nn.py 144.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program, _global_flags, in_dygraph_mode, _in_legacy_dygraph
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
36
from paddle import _C_ops, _legacy_C_ops
37

38
__all__ = [
39
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
40 41
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
42
    'SpectralNorm', 'TreeConv', 'Flatten'
43
]
M
minqiyang 已提交
44 45


X
Xin Pan 已提交
46
class Conv2D(layers.Layer):
47
    r"""
48 49
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
50 51 52
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
53 54 55
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
56
    and W is the width of the filter. If the groups is greater than 1,
57
    C will equal the number of input feature map divided by the groups.
58
    Please refer to UFLDL's `convolution
59
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
60
    for more details.
61 62 63 64 65 66 67 68
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

69
        Out = \\sigma (W \\ast X + b)
70 71 72

    Where:

73 74
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
75
    * :math:`\\ast`: Convolution operation.
76
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

99
    Parameters:
100
        num_channels(int): The number of channels in the input image.
101
        num_filters(int): The number of filter. It is as same as the output
102 103
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
104 105
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
106
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
107
            contain two integers, (stride_H, stride_W). Otherwise, the
108 109
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
110
            contain two integers, (padding_H, padding_W). Otherwise, the
111 112
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
113
            contain two integers, (dilation_H, dilation_W). Otherwise, the
114
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
115
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
116 117 118
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
119 120
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
121 122 123 124
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
125
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
126 127 128 129
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
130 131 132 133 134
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
135

136 137 138 139
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
140

141 142 143
    Returns:
        None
    
144
    Raises:
145
        ValueError: if ``use_cudnn`` is not a bool value.
146 147 148

    Examples:
        .. code-block:: python
L
lujun 已提交
149

150 151 152 153 154
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

155
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
156
          with fluid.dygraph.guard():
157
              conv2d = Conv2D(3, 2, 3)
158 159
              data = to_variable(data)
              conv = conv2d(data)
160 161 162

    """

M
minqiyang 已提交
163
    def __init__(self,
164
                 num_channels,
M
minqiyang 已提交
165 166 167 168 169 170 171 172
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
173 174 175
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
176
        assert param_attr is not False, "param_attr should not be False here."
177
        super(Conv2D, self).__init__()
178 179 180 181 182

        if (core.is_compiled_with_cuda() and paddle.fluid.get_flags(
                "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]):
            use_cudnn = False

183
        self._num_channels = num_channels
M
minqiyang 已提交
184 185 186 187
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
188
        self._act = act
M
minqiyang 已提交
189 190 191
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
192
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
193 194 195 196 197
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
198

199 200 201
        if (self._num_channels == self._groups
                and num_filters % self._num_channels == 0
                and not self._use_cudnn and not self._use_mkldnn):
202 203 204
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
205

206 207
        # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
        if core.is_compiled_with_npu():
208 209
            if (self._num_channels == self._groups
                    and self._num_channels == self._num_filters):
210
                self._l_type = 'depthwise_conv2d'
211
            else:
212
                self._l_type = 'conv2d'
213

214
        self._num_channels = num_channels
215 216
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
217
        else:
218
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
219
                raise ValueError("num_channels must be divisible by groups.")
220 221
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
222
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
223 224

        def _get_default_param_initializer():
225 226
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
227 228 229
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

230
        self.weight = self.create_parameter(
231
            attr=self._param_attr,
M
minqiyang 已提交
232 233 234 235
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

236 237 238 239
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
M
minqiyang 已提交
240 241

    def forward(self, input):
H
hong 已提交
242
        if in_dygraph_mode() and self._l_type == "conv2d":
243 244 245 246
            pre_bias = _C_ops.conv2d(input, self.weight, self._stride,
                                     self._padding, "EXPLICIT",
                                     self._groups if self._groups else 1,
                                     self._dilation, "NCHW", False, -1, False)
H
hong 已提交
247 248 249 250 251 252 253
            if self.bias is not None:
                pre_act = F.elementwise_add(pre_bias, self.bias, axis=1)
            else:
                pre_act = pre_bias
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)

254 255
        if _non_static_mode() and (self._l_type == 'conv2d'
                                   or self._l_type == 'depthwise_conv2d'):
256
            attrs = ('strides', self._stride, 'paddings', self._padding,
257 258 259
                     'dilations', self._dilation, 'groups',
                     self._groups if self._groups else 1, 'use_cudnn',
                     self._use_cudnn, 'use_mkldnn', self._use_mkldnn)
260
            out = _legacy_C_ops.conv2d(input, self.weight, *attrs)
261 262
            pre_bias = out

263 264 265 266
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
267 268
        inputs = {
            'Input': [input],
269
            'Filter': [self.weight],
270 271 272 273 274 275 276
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
277
            'use_mkldnn': self._use_mkldnn,
278
        }
279 280 281

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
282 283 284
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

285 286 287 288 289 290 291
        self._helper.append_op(type=self._l_type,
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs=attrs)
M
minqiyang 已提交
292

293
        if self.bias is not None:
294 295
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
296 297 298 299 300 301 302 303 304 305
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={
                                       'axis': 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
306 307
        else:
            pre_act = pre_bias
M
minqiyang 已提交
308

L
lujun 已提交
309
        # Currently, we don't support inplace in dygraph mode
310
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
311 312


L
lujun 已提交
313
class Conv3D(layers.Layer):
314
    r"""
315 316 317 318
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
319 320
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
321 322 323 324 325 326 327 328 329 330 331 332 333 334
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
335
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

361
    Parameters:
362
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
363
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
364
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
365
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
366 367 368
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
369
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
370 371
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
372
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
373 374
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
375
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
376
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
377
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
378 379 380
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
381 382
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
383 384 385
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
386 387
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
388 389 390
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
391 392 393 394 395
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
396
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
397

D
DuYao 已提交
398 399 400 401
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
402

