nn.py 133.8 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import paddle.utils.deprecated as deprecated
35

36
__all__ = [
37
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
38 39
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
40
    'SpectralNorm', 'TreeConv', 'Flatten'
41
]
M
minqiyang 已提交
42 43


X
Xin Pan 已提交
44
class Conv2D(layers.Layer):
45
    """
46 47
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
48 49 50
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
51 52 53
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
54
    and W is the width of the filter. If the groups is greater than 1,
55
    C will equal the number of input feature map divided by the groups.
56
    Please refer to UFLDL's `convolution
57
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
58
    for more details.
59 60 61 62 63 64 65 66
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

67
        Out = \\sigma (W \\ast X + b)
68 69 70

    Where:

71 72
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
73
    * :math:`\\ast`: Convolution operation.
74
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

97
    Parameters:
98
        num_channels(int): The number of channels in the input image.
99
        num_filters(int): The number of filter. It is as same as the output
100 101
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
102 103
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
104
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
105
            contain two integers, (stride_H, stride_W). Otherwise, the
106 107
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
108
            contain two integers, (padding_H, padding_W). Otherwise, the
109 110
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
111
            contain two integers, (dilation_H, dilation_W). Otherwise, the
112
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
113
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
114 115 116
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
117 118
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
119 120 121 122
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
123
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
124 125 126 127
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
128 129 130 131 132
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
133

134 135 136 137
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
138

139 140 141
    Returns:
        None
    
142
    Raises:
143
        ValueError: if ``use_cudnn`` is not a bool value.
144 145 146

    Examples:
        .. code-block:: python
L
lujun 已提交
147

148 149 150 151 152
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

153
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
154
          with fluid.dygraph.guard():
155
              conv2d = Conv2D(3, 2, 3)
156 157
              data = to_variable(data)
              conv = conv2d(data)
158 159 160

    """

M
minqiyang 已提交
161
    def __init__(self,
162
                 num_channels,
M
minqiyang 已提交
163 164 165 166 167 168 169 170
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
171 172 173
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
174
        assert param_attr is not False, "param_attr should not be False here."
175 176
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
177 178 179 180
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
181
        self._act = act
M
minqiyang 已提交
182 183 184
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
185
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
186 187 188 189 190
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
191

192
        if (self._num_channels == self._groups and
193 194
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
195 196 197
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
198

199
        self._num_channels = num_channels
200 201
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
202
        else:
203
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
204
                raise ValueError("num_channels must be divisible by groups.")
205 206
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
207
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
208 209

        def _get_default_param_initializer():
210 211
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
212 213 214
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

215
        self.weight = self.create_parameter(
216
            attr=self._param_attr,
M
minqiyang 已提交
217 218 219 220
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

221
        self.bias = self.create_parameter(
222 223
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
224 225
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
226 227

    def forward(self, input):
228 229 230
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
231 232
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
233 234 235
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

236 237 238 239
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
240 241
        inputs = {
            'Input': [input],
242
            'Filter': [self.weight],
243 244 245 246 247 248 249
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
250
            'use_mkldnn': self._use_mkldnn,
251
        }
252 253 254

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
255 256 257
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
258 259 260 261
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
262
                'Filter': self.weight,
M
minqiyang 已提交
263
            },
M
minqiyang 已提交
264
            outputs={"Output": pre_bias},
265
            attrs=attrs)
M
minqiyang 已提交
266

267
        if self.bias is not None:
268 269 270 271 272
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
273
                        'Y': [self.bias]},
274
                outputs={'Out': [pre_act]},
275 276
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
277 278
        else:
            pre_act = pre_bias
M
minqiyang 已提交
279

L
lujun 已提交
280
        # Currently, we don't support inplace in dygraph mode
281
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
282 283


L
lujun 已提交
284
class Conv3D(layers.Layer):
285 286 287 288 289
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
290 291
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
292 293 294 295 296 297 298 299 300 301 302 303 304 305
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
306
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

332
    Parameters:
333
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
334
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
335
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
336
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
337 338 339
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
340
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
341 342
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
343
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
344 345
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
346
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
347
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
348
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
349 350 351
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
352 353
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
354 355 356
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
357 358
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
359 360 361
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
362 363 364 365 366
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
367
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
368

