random.py 44.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

17 18
import paddle
from paddle import _C_ops, _legacy_C_ops
19
from paddle.common_ops_import import Variable
20 21
from paddle.fluid.framework import _current_expected_place
from paddle.framework import in_dynamic_mode
22

23 24 25
from ..fluid.data_feeder import (
    check_dtype,
    check_shape,
26 27
    check_type,
    check_variable_and_dtype,
28
)
29 30 31 32 33
from ..framework import (
    LayerHelper,
    convert_np_dtype_to_dtype_,
    core,
    dygraph_only,
34
)
S
silingtong123 已提交
35

36 37
__all__ = []

S
silingtong123 已提交
38

L
Leo Chen 已提交
39
def bernoulli(x, name=None):
40
    r"""
L
Leo Chen 已提交
41

42
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
43

44
    .. math::
45 46
        p(y)=\begin{cases}
            x_i,&y=1\\
47 48
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
49 50

    Args:
51 52 53
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

54
    Returns:
55
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
56 57 58 59

    Examples:
        .. code-block:: python

60
            import paddle
L
Leo Chen 已提交
61

L
Leo Chen 已提交
62
            paddle.set_device('cpu')  # on CPU device
63
            paddle.seed(100)
L
Leo Chen 已提交
64

65
            x = paddle.rand([2,3])
L
Leo Chen 已提交
66 67 68
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
69

70
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
71 72 73
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
74 75 76

    """

77
    if in_dynamic_mode():
78
        return _C_ops.bernoulli(x)
79 80 81 82 83 84 85 86 87 88 89 90
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )  # maybe set out to int32 ?
        helper.append_op(
            type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={}
        )
        out.stop_gradient = True
        return out
L
Leo Chen 已提交
91 92


93
def poisson(x, name=None):
94
    r"""
95
    Returns a tensor filled with random number from a Poisson Distribution.
96 97 98

    .. math::

99
        out_i \sim Poisson (lambda = x_i)
100 101

    Args:
102
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type
103 104 105 106
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
107
    Returns:
108 109 110 111 112 113
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
114
            paddle.set_device('cpu')
115
            paddle.seed(100)
116 117 118

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
119 120
            #[[2., 5., 0.],
            # [5., 1., 3.]]
121 122

    """
123
    if in_dynamic_mode():
124
        return _C_ops.poisson(x)
125 126
    else:
        check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")
127

128 129 130 131 132 133
        helper = LayerHelper("poisson", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={}
        )
        return out
134 135


P
pangyoki 已提交
136 137
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
138
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

158 159
            import paddle

C
cnn 已提交
160
            paddle.seed(100) # on CPU device
161
            x = paddle.rand([2,4])
162
            print(x)
163 164 165
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
166
            paddle.seed(200) # on CPU device
167
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
168
            print(out1)
169 170 171 172 173 174 175
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
176
            paddle.seed(300) # on CPU device
177
            out3 = paddle.multinomial(x, num_samples=3)
178
            print(out3)
179 180
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
181 182 183

    """

184
    assert (
185
        not core.is_compiled_with_rocm()
186
    ), "multinomial op is not supported on ROCM yet."
187

188
    if in_dynamic_mode():
189
        return _C_ops.multinomial(x, num_samples, replacement)
190
    else:
191 192 193
        check_variable_and_dtype(
            x, "x", ["uint16", "float16", "float32", "float64"], "multinomial"
        )
H
hong 已提交
194

195 196 197
        helper = LayerHelper("multinomial", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_('int64')
198
        )
199 200 201 202 203 204 205 206
        helper.append_op(
            type='multinomial',
            inputs={"X": x},
            outputs={'Out': out},
            attrs={'num_samples': num_samples, 'replacement': replacement},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
207 208


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
def uniform_random_batch_size_like(
    input,
    shape,
    dtype='float32',
    input_dim_idx=0,
    output_dim_idx=0,
    min=-1.0,
    max=1.0,
    seed=0,
):
    """
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.
    .. code-block:: text
        *Case 1:
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]
            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0,
            input_dim_idx = 0,
            result.shape[0] = input.shape[0],
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
       *Case 2:
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1,
           input_dim_idx = 1,
           result.shape[1] = input.shape[1],
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
    Args:
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0.
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
    Returns:
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            from paddle.tensor import random
            paddle.enable_static()
            # example 1:
264
            input = paddle.static.data(name="input", shape=[1, 3], dtype='float32')
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
            out_1 = random.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
            # example 2:
            out_2 = random.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]
    """
    check_variable_and_dtype(
        input,
        'Input',
        ("float32", 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )
    check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like')
    check_dtype(
        dtype,
        'dtype',
        ('float32', 'float64', "uint16"),
        'uniform_random_batch_size_like',
    )

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_variable_for_type_inference(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype,
        },
    )

    return out


304
def gaussian(shape, mean=0.0, std=1.0, seed=0, dtype=None, name=None):
305
    """
306
    Returns a Tensor filled with random values sampled from a Gaussian
307 308 309
    distribution, with ``shape`` and ``dtype``.