403
    Returns:
D
DuYao 已提交
404
        None.
405 406 407 408 409 410 411 412

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

413 414 415 416 417 418
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
419
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
420 421
              ret = conv3d(fluid.dygraph.base.to_variable(data))

422 423
    """

L
lujun 已提交
424
    def __init__(self,
425
                 num_channels,
L
lujun 已提交
426 427 428 429 430 431 432 433 434
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
435 436
                 act=None,
                 dtype='float32'):
L
lujun 已提交
437
        assert param_attr is not False, "param_attr should not be False here."
438 439
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
440 441 442
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
443
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
444 445
        self._act = act
        self._use_cudnn = use_cudnn
446 447 448 449
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
450
        self._dtype = dtype
451 452

        if self._groups is None:
453
            num_filter_channels = self._num_channels
L
lujun 已提交
454
        else:
455
            if self._num_channels % self._groups != 0:
L
lujun 已提交
456
                raise ValueError("num_channels must be divisible by groups.")
457
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
458

459 460
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
461 462 463

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
464
                2] * self._num_channels
L
lujun 已提交
465 466 467
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

468
        self.weight = self.create_parameter(
469
            attr=self._param_attr,
L
lujun 已提交
470 471 472 473
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

474 475 476 477
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
478 479 480 481 482

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        self._helper.append_op(type='conv3d',
                               inputs={
                                   'Input': input,
                                   'Filter': self.weight,
                               },
                               outputs={"Output": pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn,
                                   'use_mkldnn': False
                               })
L
lujun 已提交
498

499
        if self.bias is not None:
500 501
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
502 503 504 505 506 507 508
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
509 510
        else:
            pre_act = pre_bias
L
lujun 已提交
511 512 513 514 515

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
516
    r"""
L
lujun 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
581

582
    Parameters:
583
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
584 585
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
586
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
587
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
588
            Otherwise, the filter will be a square.
D
DuYao 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
604
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
605
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
606
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
607 608 609 610
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
611 612
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
613 614
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
615 616
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
617 618 619
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
620 621 622 623 624 625 626
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
627

D
DuYao 已提交
628 629 630 631
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
632

L
lujun 已提交
633
    Returns:
D
DuYao 已提交
634
        None.
L
lujun 已提交
635 636 637 638 639 640 641 642

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

643 644 645 646 647 648
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
649
                    num_channels=3,
650 651 652 653 654
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
655 656
    """

L
lujun 已提交
657
    def __init__(self,
658
                 num_channels,
L
lujun 已提交
659
                 num_filters,
660
                 filter_size,
L
lujun 已提交
661 662 663 664 665 666 667 668
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
669 670
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
671 672 673 674 675 676 677
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
678
        self._num_channels = num_channels
L
lujun 已提交
679 680 681 682 683 684
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
685
        self._dtype = dtype
L
lujun 已提交
686

687 688
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
689

690 691
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
692 693 694 695 696 697 698
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
699 700 701 702

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
703 704 705 706 707 708 709 710 711 712 713 714 715 716
        self._helper.append_op(type="conv3d_transpose",
                               inputs={
                                   'Input': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Output': pre_bias},
                               attrs={
                                   'strides': self._stride,
                                   'paddings': self._padding,
                                   'dilations': self._dilation,
                                   'groups':
                                   self._groups if self._groups else 1,
                                   'use_cudnn': self._use_cudnn
                               })
L
lujun 已提交
717 718 719 720

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
721 722 723 724 725 726 727
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
L
lujun 已提交
728 729 730 731 732 733 734
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
735
class Pool2D(layers.Layer):
736
    r"""
737

738 739 740 741 742
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
743 744
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

790
    Parameters:
791
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
792
            it must contain two integers, (pool_size_Height, pool_size_Width).
793 794 795 796
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
797
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
798 799 800
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
801
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
802 803 804 805 806 807 808
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
809 810 811 812
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
813 814

    Returns:
815
        None
816 817

    Raises:
818 819 820 821
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
822 823 824 825 826

    Examples:

        .. code-block:: python

L
lujun 已提交
827
          import paddle.fluid as fluid
828 829
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
830 831

          with fluid.dygraph.guard():
832
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
833
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
834 835 836
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
837
             pool2d_res = pool2d(to_variable(data))
838 839 840

    """

M
minqiyang 已提交
841 842 843 844 845 846 847 848
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
849 850 851 852
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

866
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
867

868 869 870 871 872
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

873
        super(Pool2D, self).__init__()
M
minqiyang 已提交
874 875 876 877 878 879 880 881 882 883

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
884
        self._data_format = data_format
M
minqiyang 已提交
885 886 887
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
888
        if _non_static_mode():
889 890 891 892
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
893 894
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
895
            return _legacy_C_ops.pool2d(input, *attrs)
896

897 898 899 900
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

901 902 903 904 905 906 907 908
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
909
            "use_mkldnn": self._use_mkldnn,
910
            "exclusive": self._exclusive,
911
            "data_format": self._data_format,
912 913 914
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
915 916
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

917 918 919 920
        self._helper.append_op(type=self._l_type,
                               inputs={"X": input},
                               outputs={"Out": pool_out},
                               attrs=attrs)
M
minqiyang 已提交
921
        return pool_out
M
minqiyang 已提交
922 923


S
songyouwei 已提交
924 925
class Linear(layers.Layer):
    """
926
    
S
songyouwei 已提交
927 928 929 930 931 932 933 934
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

935
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
986 987 988 989 990 991 992 993
        self.weight = self.create_parameter(shape=[input_dim, output_dim],
                                            attr=param_attr,
                                            dtype=dtype,
                                            is_bias=False)
        self.bias = self.create_parameter(shape=[output_dim],
                                          attr=bias_attr,
                                          dtype=dtype,
                                          is_bias=True)
S
songyouwei 已提交
994

