
  }
1463

Y
Yan Chunwei 已提交
1464
  if (!config_.ir_optim()) {
1465
    argument_->SetEnableIrOptim(false);
1466
    if (config_.enable_gpu_mixed_) {
1467
      argument_->SetEnableIrOptim(true);
1468
      pass_builder->ClearPasses();
1469
      pass_builder->AppendPass("auto_mixed_precision_pass");
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
      LOG(INFO)
          << "This model run in Paddle-GPU mixed precision mode with no ir "
             "optimization.";
    } else {
      LOG(INFO) << "ir_optim is turned off, no IR pass will be executed.";
    }
  } else {
    if (config_.ir_debug_) {
      pass_builder->TurnOnDebug();
    }
1480
    if (config_.enable_gpu_mixed_) {
1481 1482
      LOG(INFO) << "This model run in Paddle-GPU mixed precision mode.";
    }
Y
Yan Chunwei 已提交
1483
  }
1484 1485 1486 1487 1488 1489 1490 1491 1492

  argument_->SetEnableCustomDeviceMixed(config_.enable_custom_device_mixed());
  if (config_.enable_custom_device_mixed_) {
    argument_->SetEnableIrOptim(true);
    pass_builder->ClearPasses();
    pass_builder->AppendPass("auto_mixed_precision_pass");
    LOG(INFO) << "This model run in Custom Device mixed precision mode.";
  }

1493 1494 1495 1496
  argument_->SetDisableLogs(config_.glog_info_disabled());
  argument_->SetIrAnalysisPasses(pass_builder->AllPasses());
  argument_->SetAnalysisPasses(pass_builder->AnalysisPasses());
  argument_->SetScopeNotOwned(scope_.get());
1497

1498
  // mixed precison.
1499 1500 1501 1502
  argument_->SetModelPrecision(static_cast<int>(model_precision_));
  argument_->SetMixedBlackList(config_.mixed_black_list_);
  argument_->SetEnableGPUMixed(config_.enable_gpu_mixed_);
  argument_->SetMixedPrecisionMode(static_cast<int>(
1503
      paddle::ConvertPrecision(config_.mixed_precision_mode_)));
1504 1505 1506 1507 1508
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
1509 1510 1511 1512 1513 1514 1515 1516
#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif
1517
  Analyzer().Run(argument_.get());
1518
  PADDLE_ENFORCE_EQ(
1519
      argument_->scope_valid(),
C
ccrrong 已提交
1520
      true,
1521
      platform::errors::InvalidArgument("The argument scope should be valid."));
1522
  VLOG(5) << "to prepare executor";
1523
  ARGUMENT_CHECK_FIELD((argument_.get()), ir_analyzed_program);
Y
Yan Chunwei 已提交
1524
  inference_program_.reset(
1525
      new framework::ProgramDesc(argument_->ir_analyzed_program()),
1526 1527 1528
      [](framework::ProgramDesc *prog) {
// Note, please do NOT use any member variables, because member variables may
// have been destructed in multiple threads.
1529
#ifdef PADDLE_WITH_TENSORRT
W
Wilber 已提交
1530 1531 1532 1533
        auto &block = prog->Block(0);
        for (auto &op_desc : block.AllOps()) {
          if (op_desc->Type() == "tensorrt_engine") {
            std::string engine_key =
R
Ruibiao Chen 已提交
1534
                PADDLE_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
W
Wilber 已提交
1535
            int engine_predictor_id =
R
Ruibiao Chen 已提交
1536
                PADDLE_GET_CONST(int, op_desc->GetAttr("predictor_id"));
W
Wilber 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
            std::string engine_name =
                engine_key + std::to_string(engine_predictor_id);
            if (paddle::inference::Singleton<
                    inference::tensorrt::TRTEngineManager>::Global()
                    .Has(engine_name)) {
              paddle::inference::Singleton<
                  inference::tensorrt::TRTEngineManager>::Global()
                  .DeleteKey(engine_name);
            }
          }
        }
1548 1549 1550
#endif
        delete prog;
      });
1551 1552 1553
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  config_.PartiallyRelease();
X
xiaoxiaohehe001 已提交
1554
#if defined(PADDLE_WITH_TESTING)
1555
  fusion_statis_ = *argument_->fusion_statis_ptr();
X
xiaoxiaohehe001 已提交
1556 1557
#endif

1558 1559 1560
#if defined(_WIN32)
  argument_->PartiallyRelease();
#else
X
xiaoxiaohehe001 已提交
1561 1562 1563
  if (config_.mkldnn_enabled() ||
      (config_.tensorrt_engine_enabled() &&
       config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8)) {
1564 1565 1566 1567 1568
    argument_->PartiallyRelease();
  } else {
    argument_.reset(nullptr);
  }
#endif
1569
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
1570
}
1571 1572

template <>
1573 1574 1575
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
    const AnalysisConfig &config) {
1576
  PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
1577 1578
      config.is_valid(),
      true,
1579 1580
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
1581

1582 1583 1584 1585
  // Register custom operators compiled by the user.
  // This function can only be executed once per process.
  static std::once_flag custom_operators_registered;
  std::call_once(custom_operators_registered,
1586
                 []() { inference::RegisterAllCustomOperator(); });
1587

