未验证 提交 2f49cf70 编写于 作者: H hong 提交者: GitHub

Support dygraph structuerd name (#21930)

* support dygraph structured name; test=develop

* add load static param unitest and fix save load; test=develop

* fix varBase import error; test=develop

* fix unitest error; test=develop

* add comment for parameter; test=develop

* fix uni test error; test=develop

* change parallel se-resnet; test=develop

* fix dygraph se resnext parallel test; test=develop

* remove useless code; test=develop

* remove useless code; test=develop
上级 f220be4f
develop 1.8.5 2.0.1-rocm-post 2.4.1 Ligoml-patch-1 OliverLPH-patch-1 OliverLPH-patch-2 PaddlePM-patch-1 PaddlePM-patch-2 ZHUI-patch-1 add_default_att add_kylinv10 add_model_benchmark_ci add_some_yaml_config addfile all_new_design_exec ascendrc ascendrelease bugfix-eval-frame-leakgae cherry-pick-fix-customOP-random-fail cherry_undefined_var compile_windows cp_2.4_fix_numpy delete_2.0.1-rocm-post delete_add_default_att delete_all_new_design_exec delete_ascendrc delete_compile_windows delete_delete_addfile delete_disable_iterable_dataset_unittest delete_fix_dataloader_memory_leak delete_fix_imperative_dygraph_error delete_fix_retry_ci delete_fix_undefined_var delete_improve_sccache delete_paralleltest delete_prv-disable-more-cache delete_revert-31068-fix_conv3d_windows delete_revert-31562-mean delete_revert-33630-bug-fix delete_revert-34159-add_npu_bce_logical_dev delete_revert-34910-spinlocks_for_allocator delete_revert-35069-revert-34910-spinlocks_for_allocator delete_revert-36057-dev/read_flags_in_ut dingjiaweiww-patch-1 disable_iterable_dataset_unittest dy2static enable_eager_model_test final_state_gen_python_c final_state_intermediate fix-numpy-issue fix-run-program-grad-node-mem fix_check fix_concat_slice fix_custom_device_copy_sync fix_dataloader_memory_leak fix_dlpack_for fix_imperative_dygraph_error fix_newexe_gc fix_npu_ci fix_op_flops fix_retry_ci fix_rnn_docs fix_tensor_type fix_undefined_var fix_var_stop_gradient_error fixiscan fixiscan1 fixiscan2 fixiscan3 github/fork/123malin/netifaces github/fork/123malin/tdm_abacus github/fork/AshburnLee/dev_unique github/fork/ForFishes/fix_memory_matmul github/fork/ForFishes/rm_fluid github/fork/LielinJiang/move-2.0-api github/fork/LielinJiang/visual-dl-cb github/fork/LiuChiachi/add-transformer-generate-square-subsequent-mask-api github/fork/LiuChiachi/fix-example-code-for-hapi-Model github/fork/LiuChiachi/remove-input-requirment-in-dygraph-Model github/fork/MrChengmo/fix_ps_profiler github/fork/MrChengmo/update_ps_heter github/fork/PWhiddy/patch-1 github/fork/Shixiaowei02/dev/save_load_upgrade github/fork/TCChenlong/fix_hapi github/fork/TCChenlong/fix_inden github/fork/Thunderbrook/xpu_slice github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_2 github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_3 github/fork/XieYunshen/timeout_20S_ut github/fork/ZeyuChen/remove-nltk github/fork/arlesniak/arlesniak/selective__mkldnn_flags github/fork/baiyfbupt/code_doc_mig github/fork/chalsliu/set_timeout github/fork/chen-zhiyu/develop github/fork/chenwhql/ci/try_to_find_test_buffer_shared_memory_reuse_pass_error github/fork/chenwhql/dygraph/remove_scale_loss_and_apply_collective_grads github/fork/chenwhql/saveload/add_get_inference_program github/fork/chenwhql/saveload/remove_save_load_config