995
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
996

S
songyouwei 已提交
997
    def forward(self, input):
J
Jiabin Yang 已提交
998
        if _non_static_mode():
999
            pre_bias = _varbase_creator(dtype=input.dtype)
1000 1001 1002
            _legacy_C_ops.matmul(input, self.weight, pre_bias, 'transpose_X',
                                 False, 'transpose_Y', False, "alpha", 1,
                                 "use_mkldnn", self._use_mkldnn)
1003
            pre_act = dygraph_utils._append_bias_in_dygraph(
1004 1005 1006 1007
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
1008

1009 1010
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
1011 1012 1013 1014

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

1015
        attrs = {
S
songyouwei 已提交
1016 1017 1018
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
1019
            "use_mkldnn": self._use_mkldnn,
1020 1021
        }
        inputs = {"X": [input], "Y": [self.weight]}
1022

S
songyouwei 已提交
1023
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
1024 1025 1026 1027
        self._helper.append_op(type="matmul",
                               inputs=inputs,
                               outputs={"Out": tmp},
                               attrs=attrs)
1028
        if self.bias is not None:
S
songyouwei 已提交
1029 1030
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [tmp],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={
                                       'axis': len(input.shape) - 1,
                                       'use_mkldnn': self._use_mkldnn
                                   })
S
songyouwei 已提交
1041 1042 1043 1044 1045
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1046
class InstanceNorm(layers.Layer):
1047
    r"""
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1078
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1079 1080 1081
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1082 1083
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1084 1085 1086
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1087
             If it is set to False, will not create bias_attr. Default: None.
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1122 1123
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1124 1125 1126 1127 1128
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1129 1130 1131 1132 1133 1134 1135
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
1136 1137 1138 1139 1140
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[num_channels],
                                              dtype=self._dtype,
                                              default_initializer=Constant(0.0),
                                              is_bias=True)
C
ceci3 已提交
1141 1142 1143
        else:
            self.scale = None
            self.bias = None
1144 1145

    def forward(self, input):
1146
        if in_dygraph_mode():
1147 1148
            out = _C_ops.instance_norm(input, self.scale, self.bias,
                                       self._epsilon)
1149 1150
            return out
        if _in_legacy_dygraph():
1151 1152 1153
            out, _, _ = _legacy_C_ops.instance_norm(input, self.scale,
                                                    self.bias, 'epsilon',
                                                    self._epsilon)
1154 1155 1156 1157 1158 1159 1160
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1161 1162 1163 1164
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

1179 1180 1181 1182
        self._helper.append_op(type="instance_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
1183 1184 1185
        return instance_norm_out


M
minqiyang 已提交
1186
class BatchNorm(layers.Layer):
1187
    r"""
1188

1189 1190 1191 1192 1193
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1194 1195 1196 1197
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1198 1199
    When use_global_stats = False, the :math:`\mu_{\beta}` 
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
1200
    Calculated as follows:
1201 1202 1203

    ..  math::

1204 1205 1206 1207
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
1208

1209 1210
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1211 1212 1213

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1214 1215 1216 1217 1218 1219
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1220

1221 1222
    The normalization function formula is as follows:
 
1223 1224
    ..  math::

1225 1226 1227 1228
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

1229

1230 1231 1232
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
1233

1234
    Parameters:
1235
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1236
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1237 1238 1239
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1240 1241 1242
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1243 1244 1245
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1246
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1247 1248 1249
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1250 1251 1252 1253 1254 1255
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1256 1257
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1258
        use_global_stats(bool, optional): Whether to use global mean and
1259 1260 1261
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1262 1263 1264 1265
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1266 1267

    Returns:
1268
        None
1269 1270 1271

    Examples:
        .. code-block:: python
L
lujun 已提交
1272 1273

          import paddle.fluid as fluid
1274 1275
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1276

1277
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1278
          with fluid.dygraph.guard():
1279
              x = to_variable(x)
1280
              batch_norm = fluid.BatchNorm(10)
1281
              hidden1 = batch_norm(x)
1282 1283
    """

M
minqiyang 已提交
1284 1285 1286 1287 1288 1289 1290 1291
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1292
                 dtype='float32',
M
minqiyang 已提交
1293 1294 1295 1296
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1297
                 do_model_average_for_mean_and_var=True,
1298 1299
                 use_global_stats=False,
                 trainable_statistics=False):
1300
        super(BatchNorm, self).__init__()
1301
        self._param_attr = param_attr
1302
        self._bias_attr = bias_attr
1303
        self._act = act
1304
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1305 1306 1307

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1308 1309
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1310 1311 1312 1313 1314 1315
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1316 1317 1318 1319
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
1320
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1321

1322 1323 1324 1325
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
1326
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1327

1328 1329 1330 1331 1332 1333 1334
        self._mean = self.create_parameter(attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                           shape=param_shape,
                                           dtype=self._dtype)
1335
        self._mean.stop_gradient = True
M
minqiyang 已提交
1336

1337 1338 1339 1340 1341 1342 1343
        self._variance = self.create_parameter(attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
                                               shape=param_shape,
                                               dtype=self._dtype)
1344
        self._variance.stop_gradient = True
M
minqiyang 已提交
1345 1346

        self._in_place = in_place
1347
        self._data_layout = data_layout
M
minqiyang 已提交
1348 1349 1350
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1351
        self._fuse_with_relu = False
M
minqiyang 已提交
1352
        self._use_global_stats = use_global_stats
1353
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1354 1355 1356 1357 1358 1359 1360

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1361

J
Jiabin Yang 已提交
1362
        if _non_static_mode():
H
hong 已提交
1363
            if in_dygraph_mode():
1364
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
H
hong 已提交
1365 1366 1367 1368
                    input, self.weight, self.bias, self._mean, self._variance,
                    self._momentum, self._epsilon, self._data_layout,
                    not self.training, self._use_global_stats,
                    self._trainable_statistics, False)
1369 1370 1371 1372
                return dygraph_utils._append_activation_in_dygraph(
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)

            elif _in_legacy_dygraph():
H
hong 已提交
1373 1374 1375 1376 1377 1378
                attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                         "is_test", not self.training, "data_layout",
                         self._data_layout, "use_mkldnn", self._use_mkldnn,
                         "fuse_with_relu", self._fuse_with_relu,
                         "use_global_stats", self._use_global_stats,
                         'trainable_statistics', self._trainable_statistics)
1379
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
H
hong 已提交
1380
                    input, self.weight, self.bias, self._mean, self._variance,
1381 1382
                    None, mean_out, variance_out, *attrs)