D
DuYao 已提交
369 370 371 372
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
373

374
    Returns:
D
DuYao 已提交
375
        None.
376 377 378 379 380 381 382 383

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

384 385 386 387 388 389
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
390
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
391 392
              ret = conv3d(fluid.dygraph.base.to_variable(data))

393 394
    """

L
lujun 已提交
395
    def __init__(self,
396
                 num_channels,
L
lujun 已提交
397 398 399 400 401 402 403 404 405
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
406 407
                 act=None,
                 dtype='float32'):
L
lujun 已提交
408
        assert param_attr is not False, "param_attr should not be False here."
409 410
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
411 412 413
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
414
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
415 416
        self._act = act
        self._use_cudnn = use_cudnn
417 418 419 420
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
421
        self._dtype = dtype
422 423

        if self._groups is None:
424
            num_filter_channels = self._num_channels
L
lujun 已提交
425
        else:
426
            if self._num_channels % self._groups != 0:
L
lujun 已提交
427
                raise ValueError("num_channels must be divisible by groups.")
428
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
429

430 431
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
432 433 434

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
435
                2] * self._num_channels
L
lujun 已提交
436 437 438
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

439
        self.weight = self.create_parameter(
440
            attr=self._param_attr,
L
lujun 已提交
441 442 443 444
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

445
        self.bias = self.create_parameter(
446 447
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
448 449 450 451 452 453 454 455
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
456
            type='conv3d',
L
lujun 已提交
457 458
            inputs={
                'Input': input,
459
                'Filter': self.weight,
L
lujun 已提交
460 461 462 463 464 465 466 467 468 469 470
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

471
        if self.bias is not None:
472 473 474 475 476
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
477
                        'Y': [self.bias]},
478 479 480 481
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
482 483 484 485 486

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
552

553
    Parameters:
554
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
555 556
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
557
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
558
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
559
            Otherwise, the filter will be a square.
D
DuYao 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
575
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
576
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
577
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
578 579 580 581
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
582 583
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
584 585
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
586 587
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
588 589 590
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
591 592 593 594 595 596 597
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
598

D
DuYao 已提交
599 600 601 602
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
603

L
lujun 已提交
604
    Returns:
D
DuYao 已提交
605
        None.
L
lujun 已提交
606 607 608 609 610 611 612 613

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

614 615 616 617 618 619
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
620
                    num_channels=3,
621 622 623 624 625
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
626 627
    """

L
lujun 已提交
628
    def __init__(self,
629
                 num_channels,
L
lujun 已提交
630
                 num_filters,
631
                 filter_size,
L
lujun 已提交
632 633 634 635 636 637 638 639
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
640 641
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
642 643 644 645 646 647 648
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
649
        self._num_channels = num_channels
L
lujun 已提交
650 651 652 653 654 655
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
656
        self._dtype = dtype
L
lujun 已提交
657

658 659
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
660

661 662
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
663
        self.weight = self.create_parameter(
L
lujun 已提交
664
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
665 666 667 668 669
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
670 671 672 673 674 675 676

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
677
                    'Filter': [self.weight]},
L
lujun 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
693
                        'Y': [self.bias]},
L
lujun 已提交
694 695 696 697 698 699 700 701 702
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
703
class Pool2D(layers.Layer):
704
    """
705

706 707 708 709 710
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
711 712
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
713

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

758
    Parameters:
759
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
760
            it must contain two integers, (pool_size_Height, pool_size_Width).
761 762 763 764
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
765
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
766 767 768
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
769
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
770 771 772 773 774 775 776
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
777 778 779 780
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
781 782

    Returns:
783
        None
784 785

    Raises:
786 787 788 789
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
790 791 792 793 794

    Examples:

        .. code-block:: python

L
lujun 已提交
795
          import paddle.fluid as fluid
796 797
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
798 799

          with fluid.dygraph.guard():
800
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
801
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
802 803 804
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
805
             pool2d_res = pool2d(to_variable(data))
806 807 808

    """

M
minqiyang 已提交
809 810 811 812 813 814 815 816
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
817 818 819 820
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

834 835
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

836 837 838 839 840
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

841
        super(Pool2D, self).__init__()
M
minqiyang 已提交
842 843 844 845 846 847 848 849 850 851