1588 1589 1590 1591 1592 1593
  auto SetGflags = [](const AnalysisConfig &config) {
    auto SetGflag = [](const char *name, const char *value) {
      std::string ret = ::GFLAGS_NAMESPACE::SetCommandLineOption(name, value);
      PADDLE_ENFORCE_EQ(
          ret.empty(),
          false,
1594
          platform::errors::InvalidArgument(
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
              "Fail to set gflag: %s, please make sure the gflag exists.",
              name));
      VLOG(3) << "set gflag: --" << name << "=" << value;
    };
    // TODO(NHZlX): Should add the link to the doc of
    // paddle_infer::CreatePredictor<paddle_infer::Config>
    if (config.glog_info_disabled()) {
      FLAGS_logtostderr = 1;
      FLAGS_minloglevel = 2;  // GLOG_ERROR
    }
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    if (config.use_gpu()) {
      static std::once_flag gflags_initialized;
      static bool process_level_allocator_enabled;

      std::call_once(gflags_initialized, [&]() {
        PADDLE_ENFORCE_GE(
            config.memory_pool_init_size_mb(),
            0.f,
            platform::errors::InvalidArgument(
                "The size of memory pool should be greater than 0."));
        PADDLE_ENFORCE_GE(config.gpu_device_id(),
                          0,
                          platform::errors::InvalidArgument(
                              "Invalid device id (%d). The device id should be "
                              "greater than 0.",
                              config.gpu_device_id()));

        float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
        if (fraction_of_gpu_memory > 0.95f) {
          LOG(ERROR)
              << "Allocate too much memory for the GPU memory pool, assigned "
              << config.memory_pool_init_size_mb() << " MB";
          LOG(ERROR) << "Try to shink the value by setting "
                        "AnalysisConfig::EnableUseGpu(...)";
        }
        if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
          std::string value = std::to_string(fraction_of_gpu_memory);
          SetGflag("fraction_of_gpu_memory_to_use", value.data());
        }
1635

1636 1637 1638 1639 1640 1641 1642 1643
        // TODO(Shixiaowei02): Add a mandatory scheme to use the thread local
        // allocator when multi-stream is enabled.
        if (config.thread_local_stream_enabled()) {
          SetGflag("allocator_strategy", "thread_local");
          process_level_allocator_enabled = false;
        } else {
          process_level_allocator_enabled = true;
        }
1644

1645 1646 1647
        // for inference, the following default values are better.
        if (std::getenv("FLAGS_conv_workspace_size_limit") == nullptr) {
          SetGflag("conv_workspace_size_limit", "32");
1648
        }
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        if (std::getenv("FLAGS_initial_cpu_memory_in_mb") == nullptr) {
          SetGflag("initial_cpu_memory_in_mb", "0");
        }
      });

      if (config.thread_local_stream_enabled() &&
          process_level_allocator_enabled) {
        PADDLE_THROW(platform::errors::Fatal(
            "When binding threads and streams, the use of "
            "process-level allocators will result in undefined result "
            "errors due to memory asynchronous operations."
            "The thread and stream binding configuration of all "
            "predictors should be the same in a single process."));
1662
      }
1663
    }
1664 1665 1666 1667
  };
  SetGflags(config);

  VLOG(3) << "create AnalysisPredictor";
1668 1669

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
1670 1671
  // Each config can only be used for one predictor.
  config.SetInValid();
1672 1673
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

1674 1675 1676 1677
#ifdef PADDLE_WITH_TENSORRT
  paddle::framework::ir::patterns::KeyCounter::Instance().CleanCounter();
#endif

1678 1679 1680 1681 1682
  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
1683 1684
    return nullptr;
  }
1685

G
Gabor Buella 已提交
1686
  return predictor;
1687 1688
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

1701
void AnalysisPredictor::PrepareFeedFetch() {
1702 1703 1704
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
1705
  CreateFeedFetchVar(sub_scope_);
1706
  for (auto *op : inference_program_->Block(0).AllOps()) {
1707
    if (op->Type() == framework::kFeedOpType) {
R
Ruibiao Chen 已提交
1708
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
1709 1710 1711 1712 1713
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
1714
      idx2feeds_[idx] = op->Output("Out")[0];
1715
    } else if (op->Type() == framework::kFetchOpType) {
R
Ruibiao Chen 已提交
1716
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
1717 1718
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
1719
      }
Y
Yan Chunwei 已提交
1720
      fetches_[idx] = op;
N
nhzlx 已提交
1721
      idx2fetches_[idx] = op->Input("X")[0];
1722 1723 1724 1725
    }
  }
}

1726
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
C
ccrrong 已提交
1727 1728 1729
  PADDLE_ENFORCE_NOT_NULL(
      scope,
      platform::errors::InvalidArgument("The scope should not be nullptr."));
1730
  auto *var = scope->Var(framework::kFeedOpType);
1731
  var->GetMutable<framework::FeedList>();
1732
  var = scope->Var(framework::kFetchOpType);
1733
  var->GetMutable<framework::FetchList>();
1734 1735
}

N
nhzlx 已提交
1736 1737 1738 1739 1740 1741 1742 1743
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

1744 1745 1746 1747 1748 1749
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
C
ccrrong 已提交
1750 1751 1752
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet("Input %s does not exist.", name));
1753 1754 1755 1756 1757
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetInputTypes() {
  std::map<std::string, paddle_infer::DataType> input_type;
  std::vector<std::string> names = GetInputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Input %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      input_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      input_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      input_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      input_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      input_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      input_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get input dtype ", dtype));
    }
  }
  return input_type;
}

N
nhzlx 已提交
1789 1790 1791 1792 1793 1794 1795 1796
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetOutputTensorShape() {
  std::map<std::string, std::vector<int64_t>> output_shapes;
  std::vector<std::string> names = GetOutputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::PreconditionNotMet(
                                "Output %s does not exist.", name));
    output_shapes[name] = var->GetShape();
  }
  return output_shapes;
}

std::map<std::string, paddle_infer::DataType>
AnalysisPredictor::GetOutputTypes() {
  std::map<std::string, paddle_infer::DataType> output_type;
  std::vector<std::string> names = GetOutputNames();
  for (const auto &name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::PreconditionNotMet(
            "Output %s does not exist inference_program_.", name));
    auto dtype = var->GetDataType();
    if (dtype == paddle::framework::proto::VarType::FP32) {
      output_type[name] = paddle_infer::DataType::FLOAT32;
    } else if (dtype == paddle::framework::proto::VarType::FP16) {
      output_type[name] = paddle_infer::DataType::FLOAT16;
    } else if (dtype == paddle::framework::proto::VarType::INT64) {
      output_type[name] = paddle_infer::DataType::INT64;
    } else if (dtype == paddle::framework::proto::VarType::INT32) {
      output_type[name] = paddle_infer::DataType::INT32;
    } else if (dtype == paddle::framework::proto::VarType::UINT8) {
      output_type[name] = paddle_infer::DataType::UINT8;
    } else if (dtype == paddle::framework::proto::VarType::INT8) {
      output_type[name] = paddle_infer::DataType::INT8;
    } else {
      PADDLE_THROW(paddle::platform::errors::Unimplemented(
          "Unsupported data type `%s` when get output dtype ", dtype));
    }
  }
  return output_type;
}