1383
            return dygraph_utils._append_activation_in_dygraph(
1384
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1385

1386 1387 1388
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1389 1390 1391 1392 1393 1394 1395
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1396 1397
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1398
        }
M
minqiyang 已提交
1399

1400 1401 1402 1403 1404 1405 1406 1407
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1408 1409 1410 1411
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1412 1413
        reserve_space = self._helper.create_variable_for_type_inference(
            dtype=self._helper.input_dtype(input), stop_gradient=True)
1414

1415 1416
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1417 1418 1419 1420 1421 1422 1423 1424

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1425
        if reserve_space is not None:
1426
            outputs["ReserveSpace"] = [reserve_space]
1427

1428 1429 1430 1431
        self._helper.append_op(type="batch_norm",
                               inputs=inputs,
                               outputs=outputs,
                               attrs=attrs)
M
minqiyang 已提交
1432

L
lujun 已提交
1433
        # Currently, we don't support inplace in dygraph mode
1434
        return self._helper.append_activation(batch_norm_out, self._act)
1435 1436


1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
1516 1517 1518
        # fast return for p == 0
        if self._dropout_prob == 0:
            return input
1519 1520 1521 1522 1523
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
1524 1525
            'is_test':
            not self.training if _non_static_mode() else self._is_test,
1526 1527 1528 1529 1530
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

J
Jiabin Yang 已提交
1531
        if _non_static_mode():
1532
            attrs = sum(attrs.items(), ())
1533
            out, mask = _legacy_C_ops.dropout(input, *attrs)
1534 1535 1536 1537 1538 1539
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1540 1541 1542 1543 1544 1545 1546
        self._helper.append_op(type='dropout',
                               inputs={'X': [input]},
                               outputs={
                                   'Out': [out],
                                   'Mask': [mask]
                               },
                               attrs=attrs)
1547 1548 1549
        return out


1550
class Embedding(layers.Layer):
1551
    r"""
1552 1553 1554 1555
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1556 1557
    **Embedding Layer**

Z
zhongpu 已提交
1558 1559 1560 1561 1562 1563
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1564 1565
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1566

1567
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1568 1569 1570 1571 1572 1573 1574
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1575 1576
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1590

1591
    Parameters:
L
lujun 已提交
1592 1593
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1612
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1613 1614 1615
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1616

Z
zhongpu 已提交
1617 1618
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1619

1620
    Returns:
Z
zhongpu 已提交
1621
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1622 1623

    Examples:
1624

1625 1626
        .. code-block:: python

L
lujun 已提交
1627 1628 1629 1630
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1631
          # example 1
1632 1633
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1634 1635
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1636
              emb = fluid.dygraph.Embedding(
1637 1638 1639
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1640
              static_rlt3 = emb(base.to_variable(inp_word))
1641
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1656 1657
    """

1658 1659 1660 1661 1662 1663 1664
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1665
        super(Embedding, self).__init__()
1666 1667 1668 1669
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1670
            size[0] + padding_idx)
1671 1672 1673

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1674
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1675 1676 1677
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1678 1679 1680 1681
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._size,
                                            dtype=self._dtype,
                                            is_bias=False)
1682 1683

    def forward(self, input):
J
Jiabin Yang 已提交
1684
        if _non_static_mode():
1685 1686 1687 1688
            return _legacy_C_ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)
1689

1690 1691 1692
        check_variable_and_dtype(input, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'Embedding')
1693 1694 1695 1696 1697 1698
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1699

1700
        out = self._helper.create_variable_for_type_inference(self._dtype)
1701 1702 1703 1704 1705 1706 1707
        self._helper.append_op(type='lookup_table_v2',
                               inputs={
                                   'Ids': input,
                                   'W': self.weight
                               },
                               outputs={'Out': out},
                               attrs=attrs)
1708 1709

        return out
M
minqiyang 已提交
1710 1711


1712
class LayerNorm(layers.Layer):
1713
    r"""
1714 1715 1716 1717
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1718 1719 1720
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1721
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1722

1723
    The formula is as follows:
1724

1725
    ..  math::
1726

1727
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1728

1729
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1730

1731
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1732

1733 1734 1735 1736 1737
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1738

1739
    Parameters:
1740 1741 1742 1743
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1744
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1745
            normalization. Default: True.
1746
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1747
            normalization. Default: True.
1748
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1749
            division by zero. Default: 1e-05.
1750
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1751 1752 1753
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1754
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1755
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1756 1757 1758
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1759
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1760
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1761
                  Default: None.
1762 1763
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1764
    Returns:
1765
        None
1766

1767
    Examples:
1768

1769 1770 1771
        .. code-block:: python

          import paddle.fluid as fluid
1772
          from paddle.fluid.dygraph.base import to_variable
1773 1774
          import numpy

1775
          x = numpy.random.random((3, 32, 32)).astype('float32')
1776
          with fluid.dygraph.guard():
1777
              x = to_variable(x)
1778
              layerNorm = fluid.LayerNorm([32, 32])
1779
              ret = layerNorm(x)
1780

1781
    """
1782

1783
    def __init__(self,
1784
                 normalized_shape,
1785 1786 1787 1788 1789
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1790 1791 1792 1793 1794
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1795

1796
        self._normalized_shape = list(normalized_shape)
1797 1798 1799 1800 1801 1802
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1803 1804
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1805
        if self._scale:
1806
            self.weight = self.create_parameter(
1807 1808 1809 1810
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1811 1812
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1813
                logging.warn("param_attr are only available with scale is True")
1814
            self.weight = None
1815