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
852
        self._data_format = data_format
M
minqiyang 已提交
853 854 855
        self._l_type = 'pool2d'

    def forward(self, input):
856 857 858 859 860
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
861 862
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
863 864
            return core.ops.pool2d(input, *attrs)

865 866 867 868
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

869 870 871 872 873 874 875 876
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
877
            "use_mkldnn": self._use_mkldnn,
878
            "exclusive": self._exclusive,
879
            "data_format": self._data_format,
880 881 882
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
883 884
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
885 886 887
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
888
            outputs={"Out": pool_out},
889
            attrs=attrs)
M
minqiyang 已提交
890
        return pool_out
M
minqiyang 已提交
891 892


S
songyouwei 已提交
893 894
class Linear(layers.Layer):
    """
895
    
S
songyouwei 已提交
896 897 898 899 900 901 902 903
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

904
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

963 964
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

S
songyouwei 已提交
965
    def forward(self, input):
966
        if in_dygraph_mode():
967 968
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
969 970
                            'transpose_Y', False, "alpha", 1, "use_mkldnn",
                            self._use_mkldnn)
971
            pre_act = dygraph_utils._append_bias_in_dygraph(
972 973 974 975
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
976

977 978
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
979 980 981 982

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

983
        attrs = {
S
songyouwei 已提交
984 985 986
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
987
            "use_mkldnn": self._use_mkldnn,
988 989
        }
        inputs = {"X": [input], "Y": [self.weight]}
990

S
songyouwei 已提交
991 992
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
993
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
994
        if self.bias is not None:
S
songyouwei 已提交
995 996 997 998 999 1000 1001
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1002 1003 1004 1005
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1006 1007 1008 1009 1010
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
class InstanceNorm(layers.Layer):
    """
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1043
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1044 1045 1046
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1047 1048
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1049 1050 1051
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1052
             If it is set to False, will not create bias_attr. Default: None.
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1087 1088
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1089 1090 1091 1092 1093
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1122 1123 1124 1125
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1145
class BatchNorm(layers.Layer):
1146
    """
1147 1148 1149 1150
    :alias_main: paddle.nn.BatchNorm
	:alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm
	:old_api: paddle.fluid.dygraph.BatchNorm

1151 1152 1153 1154 1155
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1156 1157 1158 1159
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1160 1161 1162
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1163 1164 1165 1166 1167 1168 1169 1170

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1171 1172
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1173 1174 1175

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1176 1177 1178 1179 1180 1181
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1182

1183 1184
    The normalization function formula is as follows:
 
1185 1186 1187
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1188 1189 1190 1191 1192 1193
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1194

1195
    Parameters:
1196
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1197
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1198 1199 1200
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1201 1202 1203
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1204 1205 1206
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1207
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1208 1209 1210
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1211 1212 1213 1214 1215 1216
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1217 1218
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1219
        use_global_stats(bool, optional): Whether to use global mean and
1220 1221 1222
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1223 1224 1225 1226
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1227 1228

    Returns:
1229
        None
1230 1231 1232

    Examples:
        .. code-block:: python
L
lujun 已提交
1233 1234

          import paddle.fluid as fluid
1235 1236
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1237

1238
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1239
          with fluid.dygraph.guard():
1240
              x = to_variable(x)
1241
              batch_norm = fluid.BatchNorm(10)
1242
              hidden1 = batch_norm(x)
1243 1244
    """

M
minqiyang 已提交
1245 1246 1247 1248 1249 1250 1251 1252
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1253
                 dtype='float32',
M
minqiyang 已提交
1254 1255 1256 1257
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1258
                 do_model_average_for_mean_and_var=True,
1259 1260
                 use_global_stats=False,
                 trainable_statistics=False):
1261
        super(BatchNorm, self).__init__()
1262
        self._param_attr = param_attr
1263
        self._bias_attr = bias_attr
1264
        self._act = act
1265
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1266 1267 1268

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1269 1270
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1271 1272 1273 1274 1275 1276
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1277
        self.weight = self.create_parameter(
1278
            attr=self._param_attr,
M
minqiyang 已提交
1279 1280 1281
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1282
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1283