1842 1843
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
1844
  framework::Scope *scope;
1845
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1846 1847 1848
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1849
    scope = executor_->GetScope();
1850 1851
  }
#else
1852
  scope = executor_->GetScope();
1853
#endif
1854
  PADDLE_ENFORCE_NOT_NULL(
1855
      scope->FindVar(name),
1856
      platform::errors::PreconditionNotMet(
1857
          "The variable named %s is not found in the scope of the executor.",
1858
          name));
1859 1860
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1861 1862
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
1863 1864
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1865 1866 1867 1868
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1869
  } else if (platform::is_xpu_place(place_)) {
1870 1871 1872 1873 1874 1875 1876 1877
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1878
      auto xpu_place = place_;
1879 1880
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
1881 1882 1883 1884
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1885 1886
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1887 1888
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
1889
  } else {
1890
    auto gpu_place = place_;
N
nhzlx 已提交
1891 1892
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1893 1894 1895 1896 1897
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
1898
  framework::Scope *scope;
1899
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1900 1901 1902
  if (config_.dist_config().use_dist_model()) {
    scope = scope_.get();
  } else {
1903
    scope = executor_->GetScope();
1904 1905
  }
#else
1906
  scope = executor_->GetScope();
1907
#endif
1908
  PADDLE_ENFORCE_NOT_NULL(
1909
      scope->FindVar(name),
1910
      platform::errors::PreconditionNotMet(
1911
          "The variable named %s is not found in the scope of the executor.",
1912
          name));
1913 1914
  std::unique_ptr<ZeroCopyTensor> res(new ZeroCopyTensor(
      static_cast<void *>(scope), this->GetDeviceContexts()));
1915 1916
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
1917 1918
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
J
jianghaicheng 已提交
1919 1920 1921 1922
  } else if (platform::is_ipu_place(place_)) {
    // Currently, IPUPlace's tensor copy between cpu and ipu has been set in
    // IpuBackend.
    res->SetPlace(PaddlePlace::kCPU);
1923
  } else if (platform::is_xpu_place(place_)) {
1924 1925 1926 1927 1928 1929 1930 1931
    if (config_.lite_engine_enabled()) {
      // Currently, Paddle-Lite's XPU user interface only supports the transfer
      // of host data pointers. If it is currently used as a subgraph, execution
      // efficiency will be sacrificed, so it is temporarily set to cpu place.
      // And, the current lite engine of xpu must execute all parts of the
      // model.
      res->SetPlace(PaddlePlace::kCPU);
    } else {
1932
      auto xpu_place = place_;
1933 1934
      res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
    }
1935 1936 1937 1938
  } else if (platform::is_custom_place(place_)) {
    auto custom_place = place_;
    auto paddleplace = static_cast<PaddlePlace>(
        static_cast<size_t>(PaddlePlace::kCUSTOM) +
1939 1940
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(place_.GetDeviceType()));
1941 1942
    res->SetPlace(
        paddleplace, custom_place.GetDeviceId(), place_.GetDeviceType());
N
nhzlx 已提交
1943
  } else {
1944
    auto gpu_place = place_;
N
nhzlx 已提交
1945 1946
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
1947 1948 1949 1950
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
1951
  inference::DisplayMemoryInfo(place_, "before run");
1952
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
  if (config_.dist_config().use_dist_model()) {
    VLOG(3) << "ZeroCopyRun will use the fleet executor.";
    inference::Timer timer;
    timer.tic();
    fleet_exe_->Run(config_.dist_config().carrier_id());
    VLOG(3) << "Fleet executor inf runs once use: "
            << std::to_string(timer.toc()) << "ms";
    return true;
  }
#endif
1963 1964 1965
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(&device_contexts_);
  }
1966
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

#ifdef PADDLE_WITH_TENSORRT
  if (config_.tensorrt_engine_enabled()) {
    inference::tensorrt::TensorRTEngine::predictor_id_per_thread =
        predictor_id_;
    VLOG(3) << "thread_local var predictor_id in TensorRTEngine is set to: "
            << inference::tensorrt::TensorRTEngine::predictor_id_per_thread;
  }
#endif

1988
  executor_->Run();
1989
  inference::DisplayMemoryInfo(place_, "after run");
1990 1991 1992 1993 1994

  if (config_.shape_range_info_collected()) {
    CollectShapeRangeInfo();
  }

Y
Yan Chunwei 已提交
1995
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
1996
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
1997
  tensor_array_batch_cleaner_.ResetTensorArray();
1998 1999 2000 2001

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
2002 2003 2004
  if (private_context_) {
    paddle::platform::DeviceContextPool::SetDeviceContexts(nullptr);
  }
W
Wilber 已提交
2005 2006 2007
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
2008
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
2009 2010 2011 2012 2013
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
2014 2015 2016
  return true;
}