    Args:
310 311 312
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
313 314
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
315
            is 1.0.
316 317
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
318 319 320
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
321
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
322 323 324

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
325
        distribution, with ``shape`` and ``dtype``.
326
    """
327
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
328
    supported_dtypes = ['float32', 'float64', 'float16', 'uint16']
329

330 331
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
332
        if dtype not in supported_dtypes:
333
            raise TypeError(
334 335
                "{} only supports {}, but the default dtype is {}".format(
                    op_type_for_check, supported_dtypes, dtype
336 337
                )
            )
338 339 340
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

341
    if in_dynamic_mode():
342
        shape = paddle.utils.convert_shape_to_list(shape)
343
        place = _current_expected_place()
344
        return _C_ops.gaussian(
345 346
            shape, float(mean), float(std), seed, dtype, place
        )
347 348
    else:
        check_shape(shape, op_type_for_check)
349
        check_dtype(dtype, 'dtype', supported_dtypes, op_type_for_check)
350

351 352 353 354 355 356 357 358
        inputs = {}
        attrs = {
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': dtype,
            'use_mkldnn': False,
        }
359
        paddle.utils.get_shape_tensor_inputs(
360
            inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check
361
        )
362

363 364 365 366 367 368 369 370 371 372
        helper = LayerHelper('gaussian', **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='gaussian_random',
            inputs=inputs,
            outputs={'Out': out},
            attrs=attrs,
        )
        out.stop_gradient = True
        return out
373 374 375 376


def standard_normal(shape, dtype=None, name=None):
    """
377
    Returns a Tensor filled with random values sampled from a standard
378 379 380 381
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
382 383 384
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
385
        dtype (str|np.dtype, optional): The data type of the output Tensor.
386 387 388
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
389 390 391 392 393 394 395 396 397 398 399 400 401 402
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
403
            out1 = paddle.standard_normal(shape=[2, 3])
404 405 406 407
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
408 409
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
410
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
411 412 413 414 415 416 417 418
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
419
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
420
            out3 = paddle.standard_normal(shape_tensor)
421 422 423 424
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
425
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
426 427


Z
zhupengyang 已提交
428 429
def randn(shape, dtype=None, name=None):
    """
430
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
431 432 433 434
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
435 436 437
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
Z
zhupengyang 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
461 462
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
478 479 480 481


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
482
    Returns a Tensor filled with random values sampled from a normal
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
500 501 502 503
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. If ``mean`` or ``std``
            is a Tensor, the shape of the output Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

520
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
521 522 523
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

524
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
525 526 527 528
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
529
    if not in_dynamic_mode():
530 531 532 533
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
534 535 536 537 538
                mean.dtype,
                'mean',
                ['float32', 'float64'],
                'normal',
                "If mean is Tensor, it's data type only support float32, float64.",
539 540 541
            )
        if isinstance(std, Variable):
            check_dtype(
542 543 544 545 546
                std.dtype,
                'std',
                ['float32', 'float64'],
                'normal',
                "If std is Tensor, it's data type only support float32, float64.",
547 548
            )
        if shape is not None:
549
            check_shape(shape, 'normal')
550 551 552 553 554 555 556 557 558 559 560 561 562 563

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
564
        return gaussian(shape=shape, mean=mean, std=std, name=name)
565 566

    out = out * std + mean
567
    if not in_dynamic_mode():
568 569 570 571
        out.stop_grediant = True
    return out


572
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
573
    """
574
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
575 576 577
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
578

Z
zhupengyang 已提交
579
    .. code-block:: text
李灿 已提交
580

P
pangyoki 已提交
581 582 583 584 585 586
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
587 588 589
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
590 591 592 593
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
594 595 596 597
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
598
        seed(int, optional): Random seed used for generating samples. If seed is 0,
599
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
600
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
601
            time. Default is 0.
602 603
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
604 605 606 607 608 609 610

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
611
          :name: code-example1
612

P
pangyoki 已提交
613 614 615 616
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
617 618 619 620
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
621 622 623

            # example 2:
            # attr shape is a list which contains Tensor.
624 625
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
626 627 628
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
629 630 631

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
632
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
633 634 635
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
636
    """
637
    supported_dtypes = ['float32', 'float64', 'float16', 'uint16']
638 639
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
640
        if dtype not in supported_dtypes:
641
            raise TypeError(
642 643
                "uniform/rand only supports {}, but the default dtype is {}".format(
                    supported_dtypes, dtype
644 645
                )
            )
646