1816 1817
        if self._shift:
            assert self._bias_attr is not False
1818 1819 1820 1821
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=param_shape,
                                              dtype=self._dtype,
                                              is_bias=True)
1822 1823
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1824
                logging.warn("bias_attr are only available with shift is True")
1825
            self.bias = None
1826 1827

    def forward(self, input):
1828 1829 1830 1831 1832 1833 1834
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
1835 1836 1837 1838 1839
            raise ValueError('Given normalized_shape is ' +
                             str_normalized_shape +
                             ', expected input with shape [*, ' +
                             str_normalized_shape[1:] +
                             ', but got input shape ' + str(input_shape))
1840

J
Jiabin Yang 已提交
1841
        if _non_static_mode():
H
hong 已提交
1842
            if in_dygraph_mode():
1843 1844 1845
                pre_act, _, _, = _C_ops.layer_norm(input, self.weight,
                                                   self.bias, self._epsilon,
                                                   self._begin_norm_axis, False)
H
hong 已提交
1846 1847 1848
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
            else:
1849 1850 1851
                pre_act, _, _ = _legacy_C_ops.layer_norm(
                    input, self.weight, self.bias, 'epsilon', self._epsilon,
                    'begin_norm_axis', self._begin_norm_axis)
H
hong 已提交
1852 1853
                return dygraph_utils._append_activation_in_dygraph(
                    pre_act, act=self._act)
1854

1855 1856 1857
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1858
        inputs = dict()
1859
        inputs['X'] = [input]
1860
        if self._scale:
1861
            inputs['Scale'] = [self.weight]
1862
        if self._shift:
1863 1864 1865 1866 1867 1868
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1869 1870 1871 1872 1873 1874 1875 1876
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        self._helper.append_op(type="layer_norm",
                               inputs=inputs,
                               outputs={
                                   "Y": layer_norm_out,
                                   "Mean": mean_out,
                                   "Variance": variance_out,
                               },
                               attrs={
                                   "epsilon": self._epsilon,
                                   "begin_norm_axis": self._begin_norm_axis
                               })
1888

1889
        return self._helper.append_activation(layer_norm_out, act=self._act)
1890 1891


M
minqiyang 已提交
1892 1893 1894
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1895 1896 1897 1898 1899
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1910
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1936
    Parameters:
L
lujun 已提交
1937
        size (int): The input dimension value.
D
DuYao 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1947 1948 1949 1950


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1951 1952 1953 1954
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1955 1956 1957 1958 1959
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1960
            is initialized zero. The default value is None.
L
lujun 已提交
1961
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1962
                             The default value is 'tanh'.
L
lujun 已提交
1963
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1964 1965 1966
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1967

D
DuYao 已提交
1968 1969 1970 1971
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1972

M
minqiyang 已提交
1973
    Returns:
D
DuYao 已提交
1974 1975 1976 1977
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1991
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1992 1993 1994
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1995
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1996 1997 1998
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
2009
        super(GRUUnit, self).__init__()
2010
        self._bias_attr = bias_attr
M
minqiyang 已提交
2011 2012 2013 2014
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
2015 2016
            relu=3,
        )
H
Hongyu Liu 已提交
2017 2018
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
2019

M
minqiyang 已提交
2020
        self._dtype = dtype
M
minqiyang 已提交
2021 2022
        size = size // 3
        # create weight
2023 2024 2025
        self.weight = self.create_parameter(attr=param_attr,
                                            shape=[size, 3 * size],
                                            dtype=dtype)
M
minqiyang 已提交
2026 2027

        # create bias
M
minqiyang 已提交
2028
        bias_size = [1, 3 * size]
2029
        self._bias_size = bias_size
2030 2031 2032 2033
        self.bias = self.create_parameter(attr=bias_attr,
                                          shape=bias_size,
                                          dtype=dtype,
                                          is_bias=True)
M
minqiyang 已提交
2034

M
minqiyang 已提交
2035
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
2036
        if _non_static_mode():
2037
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
2038 2039 2040 2041
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

2042 2043 2044 2045
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
2046 2047 2048 2049 2050
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
2051
        if self.bias is not None:
2052
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2053 2054 2055 2056 2057
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        self._helper.append_op(type='gru_unit',
                               inputs=inputs,
                               outputs={
                                   'Gate': gate,
                                   'ResetHiddenPrev': reset_hidden_pre,
                                   'Hidden': updated_hidden,
                               },
                               attrs={
                                   'activation': self.activation,
                                   'gate_activation': self.gate_activation,
                               })
M
minqiyang 已提交
2069 2070

        return updated_hidden, reset_hidden_pre, gate
2071 2072 2073 2074


class NCE(layers.Layer):
    """
2075 2076 2077 2078 2079
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2080
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2081

2082
    Parameters:
2083 2084
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2085
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2086 2087 2088
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2089
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2090 2091 2092 2093
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2094
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2095
        sampler (str, optional): The sampler used to sample class from negative classes.
2096 2097
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2098
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2099
                       It is used when sampler is set to 'custom_dist'.
2100
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2101
                       Default: None.
2102 2103
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2104
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2105

2106 2107
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2108

2109 2110
        **bias** (Parameter or None): the learnable bias of this layer.
    