W
Wilber 已提交
2017 2018
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
W
Wilber 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
  if (!private_context_) {
    PADDLE_THROW(platform::errors::Fatal(
        "Please use config.SetExecStream to init gpu resources, and then we "
        "will bind gpu resources to execution stream."));
  }

  if (stream != predictor_stream_) {
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#else
    cudaStreamSynchronize(static_cast<gpuStream_t>(predictor_stream_));
#endif
    ResourceManager::Instance().GpuResourceReBindStream(predictor_stream_,
                                                        stream);
    predictor_stream_ = stream;

    auto *dev_ctxs = reinterpret_cast<const std::map<
        phi::Place,
        std::shared_future<std::unique_ptr<phi::DeviceContext>>> *>(
        this->GetDeviceContexts());
    auto *dev_ctx =
        static_cast<InferGPUContext *>(dev_ctxs->at(place_).get().get());
    dev_ctx->SetStream(stream);
  }

W
Wilber 已提交
2044 2045 2046 2047
  return ZeroCopyRun();
}
#endif

2048 2049
void AnalysisPredictor::CollectShapeRangeInfo() {
  // if use gpu, sync first.
2050 2051
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
2052 2053
  if (config_.use_gpu()) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2054 2055
    auto *dev_ctx = pool.Get(place_);
    auto stream = static_cast<phi::GPUContext *>(dev_ctx)->stream();
2056
#ifdef PADDLE_WITH_HIP
2057
    hipStreamSynchronize(stream);
2058
#else
2059
    cudaStreamSynchronize(stream);
2060 2061 2062 2063 2064 2065 2066
#endif
#endif
  }

  std::vector<std::string> var_names = sub_scope_->LocalVarNames();
  for (const auto &name : var_names) {
    auto *var = sub_scope_->GetVar(name);
2067
    if (!var->IsType<phi::DenseTensor>()) {
2068 2069
      continue;
    }
2070
    auto tensor = var->Get<phi::DenseTensor>();
2071
    if (!tensor.initialized()) continue;
2072
    framework::DDim dim = tensor.dims();
2073 2074 2075
    std::vector<int32_t> shape(dim.size());
    for (size_t i = 0; i < shape.size(); ++i) shape[i] = dim[i];
    shape_info_[name].emplace_back(shape);
2076 2077 2078 2079 2080 2081 2082

    // We need collect value range for shape tensor for Paddle-TRT's use.
    // To be noticed, this method to identify all shape tensors is based on
    // assumption that all shape tensors in the model have numbers <= 7.
    // This is a simple method to identify all shape tensors with some
    // mistakes, but it doesn't matter.
    auto is_shape_tensor = tensor.numel() <= 7 && tensor.numel() >= 1;
2083 2084
    if ((tensor.dtype() == phi::DataType::INT32 ||
         tensor.dtype() == phi::DataType::INT64) &&
2085 2086
        is_shape_tensor) {
      std::vector<int> int32_host(tensor.numel());
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

      if (platform::is_cpu_place(tensor.place())) {
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          auto *cpu_ctx = pool.Get(platform::CPUPlace());
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::CPUContext &>(*cpu_ctx),
              tensor,
              DataType::INT32);
        }
2097 2098 2099
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
                             platform::CPUPlace(),
2100 2101 2102
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int));
      } else if (platform::is_gpu_place(tensor.place())) {
2103
#if defined(PADDLE_WITH_CUDA)
2104 2105 2106 2107 2108 2109 2110 2111
        auto *dev_ctx = pool.Get(tensor.place());
        auto &int32_tensor = tensor;
        if (tensor.dtype() == phi::DataType::INT64) {
          int32_tensor = phi::funcs::TransDataType(
              reinterpret_cast<const phi::GPUContext &>(*dev_ctx),
              tensor,
              DataType::INT32);
        }
2112 2113
        paddle::memory::Copy(platform::CPUPlace(),
                             int32_host.data(),
2114 2115 2116
                             int32_tensor.place(),
                             int32_tensor.data<int>(),
                             int32_tensor.numel() * sizeof(int),
2117 2118 2119 2120 2121
                             nullptr);
#endif
      }
      shape_tensor_value_[name].emplace_back(int32_host);
    }
2122 2123 2124 2125 2126 2127 2128
  }
}

void AnalysisPredictor::StatisticShapeRangeInfo() {
  std::map<std::string, std::vector<int32_t>> min_shapes;
  std::map<std::string, std::vector<int32_t>> max_shapes;
  std::map<std::string, std::vector<int32_t>> opt_shapes;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
  std::map<std::string, std::vector<int32_t>> min_values;
  std::map<std::string, std::vector<int32_t>> max_values;
  std::map<std::string, std::vector<int32_t>> opt_values;

  auto extract_min_max_opt =
      [](std::map<std::string, std::vector<int32_t>> &min_data,
         decltype(min_data) max_data,
         decltype(min_data) opt_data,
         decltype(shape_info_) shape_data) {
        for (auto it : shape_data) {
          auto name = it.first;
          auto shapes = it.second;

          std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end());
          std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end());

          auto ShapeMaxFreq =
              [](const std::map<int32_t, int32_t> &m) -> int32_t {
            std::vector<std::pair<int32_t, int32_t>> counter;
            for (auto &it : m) counter.push_back(it);
            std::sort(counter.begin(),
                      counter.end(),
                      [](std::pair<int32_t, int32_t> &a,
                         std::pair<int32_t, int32_t> &b) {
                        return a.second > b.second;
                      });
            return counter[0].first;
          };

          for (size_t d = 0; d < shapes[0].size(); ++d) {
            std::map<int32_t, int32_t> counter;
            for (size_t i = 0; i < shapes.size(); ++i) {
              counter[shapes[i][d]] += 1;
              if (shapes[i][d] < min_shape[d]) min_shape[d] = shapes[i][d];
              if (shapes[i][d] > max_shape[d]) max_shape[d] = shapes[i][d];
            }
            opt_shape[d] = ShapeMaxFreq(counter);
          }
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
          min_data[name] = min_shape;
          max_data[name] = max_shape;
          opt_data[name] = opt_shape;
        }
      };
  extract_min_max_opt(min_shapes, max_shapes, opt_shapes, shape_info_);
  extract_min_max_opt(min_values, max_values, opt_values, shape_tensor_value_);

  inference::SerializeShapeRangeInfo(config_.shape_range_info_path(),
                                     min_shapes,
                                     max_shapes,
                                     opt_shapes,
                                     min_values,
                                     max_values,
                                     opt_values);
2184 2185
}