1284
        self.bias = self.create_parameter(
1285
            attr=self._bias_attr,
M
minqiyang 已提交
1286 1287 1288
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1289
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1290

1291
        self._mean = self.create_parameter(
M
minqiyang 已提交
1292 1293 1294 1295 1296 1297 1298
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1299
        self._mean.stop_gradient = True
M
minqiyang 已提交
1300

1301
        self._variance = self.create_parameter(
M
minqiyang 已提交
1302 1303 1304 1305 1306 1307 1308
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1309
        self._variance.stop_gradient = True
M
minqiyang 已提交
1310 1311

        self._in_place = in_place
1312
        self._data_layout = data_layout
M
minqiyang 已提交
1313 1314 1315
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1316
        self._fuse_with_relu = False
M
minqiyang 已提交
1317
        self._use_global_stats = use_global_stats
1318
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1319 1320 1321 1322 1323 1324 1325

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1326 1327 1328

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1329
                     "is_test", not self.training, "data_layout",
1330 1331
                     self._data_layout, "use_mkldnn", self._use_mkldnn,
                     "fuse_with_relu", self._fuse_with_relu, "use_global_stats",
1332 1333
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1334
            batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
1335 1336
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
1337

1338
            return dygraph_utils._append_activation_in_dygraph(
1339
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1340

1341 1342 1343
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1344 1345 1346 1347 1348 1349 1350
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1351 1352
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1353
        }
M
minqiyang 已提交
1354

1355 1356 1357 1358 1359 1360 1361 1362
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1363 1364 1365 1366 1367 1368
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1369 1370 1371 1372 1373 1374 1375 1376 1377

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1378
        self._helper.append_op(
1379
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1380

L
lujun 已提交
1381
        # Currently, we don't support inplace in dygraph mode
1382
        return self._helper.append_activation(batch_norm_out, self._act)
1383 1384


1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1494 1495
class Embedding(layers.Layer):
    """
1496 1497 1498 1499
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1500 1501
    **Embedding Layer**

Z
zhongpu 已提交
1502 1503 1504 1505 1506 1507
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1508 1509
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1510

1511
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1512 1513 1514 1515 1516 1517 1518
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1519 1520
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1534

1535
    Parameters:
L
lujun 已提交
1536 1537
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1556
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1557 1558 1559
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1560

Z
zhongpu 已提交
1561 1562
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1563

1564
    Returns:
Z
zhongpu 已提交
1565
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1566 1567

    Examples:
1568

1569 1570
        .. code-block:: python

L
lujun 已提交
1571 1572 1573 1574
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1575
          # example 1
1576 1577
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1578 1579
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1580
              emb = fluid.dygraph.Embedding(
1581 1582 1583
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1584
              static_rlt3 = emb(base.to_variable(inp_word))
1585
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1600 1601
    """

1602 1603 1604 1605 1606 1607 1608
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1609
        super(Embedding, self).__init__()
1610 1611 1612 1613
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1614
            size[0] + padding_idx)
1615 1616 1617

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1618
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1619 1620 1621
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1622
        self.weight = self.create_parameter(
1623 1624 1625 1626 1627 1628
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1629 1630 1631 1632 1633 1634
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1635
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1636 1637 1638 1639 1640 1641
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1642

1643 1644
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1645
            type='lookup_table_v2',
1646
            inputs={'Ids': input,
1647
                    'W': self.weight},
1648
            outputs={'Out': out},
1649
            attrs=attrs)
1650 1651

        return out
M
minqiyang 已提交
1652 1653


1654
class LayerNorm(layers.Layer):
1655
    """
1656 1657 1658 1659
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1660 1661 1662
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1663
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1664

1665
    The formula is as follows:
1666

1667
    ..  math::
1668

1669
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1670

1671
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1672

1673
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1674

1675 1676 1677 1678 1679
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1680

1681
    Parameters:
1682 1683 1684 1685
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1686
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1687
            normalization. Default: True.
1688
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1689
            normalization. Default: True.
1690
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1691
            division by zero. Default: 1e-05.
1692
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1693 1694 1695
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1696
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1697
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1698 1699 1700
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1701
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1702
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1703
                  Default: None.
1704 1705
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1706
    Returns:
1707
        None
1708