2111
    Returns:
2112
        None
2113 2114 2115 2116

    Examples:
        .. code-block:: python

2117 2118 2119
            import numpy as np
            import paddle.fluid as fluid

2120
            window_size = 5
2121 2122
            dict_size = 20
            label_word = int(window_size // 2) + 1
2123
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2145
                nce = fluid.NCE(
2146
                             num_total_classes=dict_size,
2147
                             dim=embs3.shape[1],
2148 2149 2150 2151 2152 2153 2154
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2155 2156
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2157 2158 2159 2160 2161

    """

    def __init__(self,
                 num_total_classes,
2162
                 dim,
2163
                 sample_weight=None,
2164 2165 2166 2167 2168 2169
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2170 2171 2172
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2173 2174 2175
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2176
        self._dtype = dtype
2177
        self._inputs = dict()
2178
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2266
        self.weight = self.create_parameter(
2267 2268 2269
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2270
            dtype=self._dtype)
2271
        if self._bias_attr:
2272
            self.bias = self.create_parameter(
2273 2274 2275
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2276
                dtype=self._dtype)
2277 2278
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2279

2280
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
2281
        if _non_static_mode():
W
Weilong Wu 已提交
2282 2283 2284 2285 2286
            attrs = ('num_total_classes', self._attrs['num_total_classes'],
                     'num_neg_samples', self._attrs['num_neg_samples'], 'seed',
                     self._attrs['seed'], 'sampler', self._attrs['sampler'],
                     'is_sparse', self._attrs['is_sparse'], 'remote_prefetch',
                     self._attrs['remote_prefetch'])
2287 2288 2289 2290 2291 2292
            cost, _, _ = _legacy_C_ops.nce(input, label, self.weight, self.bias,
                                           self._inputs['SampleWeight'],
                                           self._inputs['CustomDistProbs'],
                                           self._inputs['CustomDistAlias'],
                                           self._inputs['CustomDistAliasProbs'],
                                           *attrs)
W
Weilong Wu 已提交
2293 2294
            return cost / (self._num_neg_samples + 1)

2295 2296 2297 2298
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

2313 2314 2315 2316 2317 2318 2319 2320
        self._helper.append_op(type='nce',
                               inputs=self._inputs,
                               outputs={
                                   'Cost': cost,
                                   'SampleLogits': sample_logits,
                                   'SampleLabels': sample_labels
                               },
                               attrs=self._attrs)
2321 2322 2323 2324
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2325
    r"""
2326 2327 2328 2329
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2330 2331 2332 2333 2334
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2335
    Parameters:
L
lujun 已提交
2336
        mode (str): The mode for weight sharing. It supports all, channel
2337 2338 2339
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2340 2341 2342
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2343
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2344 2345
          This argument is required when mode is "element".
          Default: None.
2346 2347
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2348
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2349

2350 2351 2352
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2353
    Returns:
2354
        None
2355 2356 2357 2358 2359

    Examples:

        .. code-block:: python

L
lujun 已提交
2360
          import paddle.fluid as fluid
2361
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2362 2363 2364 2365
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2366
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2378
                 input_shape=inp_np.shape,
L
lujun 已提交
2379
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2380
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2381

2382 2383
    """

S
songyouwei 已提交
2384 2385 2386 2387 2388
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2389
                 dtype='float32'):
2390 2391
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2392 2393
        self._mode = mode
        self._param_attr = param_attr
2394
        self._dtype = dtype
S
songyouwei 已提交
2395 2396 2397 2398 2399 2400
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2401
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
2402
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
2403
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2404 2405
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2406
        elif mode == 'element':
2407 2408 2409 2410
            assert isinstance(
                input_shape,
                (list, tuple
                 )), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
2411 2412 2413
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2414 2415 2416 2417 2418
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=self._alpha_shape,
                                            dtype='float32',
                                            is_bias=False,
                                            default_initializer=Constant(1.0))
2419 2420

    def forward(self, input):
2421
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2422
        out = self._helper.create_variable_for_type_inference(self._dtype)
2423 2424 2425 2426 2427 2428 2429
        self._helper.append_op(type="prelu",
                               inputs={
                                   "X": input,
                                   'Alpha': self.weight
                               },
                               attrs={"mode": self._mode},
                               outputs={"Out": out})
2430 2431 2432 2433
        return out


class BilinearTensorProduct(layers.Layer):
2434
    r"""
2435

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2449
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2450

2451
    Parameters:
2452 2453 2454 2455 2456
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2457 2458 2459 2460
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2461
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2462
           If it is set to None, the bias is initialized zero. The default value is None.
2463
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2464

D
DuYao 已提交
2465 2466 2467 2468
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2469

2470
    Returns:
W
wanghuancoder 已提交
2471
       Tensor: A 2-D Tensor of shape [batch_size, size].
2472 2473 2474 2475

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2485

2486 2487 2488
    """

    def __init__(self,
2489 2490 2491
                 input1_dim,
                 input2_dim,
                 output_dim,
2492 2493 2494
                 name=None,
                 act=None,
                 param_attr=None,
2495 2496 2497
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2498 2499 2500 2501
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2502 2503 2504
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2505
        self._inputs = dict()
2506
        self._dtype = dtype
2507

2508
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2509 2510 2511 2512
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
2513
        bias_size = [1, self._output_dim]
2514 2515 2516 2517 2518 2519 2520 2521
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=bias_size,
                                          dtype=self._dtype,
                                          is_bias=True)

    @deprecated(since="2.0.0",
                update_to="paddle.nn.Bilinear",
                reason="New name and new args in Bilinear, easier to use.")
2522
    def forward(self, x, y):
2523 2524 2525 2526
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2527
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2528
        if self.bias is not None:
2529
            self._inputs["Bias"] = self.bias
2530
        if self._name is not None:
2531 2532 2533 2534
            out = self._helper.create_variable(name=".".join(
                [self.full_name(), self._name]),
                                               dtype=self._dtype,
                                               persistable=False)
2535
        else:
2536 2537 2538 2539 2540
            out = self._helper.create_variable(dtype=self._dtype,
                                               persistable=False)
        self._helper.append_op(type="bilinear_tensor_product",
                               inputs=self._inputs,
                               outputs={"Out": out})
2541 2542

        # add activation
2543
        return self._helper.append_activation(out, act=self._act)
2544 2545 2546


class Conv2DTranspose(layers.Layer):
2547
    r"""
2548 2549
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2550
    The convolution2D transpose layer calculates the output based on the input,
2551 2552 2553
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2554 2555
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2556 2557
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2558 2559 2560
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2561 2562
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2563 2564 2565 2566 2567 2568 2569 2570 2571