2186 2187
bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
2188
  std::string filename;
2189 2190
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
2191
  } else if (!config_.prog_file().empty()) {
2192 2193 2194
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
2195
    filename = config_.prog_file();
2196
  } else {
2197
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
2198 2199 2200 2201
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
2202
    LOG(ERROR) << string::Sprintf(
C
ccrrong 已提交
2203 2204
        "not valid model path '%s' or program path '%s'.",
        config_.model_dir(),
2205
        config_.params_file());
2206 2207
    return false;
  }
2208 2209 2210

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
2211
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
2212 2213 2214
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
2215
    PADDLE_ENFORCE_EQ(
C
ccrrong 已提交
2216 2217
        static_cast<bool>(fin.is_open()),
        true,
2218 2219 2220
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
2221 2222 2223 2224 2225 2226 2227 2228
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
2229
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
2230
  }
2231 2232 2233 2234 2235 2236
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
2237 2238
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

2260
      if (!config_.params_file().empty()) {
2261 2262 2263 2264 2265 2266
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
2267
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
2268 2269 2270 2271 2272
        op->CheckAttrs();
      }
    }
  }

2273
  if (!config_.params_file().empty()) {
2274 2275 2276 2277 2278 2279
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
2280
    op->SetAttr("file_path", {config_.params_file()});
2281 2282 2283 2284
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
2285
  framework::NaiveExecutor e(place_);
2286 2287 2288 2289
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

2290 2291
  return true;
}
2292

2293 2294 2295 2296 2297
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

2298 2299 2300 2301 2302 2303 2304 2305
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
2306
      auto *variable = executor_->GetScope()->FindVar(name);
2307
      if (variable != nullptr && variable->IsType<phi::DenseTensor>() &&
2308
          name != framework::kFeedOpType && name != framework::kFetchOpType) {
2309
        VLOG(3) << "Clear Intermediate Tensor: " << name;
2310
        auto *t = variable->GetMutable<phi::DenseTensor>();
2311 2312 2313 2314 2315 2316
        t->clear();
      }
    }
  }
}

2317
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2318
bool AnalysisPredictor::SaveTrtCalibToDisk() {
C
ccrrong 已提交
2319 2320
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(),
                    true,
2321 2322
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
2323 2324 2325
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
R
Ruibiao Chen 已提交
2326
      std::string engine_name = PADDLE_GET_CONST(
2327
          std::string, op_desc->GetAttr("calibration_engine_key"));
N
nhzlx 已提交
2328
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
2329 2330 2331 2332
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
2333 2334
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
2335
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
2336
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
2337 2338
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
2339 2340 2341
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
2342

N
nhzlx 已提交
2343
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
2344 2345 2346
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
2347

N
nhzlx 已提交
2348
      std::string model_opt_cache_dir =
2349 2350 2351
          argument_->Has("model_dir") ? argument_->model_dir()
                                      : inference::analysis::GetDirRoot(
                                            argument_->model_program_path());
N
nhzlx 已提交
2352

N
nhzlx 已提交
2353
      std::string calibration_table_data_path =
N
nhzlx 已提交
2354 2355 2356 2357
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
2358 2359 2360 2361 2362

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
2363 2364 2365 2366
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
2367
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
2368 2369
  return true;
}
N
nhzlx 已提交
2370
#endif
N
nhzlx 已提交
2371

2372
AnalysisPredictor::~AnalysisPredictor() {
2373
#ifdef PADDLE_WITH_TENSORRT
N
nhzlx 已提交
2374
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
2375 2376
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
2377 2378
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
2379
#endif
2380
  if (config_.with_profile_) {
2381 2382 2383 2384
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
J
JingZhuangzhuang 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393
    if (framework::global_transfer_scope_key().find(sub_scope_) !=
        framework::global_transfer_scope_key().end()) {
      auto scope_key_set = framework::global_transfer_scope_key()[sub_scope_];
      for (auto iter = scope_key_set.begin(); iter != scope_key_set.end();
           iter++) {
        framework::global_transfer_data_cache().erase(*iter);
      }
      framework::global_transfer_scope_key().erase(sub_scope_);
    }
2394 2395
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
2396

2397 2398 2399 2400 2401 2402
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
2403

2404 2405 2406
  if (config_.shape_range_info_collected()) {
    StatisticShapeRangeInfo();
  }
2407 2408 2409 2410 2411
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  if (predictor_stream_ != nullptr) {
    ResourceManager::Instance().DestroyGPUResource(predictor_stream_);
  }
#endif
W
Wilber 已提交
2412 2413 2414
  if (place_.GetType() != phi::AllocationType::UNDEFINED) {
    memory::Release(place_);
  }
2415
  device_contexts_.clear();
2416 2417 2418 2419 2420 2421 2422

#ifdef PADDLE_WITH_TENSORRT
  if (config_.trt_engine_memory_sharing()) {
    inference::Singleton<inference::tensorrt::TRTEngineManager>::Global()
        .releaseContextMemory(predictor_id_);
  }
#endif
2423 2424
}

2425
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
2426
  VLOG(3) << "AnalysisPredictor::Clone";
Y
Yan Chunwei 已提交
2427
  std::lock_guard<std::mutex> lk(clone_mutex_);
2428
  auto *x = new AnalysisPredictor(config_);
2429
  x->status_is_cloned_ = true;
2430
  x->root_predictor_id_ = this->root_predictor_id_;
2431
  x->config_.apply_optim_ = false;
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
  if (config_.use_external_stream_ && stream == nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has been configured to use external stream, but the Clone "
        "function has not received a valid stream parameter."));
  } else if (!config_.use_external_stream_ && stream != nullptr) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "config has not been configured to use external stream, but the Clone "
        "function has received a stream parameter."));
  }
  x->predictor_stream_ = stream;
2442
  x->Init(scope_, inference_program_);
2443
#ifdef PADDLE_WITH_TENSORRT
2444
  x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
2445
#endif
2446 2447 2448
  return std::unique_ptr<PaddlePredictor>(x);
}