1709
    Examples:
1710

1711 1712 1713
        .. code-block:: python

          import paddle.fluid as fluid
1714
          from paddle.fluid.dygraph.base import to_variable
1715 1716
          import numpy

1717
          x = numpy.random.random((3, 32, 32)).astype('float32')
1718
          with fluid.dygraph.guard():
1719
              x = to_variable(x)
1720
              layerNorm = fluid.LayerNorm([32, 32])
1721
              ret = layerNorm(x)
1722

1723
    """
1724

1725
    def __init__(self,
1726
                 normalized_shape,
1727 1728 1729 1730 1731
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1732 1733 1734 1735 1736
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1737

1738
        self._normalized_shape = list(normalized_shape)
1739 1740 1741 1742 1743 1744
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1745 1746
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1747
        if self._scale:
1748
            self.weight = self.create_parameter(
1749 1750 1751 1752
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1753 1754
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1755
                logging.warn("param_attr are only available with scale is True")
1756
            self.weight = None
1757

1758 1759
        if self._shift:
            assert self._bias_attr is not False
1760
            self.bias = self.create_parameter(
1761 1762 1763 1764
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1765 1766
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1767
                logging.warn("bias_attr are only available with shift is True")
1768
            self.bias = None
1769 1770

    def forward(self, input):
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1782 1783 1784 1785 1786 1787 1788 1789

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1790 1791 1792
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1793
        inputs = dict()
1794
        inputs['X'] = [input]
1795
        if self._scale:
1796
            inputs['Scale'] = [self.weight]
1797
        if self._shift:
1798 1799 1800 1801 1802 1803
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1825
        return self._helper.append_activation(layer_norm_out, act=self._act)
1826 1827


M
minqiyang 已提交
1828 1829 1830
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1831 1832 1833 1834 1835
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1846
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1872
    Parameters:
L
lujun 已提交
1873
        size (int): The input dimension value.
D
DuYao 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1883 1884 1885 1886


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1887 1888 1889 1890
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1891 1892 1893 1894 1895
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1896
            is initialized zero. The default value is None.
L
lujun 已提交
1897
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1898
                             The default value is 'tanh'.
L
lujun 已提交
1899
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1900 1901 1902
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1903

D
DuYao 已提交
1904 1905 1906 1907
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1908

M
minqiyang 已提交
1909
    Returns:
D
DuYao 已提交
1910 1911 1912 1913
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1927
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1928 1929 1930
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1931
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1932 1933 1934
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1945
        super(GRUUnit, self).__init__()
1946
        self._bias_attr = bias_attr
M
minqiyang 已提交
1947 1948 1949 1950 1951
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1952 1953
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1954

M
minqiyang 已提交
1955
        self._dtype = dtype
M
minqiyang 已提交
1956 1957
        size = size // 3
        # create weight
1958
        self.weight = self.create_parameter(
M
minqiyang 已提交
1959
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1960 1961

        # create bias
M
minqiyang 已提交
1962
        bias_size = [1, 3 * size]
1963
        self._bias_size = bias_size
1964
        self.bias = self.create_parameter(
M
minqiyang 已提交
1965
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1966

M
minqiyang 已提交
1967
    def forward(self, input, hidden):
1968 1969 1970 1971 1972 1973
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1974 1975 1976 1977
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1978 1979 1980 1981 1982
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1983
        if self.bias is not None:
1984
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1985 1986 1987 1988 1989
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1999 2000
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2001 2002 2003
            })

        return updated_hidden, reset_hidden_pre, gate
2004 2005 2006 2007


class NCE(layers.Layer):
    """
2008 2009 2010 2011 2012
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2013
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2014

2015
    Parameters:
2016 2017
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2018
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2019 2020 2021
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2022
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2023 2024 2025 2026
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2027
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2028
        sampler (str, optional): The sampler used to sample class from negative classes.
2029 2030
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2031
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2032
                       It is used when sampler is set to 'custom_dist'.
2033
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2034
                       Default: None.
2035 2036
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2037
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2038

2039 2040
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2041

2042 2043
        **bias** (Parameter or None): the learnable bias of this layer.
    