P
pangyoki 已提交
647 648 649
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

650
    if in_dynamic_mode():
651
        shape = paddle.utils.convert_shape_to_list(shape)
652
        return _C_ops.uniform(
653 654 655 656 657 658 659
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
660 661
    else:
        check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
662
        check_dtype(dtype, 'dtype', supported_dtypes, 'uniform/rand')
663 664 665
        check_type(min, 'min', (float, int, Variable), 'uniform/rand')
        check_type(max, 'max', (float, int, Variable), 'uniform/rand')

666
        inputs = {}
667
        attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
668
        paddle.utils.get_shape_tensor_inputs(
669
            inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand'
670
        )
P
pangyoki 已提交
671

672 673 674 675 676 677 678 679 680 681
        helper = LayerHelper("uniform", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type="uniform_random",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out},
        )
        out.stop_gradient = True
        return out
P
pangyoki 已提交
682 683


J
JYChen 已提交
684 685 686
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
687
    This is the inplace version of OP ``uniform``, which returns a Tensor filled
J
JYChen 已提交
688 689
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
690

J
JYChen 已提交
691 692 693 694 695 696
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
697 698
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed).
J
JYChen 已提交
699 700 701 702 703 704 705 706 707 708
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
709

J
JYChen 已提交
710 711 712 713 714 715 716 717 718
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
719
    return _C_ops.uniform_inplace_(x, min, max, seed, 0, 0, 1.0)
J
JYChen 已提交
720 721


722
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
723
    """
724
    Returns a Tensor filled with random integers from a discrete uniform
725 726
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
727 728

    Args:
729
        low (int, optional): The lower bound on the range of random values to generate.
730 731
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
732
        high (int, optional): The upper bound on the range of random values to
733 734
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
735 736 737
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list. Default is [1].
738
        dtype (str|np.dtype, optional): The data type of the
739 740
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
741
        name (str, optional): The default value is None.  Normally there is no
742 743
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
744

745
    Returns:
746 747
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
748 749 750

    Examples:
        .. code-block:: python
751

752
            import paddle
753

754 755
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
756
            out1 = paddle.randint(low=-5, high=5, shape=[2, 3])
757 758 759 760
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
761 762
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
Z
zhupengyang 已提交
763
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
764 765 766 767 768
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
769
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
770
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
771 772
            # [[ 2, -3, -1],    # random
            #  [-3, -2,  1]])   # random
773 774 775

            # example 4:
            # data type is int32
776
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
777 778 779 780 781
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
782
            out5 = paddle.randint(10)
783
            # [7]  # random
S
silingtong123 已提交
784

785 786
    """
    if high is None:
787 788
        if low <= 0:
            raise ValueError(
789
                "If high is None, low must be greater than 0, but received low = {}.".format(
790 791 792
                    low
                )
            )
793 794
        high = low
        low = 0
S
silingtong123 已提交
795
    if dtype is None:
W
Weilong Wu 已提交
796 797
        dtype = core.VarDesc.VarType.INT64
    elif not isinstance(dtype, core.VarDesc.VarType):
798
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
799

800
    if in_dynamic_mode():
801
        shape = paddle.utils.convert_shape_to_list(shape)
F
From00 已提交
802
        place = _current_expected_place()
803
        return _C_ops.randint(low, high, shape, dtype, place)
804 805 806 807 808
    else:
        check_shape(shape, 'randint')
        check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
        if low >= high:
            raise ValueError(
809 810
                f"randint's low must less then high, but received low = {low}, "
                f"high = {high}"
811
            )
S
silingtong123 已提交
812

813
        inputs = {}
814
        attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
815
        paddle.utils.get_shape_tensor_inputs(
816
            inputs=inputs, attrs=attrs, shape=shape, op_type='randint'
817
        )
S
silingtong123 已提交
818

819 820 821 822 823 824 825
        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
C
cc 已提交
826 827


828 829
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
830
    Returns a Tensor filled with random integers from a discrete uniform
831
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
832
    (use ``dtype`` if ``dtype`` is not None)
833 834 835
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
836
        x (Tensor): The input multi-dimensional tensor which specifies shape. The dtype of ``x``
837
            can be bool, int32, int64, float16, float32, float64.
838
        low (int, optional): The lower bound on the range of random values to generate.
839 840 841
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
842 843
            generate, the ``high`` is excluded in the range. Default is None.
            If ``high`` is None, the range is [0, ``low``).
844
        dtype (str|np.dtype, optional): The data type of the
845
            output tensor. Supported data types: bool, int32, int64, float16,
846 847 848 849 850 851
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