2449
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
2450 2451 2452
  return inference_program_->Proto()->SerializeAsString();
}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
void AnalysisPredictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  static std::once_flag register_hook_flag;
  std::call_once(register_hook_flag, [this] {
    executor_->RegisterOutputHook([this](framework::OperatorBase *op) {
      for (auto &output : op->Outputs()) {
        for (auto &var_name : output.second) {
          auto *var = this->sub_scope_->FindVar(var_name);
          if (!var || !var->IsType<phi::DenseTensor>()) continue;
          auto dense_tensor = var->Get<phi::DenseTensor>();
          if (!dense_tensor.initialized()) continue;
          auto tensor = this->GetOutputTensor(var_name);
          for (auto &hookfunc : this->hookfuncs_) {
            hookfunc(op->Type(), var_name, *tensor);
          }
        }
      }
    });
  });
  hookfuncs_.push_back(hookfunc);
}

Y
Yan Chunwei 已提交
2513
template <>
2514 2515
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
2516
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
2517 2518
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
2519 2520
}

2521
}  // namespace paddle
2522

2523
#ifdef PADDLE_WITH_TENSORRT
2524
USE_TRT_CONVERTER(elementwise_add_weight);
S
shentanyue 已提交
2525 2526 2527
USE_TRT_CONVERTER(elementwise_sub_weight);
USE_TRT_CONVERTER(elementwise_mul_weight);
USE_TRT_CONVERTER(elementwise_div_weight);
2528 2529
USE_TRT_CONVERTER(elementwise_min_weight);
USE_TRT_CONVERTER(elementwise_max_weight);
S
shentanyue 已提交
2530
USE_TRT_CONVERTER(elementwise_pow_weight);
2531
USE_TRT_CONVERTER(elementwise_mod_weight);
W
wenbin 已提交
2532
USE_TRT_CONVERTER(elementwise_floordiv_weight);
2533 2534 2535 2536 2537 2538 2539
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
W
wenbin 已提交
2540
USE_TRT_CONVERTER(elementwise_floordiv_tensor);
2541
USE_TRT_CONVERTER(elementwise_mod_tensor);
2542 2543 2544 2545 2546 2547
USE_TRT_CONVERTER(less_than);
USE_TRT_CONVERTER(greater_than);
USE_TRT_CONVERTER(logical_or);
USE_TRT_CONVERTER(logical_xor);
USE_TRT_CONVERTER(logical_and);
USE_TRT_CONVERTER(less_equal);
2548
USE_TRT_CONVERTER(greater_equal);
2549
USE_TRT_CONVERTER(transpose);
2550
USE_TRT_CONVERTER(transpose2);
2551
USE_TRT_CONVERTER(flatten);
2552
USE_TRT_CONVERTER(flatten_contiguous_range);
2553
USE_TRT_CONVERTER(matrix_multiply);
2554
USE_TRT_CONVERTER(bmm);
2555 2556 2557 2558 2559 2560 2561 2562 2563
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
2564 2565 2566
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(pad3d);
#endif
2567 2568
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
2569
USE_TRT_CONVERTER(split);
2570
USE_TRT_CONVERTER(fill_any_like);
2571 2572
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
2573
USE_TRT_CONVERTER(leaky_relu);
2574
USE_TRT_CONVERTER(shuffle_channel);
2575
USE_TRT_CONVERTER(where);
2576
USE_TRT_CONVERTER(bitwise_not);
2577 2578
USE_TRT_CONVERTER(one_hot);
USE_TRT_CONVERTER(one_hot_v2);
2579
USE_TRT_CONVERTER(swish);
L
LielinJiang 已提交
2580
USE_TRT_CONVERTER(silu);
2581
USE_TRT_CONVERTER(group_norm);
2582
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
2583 2584 2585
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
2586
USE_TRT_CONVERTER(multihead_matmul_roformer);
2587
USE_TRT_CONVERTER(skip_layernorm);
2588
USE_TRT_CONVERTER(slice);
2589
USE_TRT_CONVERTER(scale);
2590
USE_TRT_CONVERTER(stack);
P
Pei Yang 已提交
2591
USE_TRT_CONVERTER(clip);
2592
USE_TRT_CONVERTER(gather);
2593
USE_TRT_CONVERTER(anchor_generator);
Z
zlsh80826 已提交
2594
USE_TRT_CONVERTER(yolo_box);
2595
USE_TRT_CONVERTER(yolo_box_head);
2596
USE_TRT_CONVERTER(arg_max);
2597
USE_TRT_CONVERTER(arg_min);
2598
USE_TRT_CONVERTER(roi_align);
2599
USE_TRT_CONVERTER(affine_channel);
Z
zlsh80826 已提交
2600
USE_TRT_CONVERTER(multiclass_nms);
2601
USE_TRT_CONVERTER(multiclass_nms3);
2602
USE_TRT_CONVERTER(nearest_interp);
2603
USE_TRT_CONVERTER(nearest_interp_v2);
2604
USE_TRT_CONVERTER(bilinear_interp_v2);
W
Wangzheee 已提交
2605
USE_TRT_CONVERTER(reshape);
2606
USE_TRT_CONVERTER(reshape2);
2607
USE_TRT_CONVERTER(gather_nd);
W
wenbin 已提交
2608
USE_TRT_CONVERTER(reduce_mean);
2609
USE_TRT_CONVERTER(reduce_max);
2610
USE_TRT_CONVERTER(reduce_min);
2611
USE_TRT_CONVERTER(reduce_sum);
2612
USE_TRT_CONVERTER(reduce_prod);
W
wenbin 已提交
2613
USE_TRT_CONVERTER(tile);
W
wenbin 已提交
2614 2615
USE_TRT_CONVERTER(conv3d);
USE_TRT_CONVERTER(conv3d_transpose);
W
wangxinxin08 已提交
2616
USE_TRT_CONVERTER(mish);
W
wangxinxin08 已提交
2617