2044
    Returns:
2045
        None
2046 2047 2048 2049

    Examples:
        .. code-block:: python

2050 2051 2052
            import numpy as np
            import paddle.fluid as fluid

2053
            window_size = 5
2054 2055
            dict_size = 20
            label_word = int(window_size // 2) + 1
2056
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2078
                nce = fluid.NCE(
2079
                             num_total_classes=dict_size,
2080
                             dim=embs3.shape[1],
2081 2082 2083 2084 2085 2086 2087
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2088 2089
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2090 2091 2092 2093 2094

    """

    def __init__(self,
                 num_total_classes,
2095
                 dim,
2096
                 sample_weight=None,
2097 2098 2099 2100 2101 2102
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2103 2104 2105
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2106 2107 2108
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2109
        self._dtype = dtype
2110
        self._inputs = dict()
2111
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2199
        self.weight = self.create_parameter(
2200 2201 2202
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2203
            dtype=self._dtype)
2204
        if self._bias_attr:
2205
            self.bias = self.create_parameter(
2206 2207 2208
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2209
                dtype=self._dtype)
2210 2211
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2212

2213
    def forward(self, input, label, sample_weight=None):
2214 2215 2216 2217
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2246 2247 2248 2249
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2250 2251 2252 2253 2254
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2255
    Parameters:
L
lujun 已提交
2256
        mode (str): The mode for weight sharing. It supports all, channel
2257 2258 2259
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2260 2261 2262
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2263
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2264 2265
          This argument is required when mode is "element".
          Default: None.
2266 2267
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2268
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2269

2270 2271 2272
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2273
    Returns:
2274
        None
2275 2276 2277 2278 2279

    Examples:

        .. code-block:: python

L
lujun 已提交
2280
          import paddle.fluid as fluid
2281
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2282 2283 2284 2285
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2286
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2298
                 input_shape=inp_np.shape,
L
lujun 已提交
2299
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2300
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2301

2302 2303
    """

S
songyouwei 已提交
2304 2305 2306 2307 2308
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2309
                 dtype='float32'):
2310 2311
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2312 2313
        self._mode = mode
        self._param_attr = param_attr
2314
        self._dtype = dtype
S
songyouwei 已提交
2315 2316 2317 2318 2319 2320
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2321 2322 2323
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2324 2325
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2326 2327 2328 2329 2330 2331 2332
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2333
        self.weight = self.create_parameter(
2334 2335 2336 2337 2338 2339 2340
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2341
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2342 2343 2344 2345
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2346
                    'Alpha': self.weight},
2347 2348 2349 2350 2351 2352 2353
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
2354

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2368
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2369

2370
    Parameters:
2371 2372 2373 2374 2375
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2376 2377 2378 2379
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2380
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2381
           If it is set to None, the bias is initialized zero. The default value is None.
2382
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2383

D
DuYao 已提交
2384 2385 2386 2387
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2388

2389
    Returns:
W
wanghuancoder 已提交
2390
       Tensor: A 2-D Tensor of shape [batch_size, size].
2391 2392 2393 2394

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2404

2405 2406 2407
    """

    def __init__(self,
2408 2409 2410
                 input1_dim,
                 input2_dim,
                 output_dim,
2411 2412 2413
                 name=None,
                 act=None,
                 param_attr=None,
2414 2415 2416
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2417 2418 2419 2420
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2421 2422 2423
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2424
        self._inputs = dict()
2425
        self._dtype = dtype
2426

2427
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2428
        self.weight = self.create_parameter(
2429 2430 2431 2432
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2433
        bias_size = [1, self._output_dim]
2434
        self.bias = self.create_parameter(
2435 2436 2437 2438
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2439

2440 2441 2442 2443
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.")
2444
    def forward(self, x, y):
2445 2446 2447 2448
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2449
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2450
        if self.bias is not None:
2451
            self._inputs["Bias"] = self.bias
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2466
        return self._helper.append_activation(out, act=self._act)
2467 2468 2469 2470


class Conv2DTranspose(layers.Layer):
    """
2471 2472
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2473
    The convolution2D transpose layer calculates the output based on the input,
2474 2475 2476
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2477 2478
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2479 2480
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2481 2482 2483
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2484 2485
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2486 2487 2488 2489 2490 2491 2492 2493 2494