852
    Returns:
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
955
                "If high is None, low must be greater than 0, but received low = {}.".format(
956 957 958
                    low
                )
            )
959 960 961 962 963 964
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
965
    shape = paddle.shape(x)
966 967 968

    if low >= high:
        raise ValueError(
969 970
            f"randint_like's low must less then high, but received low = {low}, "
            f"high = {high}"
971
        )
972

973
    if in_dynamic_mode():
974
        shape = paddle.utils.convert_shape_to_list(shape)
975 976 977 978 979 980 981 982 983 984 985 986
        out = _legacy_C_ops.randint(
            'shape',
            shape,
            'low',
            low,
            'high',
            high,
            'seed',
            0,
            'dtype',
            core.VarDesc.VarType.INT64,
        )
987 988
        out = paddle.cast(out, dtype)
        return out
989 990 991 992 993 994 995 996
    else:
        check_shape(shape, 'randint_like')
        check_dtype(
            dtype,
            'dtype',
            ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
            'randint_like',
        )
997

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        inputs = {"ShapeTensor": shape}
        attrs = {
            'low': low,
            'high': high,
            'seed': 0,
            'dtype': core.VarDesc.VarType.INT64,
        }

        helper = LayerHelper("randint", **locals())
        out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.INT64
        )
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        out = paddle.cast(out, dtype)
        return out
1016 1017


1018
def randperm(n, dtype="int64", name=None):
C
cc 已提交
1019
    """
1020
    Returns a 1-D Tensor filled with random permutation values from 0
1021
    to n-1, with ``dtype``.
C
cc 已提交
1022 1023

    Args:
1024 1025
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
1026 1027
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
1028
        name (str, optional): The default value is None. Normally there is no
1029 1030
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
1031 1032

    Returns:
1033 1034
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
1035 1036 1037 1038

    Examples:
        .. code-block:: python

1039
            import paddle
C
cc 已提交
1040

1041
            out1 = paddle.randperm(5)
1042
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
1043

1044
            out2 = paddle.randperm(7, 'int32')
1045
            # [1, 6, 2, 0, 4, 3, 5]  # random
1046

C
cc 已提交
1047
    """
1048 1049 1050
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

1051
    if in_dynamic_mode():
1052
        return _C_ops.randperm(n, dtype, _current_expected_place())
1053 1054 1055 1056 1057 1058 1059 1060
    else:
        if n < 1:
            raise ValueError(
                "The input n should be greater than 0 in randperm op."
            )
        check_dtype(
            dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'], 'randperm'
        )
C
cc 已提交
1061

1062 1063 1064 1065 1066 1067 1068 1069
        helper = LayerHelper("randperm", **locals())
        out = helper.create_variable_for_type_inference(dtype)
        attrs = {'n': n, 'dtype': dtype, 'seed': 0}
        helper.append_op(
            type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs
        )
        out.stop_gradient = True
        return out
X
Xing Wu 已提交
1070 1071


1072
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
1073
    """
1074
    Returns a Tensor filled with random values sampled from a uniform
1075
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1076 1077

    Args:
1078 1079 1080
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1081
        dtype (str|np.dtype, optional): The data type of the output Tensor.
1082 1083 1084
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
1085
        name (str, optional): The default value is None. Normally there is no
1086 1087
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1088

X
Xing Wu 已提交
1089
    Returns:
1090 1091
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
1092 1093 1094 1095

    Examples:
        .. code-block:: python

1096
            import paddle
1097

1098
            # example 1: attr shape is a list which doesn't contain Tensor.
1099
            out1 = paddle.rand(shape=[2, 3])
1100 1101 1102 1103
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
1104 1105
            dim1 = paddle.to_tensor(2, 'int64')
            dim2 = paddle.to_tensor(3, 'int32')
1106
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1107 1108 1109 1110 1111 1112 1113 1114
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1115
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1116
            out3 = paddle.rand(shape_tensor)
1117 1118
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1119
    """
1120
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1121 1122 1123


def exponential_(x, lam=1.0, name=None):
1124
    r"""
1125 1126
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

1127 1128
    ``lam`` is :math:`\lambda` parameter of Exponential Distribution.

1129 1130 1131 1132 1133 1134
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1135
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1136 1137 1138
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1139
    Returns:
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1155
    if in_dynamic_mode():
1156
        return _C_ops.exponential_(x, lam)
1157
    else:
1158 1159 1160
        check_variable_and_dtype(
            x, "x", ["float16", "float32", "float64", "uint16"], "exponential"
        )
1161 1162 1163 1164 1165 1166 1167 1168 1169

        helper = LayerHelper("exponential", **locals())
        helper.append_op(
            type='exponential',
            inputs={"X": x},
            outputs={'Out': x},
            attrs={"lambda": lam},
        )
        return x