USE_TRT_CONVERTER(deformable_conv);
F
feng_shuai 已提交
2618
USE_TRT_CONVERTER(pool3d)
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
USE_TRT_CONVERTER(square);
// unary op
USE_TRT_CONVERTER(exp);
USE_TRT_CONVERTER(log);
USE_TRT_CONVERTER(sqrt);
USE_TRT_CONVERTER(reciprocal);
USE_TRT_CONVERTER(abs);
USE_TRT_CONVERTER(sin);
USE_TRT_CONVERTER(cos);
USE_TRT_CONVERTER(tan);
USE_TRT_CONVERTER(sinh);
USE_TRT_CONVERTER(cosh);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(asin);
USE_TRT_CONVERTER(acos);
USE_TRT_CONVERTER(atan);
USE_TRT_CONVERTER(asinh);
USE_TRT_CONVERTER(acosh);
USE_TRT_CONVERTER(atanh);
USE_TRT_CONVERTER(ceil);
USE_TRT_CONVERTER(floor);
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(round);
USE_TRT_CONVERTER(sign);
#endif
USE_TRT_CONVERTER(rsqrt);
2645
USE_TRT_CONVERTER(fused_preln_embedding_eltwise_layernorm)
2646
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
2647
USE_TRT_CONVERTER(preln_skip_layernorm)
W
Wang Bojun 已提交
2648
USE_TRT_CONVERTER(fused_bias_dropout_residual_layer_norm)
2649
USE_TRT_CONVERTER(c_allreduce_sum)
F
feng_shuai 已提交
2650
USE_TRT_CONVERTER(roll)
F
feng_shuai 已提交
2651
USE_TRT_CONVERTER(strided_slice)
Z
zhoutianzi666 已提交
2652 2653
USE_TRT_CONVERTER(rnn)
USE_TRT_CONVERTER(fill_constant_batch_size_like)
2654
USE_TRT_CONVERTER(transformer_input_convert)
C
ccrrong 已提交
2655
USE_TRT_CONVERTER(cast)
2656 2657
USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding)
C
ccrrong 已提交
2658
USE_TRT_CONVERTER(equal);
S
Sanbu 已提交
2659
USE_TRT_CONVERTER(not_equal);
2660 2661
USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2)
2662
USE_TRT_CONVERTER(range)
2663 2664
USE_TRT_CONVERTER(squeeze2)
USE_TRT_CONVERTER(unsqueeze2)
2665 2666
USE_TRT_CONVERTER(sum)
USE_TRT_CONVERTER(shape)
2667
USE_TRT_CONVERTER(fill_constant)
2668
USE_TRT_CONVERTER(fused_token_prune)
2669
USE_TRT_CONVERTER(celu)
W
wenbin 已提交
2670
USE_TRT_CONVERTER(layernorm_shift_partition)
W
Wang Bojun 已提交
2671
USE_TRT_CONVERTER(reverse_roll)
W
wenbin 已提交
2672
USE_TRT_CONVERTER(preln_layernorm_shift_partition)
W
Wang Bojun 已提交
2673
USE_TRT_CONVERTER(merge_layernorm)
2674
USE_TRT_CONVERTER(trans_layernorm)
W
wenbin 已提交
2675
USE_TRT_CONVERTER(skip_merge_layernorm)
W
weishengying 已提交
2676 2677
USE_TRT_CONVERTER(generic_plugin_creater)
USE_TRT_CONVERTER(custom_plugin_creater)
2678
USE_TRT_CONVERTER(fuse_eleadd_transpose)
2679 2680
USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER(logsigmoid)
2681
USE_TRT_CONVERTER(lookup_table)
2682
USE_TRT_CONVERTER(expand_v2)
2683
USE_TRT_CONVERTER(expand_as_v2)
2684
USE_TRT_CONVERTER(take_along_axis)
W
wenbin 已提交
2685 2686
USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
2687
USE_TRT_CONVERTER(cumsum)
2688 2689 2690
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
2691
USE_TRT_CONVERTER(qk_multihead_matmul)
2692
#endif
2693 2694 2695
#if IS_TRT_VERSION_GE(8510)
USE_TRT_CONVERTER(grid_sampler)
#endif
X
xjmxyt 已提交
2696 2697
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(set_value)
X
xjmxyt 已提交
2698
USE_TRT_CONVERTER(index_select);
2699
USE_TRT_CONVERTER(temporal_shift)
X
xjmxyt 已提交
2700
#endif
2701 2702 2703 2704
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
USE_TRT_CONVERTER(sparse_multihead_matmul)
#endif
2705
#endif
W
Wilber 已提交
2706 2707 2708 2709 2710 2711

namespace paddle_infer {

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
  if (config.use_onnxruntime()) {
#ifdef PADDLE_WITH_ONNXRUNTIME
    if (config.use_gpu()) {
      LOG(WARNING) << "The current ONNXRuntime backend doesn't support GPU,"
                      "and it falls back to use Paddle Inference.";
    } else if (!paddle::CheckConvertToONNX(config)) {
      LOG(WARNING)
          << "Paddle2ONNX do't support convert the Model, fall back to using "
             "Paddle Inference.";
    } else {
C
ccrrong 已提交
2722 2723 2724 2725
      predictor_ =
          paddle::CreatePaddlePredictor<Config,
                                        paddle::PaddleEngineKind::kONNXRuntime>(
              config);
2726 2727 2728 2729 2730 2731 2732 2733 2734
      return;
    }
#else
    LOG(WARNING)
        << "The onnxruntime backend isn't enabled,"
           " and please re-compile Paddle with WITH_ONNXRUNTIME option,"
           "fall back to using Paddle Inference.";
#endif
  }
C
ccrrong 已提交
2735 2736 2737 2738
  predictor_ =
      paddle::CreatePaddlePredictor<Config,
                                    paddle::PaddleEngineKind::kAnalysis>(
          config);
W
Wilber 已提交
2739 2740 2741 2742 2743
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}
2744