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2495 2496
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2497
    * :math:`\\ast`: Convolution operation.
2498
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2523
    Parameters:
2524
        num_channels(int): The number of channels in the input image.
2525
        num_filters(int): The number of the filter. It is as same as the output
2526
            feature map.
2527 2528 2529
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2530
        output_size(int or tuple, optional): The output image size. If output size is a
2531 2532 2533
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2534
            should follow the formula above. Default: None.
2535
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2536
            contain two integers, (padding_H, padding_W). Otherwise, the
2537 2538
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2539
            contain two integers, (stride_H, stride_W). Otherwise, the
2540 2541
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2542
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2543
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2544
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2545 2546 2547 2548
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2549 2550
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2551 2552 2553
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2554
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2555 2556 2557 2558
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2559
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2560
            library is installed. Default: True.
2561
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2562
            Default: None.
2563
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2564

2565 2566
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2567

2568
        **bias** (Parameter or None): the learnable bias of this layer.
2569

2570 2571
    Returns:
        None
2572 2573 2574 2575

    Examples:
       .. code-block:: python

2576
          import paddle.fluid as fluid
2577
          import numpy as np
2578 2579

          with fluid.dygraph.guard():
2580
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2581
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2582
                    num_channels=32, num_filters=2, filter_size=3)
2583 2584
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2585 2586 2587
    """

    def __init__(self,
2588
                 num_channels,
2589
                 num_filters,
2590
                 filter_size,
2591 2592 2593 2594 2595 2596 2597 2598
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2599 2600 2601
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2602 2603 2604
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2605
        self._act = act
2606
        self._groups = groups
2607
        self._num_channels = num_channels
2608 2609 2610 2611 2612 2613 2614
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2615
        self._dtype = dtype
2616

2617 2618 2619
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2620
            self._op_type = 'depthwise_conv2d_transpose'
2621 2622
        else:
            self._op_type = 'conv2d_transpose'
2623 2624 2625 2626 2627

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2628 2629
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2641
        filter_shape = [self._num_channels, self._num_filters // self._groups
2642 2643
                        ] + self._filter_size

2644
        self.weight = self.create_parameter(
2645
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2646

2647
        self.bias = self.create_parameter(
2648 2649 2650 2651 2652
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2653
    def forward(self, input):
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2666 2667 2668 2669
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2680 2681 2682 2683
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2684
            inputs=inputs,
2685
            outputs={'Output': pre_bias},
2686
            attrs=attrs)
2687

2688
        if self.bias is not None:
2689 2690 2691 2692 2693
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2694
                        'Y': [self.bias]},
2695 2696 2697 2698 2699 2700
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2701 2702 2703 2704 2705 2706 2707 2708 2709
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2710
    Parameters:
L
lujun 已提交
2711
        name_scope(str): The name of this class.
2712
        num_filters (int): number of filters.
L
lujun 已提交
2713 2714 2715
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2728 2729 2730 2731
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2745
        assert not in_dygraph_mode(
2746
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2747 2748 2749 2750 2751 2752 2753
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2754
        self._act = act
2755

2756
    def _build_once(self, input):
2757 2758
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2759
        self.weight = self.create_parameter(
2760
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2761

2762
        self.bias = self.create_parameter(
2763 2764 2765 2766 2767
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2768 2769 2770 2771 2772 2773
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2774
                'Filter': [self.weight],
2775 2776 2777 2778 2779 2780 2781
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2782

2783
        if self.bias is not None:
2784 2785 2786 2787 2788
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2789
                        'Y': [self.bias]},
2790 2791 2792 2793 2794 2795
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2796 2797 2798


class RowConv(layers.Layer):
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2817
    Parameters:
L
lujun 已提交
2818
        name_scope(str): The name of this class.
2819 2820 2821
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2822 2823
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2824

2825 2826 2827
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2828
    Returns:
L
lujun 已提交
2829 2830
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2846 2847 2848 2849 2850
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2851
        assert not in_dygraph_mode(
2852
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2853 2854 2855 2856 2857
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2858
    def _build_once(self, input):
L
lujun 已提交
2859 2860
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2861
        self.weight = self.create_parameter(
2862 2863 2864 2865
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2866 2867 2868 2869 2870 2871