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2572 2573
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2574
    * :math:`\\ast`: Convolution operation.
2575
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2600
    Parameters:
2601
        num_channels(int): The number of channels in the input image.
2602
        num_filters(int): The number of the filter. It is as same as the output
2603
            feature map.
2604 2605 2606
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2607
        output_size(int or tuple, optional): The output image size. If output size is a
2608 2609 2610
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2611
            should follow the formula above. Default: None.
2612
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2613
            contain two integers, (padding_H, padding_W). Otherwise, the
2614 2615
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2616
            contain two integers, (stride_H, stride_W). Otherwise, the
2617 2618
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2619
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2620
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2621
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2622 2623 2624 2625
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2626 2627
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2628 2629 2630
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2631
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2632 2633 2634 2635
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2636
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2637
            library is installed. Default: True.
2638
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2639
            Default: None.
2640
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2641

2642 2643
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2644

2645
        **bias** (Parameter or None): the learnable bias of this layer.
2646

2647 2648
    Returns:
        None
2649 2650 2651 2652

    Examples:
       .. code-block:: python

2653
          import paddle.fluid as fluid
2654
          import numpy as np
2655 2656

          with fluid.dygraph.guard():
2657
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2658
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2659
                    num_channels=32, num_filters=2, filter_size=3)
2660 2661
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2662 2663 2664
    """

    def __init__(self,
2665
                 num_channels,
2666
                 num_filters,
2667
                 filter_size,
2668 2669 2670 2671 2672 2673 2674 2675
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2676 2677 2678
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2679 2680 2681
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2682
        self._act = act
2683
        self._groups = groups
2684
        self._num_channels = num_channels
2685 2686 2687 2688 2689 2690 2691
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2692
        self._dtype = dtype
2693

2694 2695 2696
        if (self._num_channels == self._groups
                and self._num_filters == self._num_channels
                and not self._use_cudnn):
2697
            self._op_type = 'depthwise_conv2d_transpose'
2698 2699
        else:
            self._op_type = 'conv2d_transpose'
2700 2701 2702 2703 2704

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2705 2706
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2718
        filter_shape = [self._num_channels, self._num_filters // self._groups
2719 2720
                        ] + self._filter_size

2721 2722 2723
        self.weight = self.create_parameter(dtype=self._dtype,
                                            shape=filter_shape,
                                            attr=self._param_attr)
2724

2725 2726 2727 2728
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2729

2730
    def forward(self, input):
J
Jiabin Yang 已提交
2731
        if _non_static_mode():
2732
            op = getattr(_legacy_C_ops, self._op_type)
2733 2734 2735 2736 2737
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
2738 2739 2740 2741
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               act=self._act)
2742

2743 2744 2745 2746
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2757 2758
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
2759 2760 2761 2762
        self._helper.append_op(type=self._op_type,
                               inputs=inputs,
                               outputs={'Output': pre_bias},
                               attrs=attrs)
2763

2764
        if self.bias is not None:
2765 2766
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2767 2768 2769 2770 2771 2772 2773
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2774 2775 2776 2777
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2778 2779 2780 2781 2782 2783 2784 2785 2786
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2787
    Parameters:
L
lujun 已提交
2788
        name_scope(str): The name of this class.
2789
        num_filters (int): number of filters.
L
lujun 已提交
2790 2791 2792
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2805 2806 2807 2808
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2822
        assert not _non_static_mode(
2823
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2824 2825 2826 2827 2828 2829 2830
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2831
        self._act = act
2832

2833
    def _build_once(self, input):
2834 2835
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2836 2837 2838
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype)
2839

2840 2841 2842 2843
        self.bias = self.create_parameter(attr=self._bias_attr,
                                          shape=[self._num_filters],
                                          dtype=self._dtype,
                                          is_bias=True)
2844

2845 2846
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
        self._helper.append_op(type='sequence_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight],
                               },
                               outputs={"Out": pre_bias},
                               attrs={
                                   'contextStride': self._filter_stride,
                                   'contextStart': -int(self._filter_size // 2),
                                   'contextLength': self._filter_size
                               })
2858

2859
        if self.bias is not None:
2860 2861
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
2862 2863 2864 2865 2866 2867 2868
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [pre_bias],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_act]},
                                   attrs={'axis': 1})
2869 2870 2871 2872
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2873 2874 2875


class RowConv(layers.Layer):
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2894
    Parameters:
L
lujun 已提交
2895
        name_scope(str): The name of this class.
2896 2897 2898
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2899 2900
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2901

2902 2903 2904
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2905
    Returns:
L
lujun 已提交
2906 2907
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2923 2924 2925 2926 2927
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
J
Jiabin Yang 已提交
2928
        assert not _non_static_mode(
2929
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2930 2931 2932 2933 2934
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2935
    def _build_once(self, input):
L
lujun 已提交
2936 2937
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2938 2939 2940 2941
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=filter_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
2942 2943 2944

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
2945 2946 2947 2948 2949 2950
        self._helper.append_op(type='row_conv',
                               inputs={
                                   'X': [input],
                                   'Filter': [self.weight]
                               },
                               outputs={'Out': [out]})
L
lujun 已提交
2951 2952 2953 2954 2955
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2956 2957 2958 2959
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2960 2961 2962 2963 2964 2965
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2966
        channels(int): The number of channels of input.
2967 2968 2969 2970 2971 2972 2973 2974 2975
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2976
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2990
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2991
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2992 2993 2994 2995

    """

    def __init__(self,
2996
                 channels,
L
lujun 已提交
2997 2998 2999 3000 3001
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
3002 3003 3004
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
3005 3006 3007
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
3008
        self._channels = channels
L
lujun 已提交
3009 3010
        self._groups = groups
        self._act = act
3011
        self._dtype = dtype
L
lujun 已提交
3012 3013 3014
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

3015
        param_shape = [self._channels]
L
lujun 已提交
3016

3017 3018 3019 3020
        self.weight = self.create_parameter(attr=self._param_attr or False,
                                            shape=param_shape,
                                            dtype=self._dtype,
                                            default_initializer=Constant(1.0))
3021