2745 2746 2747 2748
std::map<std::string, std::vector<int64_t>> Predictor::GetInputTensorShape() {
  return predictor_->GetInputTensorShape();
}

2749 2750 2751
std::map<std::string, DataType> Predictor::GetInputTypes() {
  return predictor_->GetInputTypes();
}
W
Wilber 已提交
2752 2753

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
2754
  return predictor_->GetInputTensor(name);
W
Wilber 已提交
2755 2756 2757 2758 2759 2760 2761
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
2762
  return predictor_->GetOutputTensor(name);
W
Wilber 已提交
2763 2764
}

2765 2766 2767 2768 2769 2770 2771 2772
std::map<std::string, std::vector<int64_t>> Predictor::GetOutputTensorShape() {
  return predictor_->GetOutputTensorShape();
}

std::map<std::string, DataType> Predictor::GetOutputTypes() {
  return predictor_->GetOutputTypes();
}

W
Wilber 已提交
2773 2774
bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

2775 2776 2777 2778 2779
bool Predictor::Run(const std::vector<paddle::Tensor> &inputs,
                    std::vector<paddle::Tensor> *outputs) {
  return predictor_->Run(inputs, outputs);
}

2780 2781
std::unique_ptr<Predictor> Predictor::Clone(void *stream) {
  auto analysis_pred = predictor_->Clone(stream);
W
Wilber 已提交
2782 2783 2784 2785 2786 2787 2788 2789
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

2790 2791
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

2792 2793 2794 2795
void Predictor::RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) {
  predictor_->RegisterOutputHook(hookfunc);
}

2796 2797
void *Predictor::GetExecStream() const { return predictor_->GetExecStream(); }

W
Wilber 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
std::tuple<int, int, int> GetTrtCompileVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtCompileVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

std::tuple<int, int, int> GetTrtRuntimeVersion() {
#ifdef PADDLE_WITH_TENSORRT
  return paddle::inference::tensorrt::GetTrtRuntimeVersion();
#else
  return std::tuple<int, int, int>{0, 0, 0};
#endif
}

W
Wilber 已提交
2832 2833 2834 2835
std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

2836 2837 2838 2839 2840
void ConvertToMixedPrecision(const std::string &model_file,
                             const std::string &params_file,
                             const std::string &mixed_model_file,
                             const std::string &mixed_params_file,
                             PrecisionType mixed_precision,
2841
                             paddle_infer::PlaceType backend,
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  auto phi_backend = paddle::ConvertBackend(backend);
  auto phi_precision = paddle::ConvertPrecision(mixed_precision);
  paddle::inference::analysis::ConvertToMixedPrecision(model_file,
                                                       params_file,
                                                       mixed_model_file,
                                                       mixed_params_file,
                                                       phi_precision,
                                                       phi_backend,
                                                       keep_io_types,
                                                       black_list);
}

W
Wilber 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
C
ccrrong 已提交
2867 2868
      size,
      1UL,
W
Wilber 已提交
2869 2870 2871 2872 2873 2874 2875 2876
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
2877
      preds_.emplace_back(new Predictor(config_tmp));
W
Wilber 已提交
2878
    } else {
2879
      preds_.emplace_back(main_pred_->Clone());
W
Wilber 已提交
2880 2881 2882 2883 2884 2885
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
C
ccrrong 已提交
2886 2887
      idx,
      preds_.size() + 1,
W
Wilber 已提交
2888
      paddle::platform::errors::InvalidArgument(
C
ccrrong 已提交
2889 2890
          "There are (%d) predictors in the pool, but the idx is (%d)",
          idx,
W
Wilber 已提交
2891 2892 2893 2894 2895 2896 2897
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
W
Wilber 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

namespace experimental {

// Note: Can only be used under thread_local semantics.
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
bool InternalUtils::RunWithExternalStream(paddle_infer::Predictor *p,
                                          hipStream_t stream) {
#ifdef PADDLE_WITH_HIP
  auto pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  return pred->ExpRunWithExternalStream(stream);
#endif
  return false;
}
W
Wilber 已提交
2918

2919 2920 2921 2922 2923 2924
void InternalUtils::UpdateConfigInterleaved(paddle_infer::Config *c,
                                            bool with_interleaved) {
#ifdef PADDLE_WITH_CUDA
  c->trt_with_interleaved_ = with_interleaved;
#endif
}
W
Wilber 已提交
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
void InternalUtils::SetTransformerPosid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_posid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_posid_ = tensorrt_transformer_posid;
#endif
}

void InternalUtils::SetTransformerMaskid(
    paddle_infer::Config *c, const std::string &tensorrt_transformer_maskid) {
#ifdef PADDLE_WITH_CUDA
  c->tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
#endif
}

W
Wilber 已提交
2940 2941 2942 2943 2944
void InternalUtils::SyncStream(paddle_infer::Predictor *p) {
#ifdef PADDLE_WITH_CUDA
  auto *pred = dynamic_cast<paddle::AnalysisPredictor *>(p->predictor_.get());
  paddle::platform::DeviceContextPool &pool =
      paddle::platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
2945
  auto *dev_ctx = reinterpret_cast<phi::GPUContext *>(pool.Get(pred->place_));
W
Wilber 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954
  cudaStreamSynchronize(dev_ctx->stream());
#endif
}
void InternalUtils::SyncStream(cudaStream_t stream) {
#ifdef PADDLE_WITH_CUDA
  cudaStreamSynchronize(stream);
#endif
}

W
Wilber 已提交
2955
}  // namespace experimental
W
Wilber 已提交
2956
}  // namespace paddle_infer