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2872
                    'Filter': [self.weight]},
L
lujun 已提交
2873 2874 2875 2876 2877 2878
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2879 2880 2881 2882
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2883 2884 2885 2886 2887 2888
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2889
        channels(int): The number of channels of input.
2890 2891 2892 2893 2894 2895 2896 2897 2898
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2899
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2913
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2914
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2915 2916 2917 2918

    """

    def __init__(self,
2919
                 channels,
L
lujun 已提交
2920 2921 2922 2923 2924
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2925 2926 2927
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2928 2929 2930
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2931
        self._channels = channels
L
lujun 已提交
2932 2933
        self._groups = groups
        self._act = act
2934
        self._dtype = dtype
L
lujun 已提交
2935 2936 2937
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2938
        param_shape = [self._channels]
L
lujun 已提交
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2951 2952 2953

    def forward(self, input):
        inputs = {'X': input}
2954
        if self.bias is not None:
2955
            inputs['Bias'] = self.bias
2956
        if self.weight is not None:
2957
            inputs['Scale'] = self.weight
L
lujun 已提交
2958 2959

        # create output
2960
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2982
    """
2983 2984 2985 2986
    :alias_main: paddle.nn.SpectralNorm
	:alias: paddle.nn.SpectralNorm,paddle.nn.layer.SpectralNorm,paddle.nn.layer.norm.SpectralNorm
	:old_api: paddle.fluid.dygraph.SpectralNorm

2987 2988
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2999
    :attr:`power_iters` should be a positive integer, do following
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3020
    Parameters:
3021
        weight_shape(list or tuple): The shape of weight parameter.
3022 3023 3024 3025
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3026
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3027 3028

    Returns:
3029
        None
3030 3031 3032 3033 3034

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
3035
            import numpy as np
3036 3037

            with fluid.dygraph.guard():
3038 3039 3040
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
3041 3042 3043

    """

3044 3045 3046 3047 3048 3049 3050
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3051 3052 3053
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3054
        self._dtype = dtype
L
lujun 已提交
3055

3056 3057 3058
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3059

3060
        self.weight_u = self.create_parameter(
L
lujun 已提交
3061 3062 3063 3064
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3065
        self.weight_u.stop_gradient = True
L
lujun 已提交
3066

3067
        self.weight_v = self.create_parameter(
L
lujun 已提交
3068 3069 3070 3071
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3072
        self.weight_v.stop_gradient = True
L
lujun 已提交
3073 3074

    def forward(self, weight):
3075 3076
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3077
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3093
    """
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3104
        feature_size(int): last dimension of nodes_vector.
3105 3106 3107 3108 3109 3110 3111
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3112
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3113

3114 3115
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3116

3117
        **bias** (Parameter or None): the learnable bias of this layer.
3118

3119 3120
    Returns:
        None
L
lujun 已提交
3121

3122
    Examples:
L
lujun 已提交
3123

3124
        .. code-block:: python
3125

3126 3127
          import paddle.fluid as fluid
          import numpy
3128

3129 3130 3131 3132
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3133
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3134
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3135 3136
    """

L
lujun 已提交
3137
    def __init__(self,
3138
                 feature_size,
L
lujun 已提交
3139 3140 3141 3142 3143 3144
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3145 3146 3147
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3148
        self._name = name
3149
        self._feature_size = feature_size
L
lujun 已提交
3150 3151 3152 3153 3154 3155
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3156 3157
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3158
        if self._bias_attr:
3159
            self.bias = self.create_parameter(
L
lujun 已提交
3160 3161 3162 3163
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3164
        self.weight = self.create_parameter(
L
lujun 已提交
3165 3166 3167 3168 3169 3170
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3171 3172
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3184
                'Filter': self.weight
L
lujun 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3194
                        'Y': [self.bias]},
L
lujun 已提交
3195 3196 3197 3198 3199
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224


class Flatten(layers.Layer):
    """
    :alias_main: paddle.nn.Flatten
    :alias: paddle.nn.Flatten,paddle.nn.layer.Flatten,paddle.nn.layer.common.Flatten
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Equation:

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np
Z
Zhou Wei 已提交
3225
          paddle.disable_static()
3226 3227

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3228
          inp_np = paddle.to_tensor(inp_np)
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3240 3241
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3242
        return out