3022 3023 3024 3025
        self.bias = self.create_parameter(attr=self._bias_attr or False,
                                          shape=param_shape,
                                          dtype=self._dtype,
                                          is_bias=True)
L
lujun 已提交
3026 3027

    def forward(self, input):
3028 3029 3030 3031
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
3032
        if in_dygraph_mode():
3033 3034
            out = _C_ops.group_norm(input, self.weight, self.bias,
                                    self._epsilon, self._groups, "NCHW")
3035

3036 3037 3038
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
3039
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
3040 3041
            out, _, _ = _legacy_C_ops.group_norm(input, self.weight, self.bias,
                                                 mean_out, variance_out, *attrs)
3042 3043

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
            self._helper.append_op(type="group_norm",
                                   inputs=inputs,
                                   outputs={
                                       "Y": group_norm_out,
                                       "Mean": mean_out,
                                       "Variance": variance_out,
                                   },
                                   attrs={
                                       "epsilon": self._epsilon,
                                       "groups": self._groups
                                   })
J
Jiabin Yang 已提交
3066 3067

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
3068 3069 3070


class SpectralNorm(layers.Layer):
3071
    r"""
3072 3073
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3084
    :attr:`power_iters` should be a positive integer, do following
3085 3086 3087 3088
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

3089
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
3090

3091
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
3092 3093 3094 3095 3096 3097 3098 3099

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

3100
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
3101 3102 3103 3104


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3105
    Parameters:
3106
        weight_shape(list or tuple): The shape of weight parameter.
3107 3108 3109 3110
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3111
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3112 3113

    Returns:
3114
        None
3115 3116 3117 3118

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3119 3120
            import paddle
            x = paddle.rand((2,8,32,32))
3121

C
Chen Long 已提交
3122 3123 3124 3125
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3126 3127 3128

    """

3129 3130 3131 3132 3133 3134 3135
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3136 3137 3138
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3139
        self._dtype = dtype
L
lujun 已提交
3140

3141
        self._weight_shape = list(weight_shape)
3142 3143 3144 3145 3146 3147
        assert np.prod(self._weight_shape) > 0,\
            "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), \
            ("The input `dim` should be less than the "
            "length of `weight_shape`, but received dim="
            "{}".format(dim))
3148 3149
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3150

3151 3152 3153 3154 3155
        self.weight_u = self.create_parameter(attr=ParamAttr(),
                                              shape=[h],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3156
        self.weight_u.stop_gradient = True
L
lujun 已提交
3157

3158 3159 3160 3161 3162
        self.weight_v = self.create_parameter(attr=ParamAttr(),
                                              shape=[w],
                                              dtype=self._dtype,
                                              default_initializer=Normal(
                                                  0., 1.))
3163
        self.weight_v.stop_gradient = True
L
lujun 已提交
3164 3165

    def forward(self, weight):
3166 3167
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3168
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3169
        out = self._helper.create_variable_for_type_inference(self._dtype)
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
        self._helper.append_op(type="spectral_norm",
                               inputs=inputs,
                               outputs={
                                   "Out": out,
                               },
                               attrs={
                                   "dim": self._dim,
                                   "power_iters": self._power_iters,
                                   "eps": self._eps,
                               })
L
lujun 已提交
3180 3181 3182 3183 3184

        return out


class TreeConv(layers.Layer):
3185
    """
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3196
        feature_size(int): last dimension of nodes_vector.
3197 3198 3199 3200 3201 3202 3203
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3204
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3205

3206 3207
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3208

3209
        **bias** (Parameter or None): the learnable bias of this layer.
3210

3211 3212
    Returns:
        None
L
lujun 已提交
3213

3214
    Examples:
L
lujun 已提交
3215

3216
        .. code-block:: python
3217

3218 3219
          import paddle.fluid as fluid
          import numpy
3220

3221 3222 3223 3224
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3225
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3226
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3227 3228
    """

L
lujun 已提交
3229
    def __init__(self,
3230
                 feature_size,
L
lujun 已提交
3231 3232 3233 3234 3235 3236
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3237 3238 3239
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3240
        self._name = name
3241
        self._feature_size = feature_size
L
lujun 已提交
3242 3243 3244 3245 3246 3247
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3248 3249
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3250
        if self._bias_attr:
3251 3252 3253 3254 3255 3256 3257 3258
            self.bias = self.create_parameter(attr=self._bias_attr,
                                              shape=[self._num_filters],
                                              dtype=self._dtype,
                                              is_bias=True)
        self.weight = self.create_parameter(attr=self._param_attr,
                                            shape=w_shape,
                                            dtype=self._dtype,
                                            is_bias=False)
L
lujun 已提交
3259 3260

    def forward(self, nodes_vector, edge_set):
3261 3262
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3263
        if self._name:
3264 3265 3266
            out = self.create_variable(name=self._name,
                                       dtype=self._dtype,
                                       persistable=False)
L
lujun 已提交
3267 3268 3269
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
        self._helper.append_op(type='tree_conv',
                               inputs={
                                   'NodesVector': nodes_vector,
                                   'EdgeSet': edge_set,
                                   'Filter': self.weight
                               },
                               outputs={
                                   'Out': out,
                               },
                               attrs={'max_depth': self._max_depth})
L
lujun 已提交
3280 3281 3282
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
3283 3284 3285 3286 3287 3288 3289
            self._helper.append_op(type='elementwise_add',
                                   inputs={
                                       'X': [out],
                                       'Y': [self.bias]
                                   },
                                   outputs={'Out': [pre_activation]},
                                   attrs={'axis': 1})
L
lujun 已提交
3290 3291 3292
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3316
          inp_np = paddle.to_tensor(inp_np)
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3328 3329 3330
        out = paddle.tensor.manipulation.flatten(input,
                                                 start_axis=self.start_axis,
                                                 stop_axis=self.stop_axis)
3331
        return out