github/fork/cryoco/pass-compatibility-trt github/fork/danleifeng/isempty_api2.0 github/fork/frankwhzhang/api_transfer github/fork/hbwx24/error_msg/cuda_kernel_error_msg github/fork/heavengate/cherry_yolo_box github/fork/heavengate/update_yolo_box github/fork/iclementine/rnn_fix github/fork/iducn/testestse github/fork/jczaja/prv-25537-fix github/fork/jeff41404/release/1.8 github/fork/jiweibo/api_2.0 github/fork/jiweibo/fix_lite_resnet50_test github/fork/juncaipeng/fix_doc_1 github/fork/lfchener/sample_code github/fork/littletomatodonkey/fix_reg_doc github/fork/liym27/dy2stat_update_assign_to_rc20 github/fork/luotao1/profiler_ut github/fork/mapingshuo/add_wait github/fork/mapingshuo/doc_2.0 github/fork/mapingshuo/zero-0.5 github/fork/miraiwk/dev github/fork/pangyoki/add-Categorical-class-branch github/fork/pangyoki/add-multinomial-op-branch github/fork/pangyoki/fix-test_distritbution-CI github/fork/qjing666/doublegrad github/fork/qjing666/fix_hdfs_download github/fork/sandyhouse/add_gather_etc github/fork/sandyhouse/add_send_recv_alltoall_etc github/fork/sandyhouse/pipeline_exe_run github/fork/seiriosPlus/feature/large_scale_kv_save_delta github/fork/seiriosPlus/fix/paddle_errors_fix github/fork/seiriosPlus/fix/paddle_op_errors github/fork/shangzhizhou/fix_test_activation_op_random_bug github/fork/smallv0221/yxp0924 github/fork/smallv0221/yxp0925 github/fork/swtkiwi/del-matplotlib github/fork/tianshuo78520a/kunlun_test github/fork/tianshuo78520a/update_dockerfile github/fork/wanghaoshuang/bert_fuse github/fork/wanghaoshuang/label_smooth github/fork/wanghuancoder/develop_CUDASynchronize github/fork/wanghuancoder/develop_Layer_doc github/fork/wanghuancoder/develop_ParameterList_doc github/fork/wanghuancoder/develop_Sequential_doc github/fork/wanghuancoder/develop_bilinear_tensor_product github/fork/wanghuancoder/develop_coverage_build_sh github/fork/wanghuancoder/develop_in_dynamic_mode_doc github/fork/wanghuancoder/develop_unique_name_doc github/fork/wangxicoding/fleet_meta_combine github/fork/wawltor/error_message_fix_5 github/fork/willthefrog/remove_l2_norm github/fork/windstamp/momentum_op github/fork/windstamp/mv_op_5 github/fork/windstamp/normal_api github/fork/wojtuss/wojtuss/fusion_gru_quantization github/fork/wojtuss/wojtuss/quantization-with-shift github/fork/wzzju/fix_err_info github/fork/wzzju/pure_fp16 github/fork/xiemoyuan/op_error_message github/fork/xiemoyuan/optimize_error_message github/fork/yaoxuefeng6/fix_doc github/fork/yaoxuefeng6/mod_dataset_v2 github/fork/yongqiangma/lod github/fork/ysh329/fix-clip-by-norm-error github/fork/ysh329/fix-error-clip-by-value github/fork/yukavio/error_info github/fork/zhangting2020/conv_filter_grad github/fork/zhangting2020/is_compile_with_cuda github/fork/zhangting2020/place_doc github/fork/zhangting2020/program github/fork/zhhsplendid/fix_any github/fork/zhhsplendid/refine_api2 github/fork/zhhsplendid/refine_api2_test github/fork/zhhsplendid/refine_api_test_ptb_lm github/fork/zhhsplendid/refine_api_test_resnet github/fork/zhhsplendid/refine_api_test_simnet github/fork/zhiqiu/dev/refine_initializer github/fork/zhiqiu/dev/remove_inplace_argument github/fork/zlsh80826/nvinfer_plugin_var_len_cuda11 hack_event improve_sccache incuabte/new_frl incubate/frl_train_eval incubate/infrt incubate/new_frl incubate/new_frl_rc incubate/stride inplace_addto layer_norm make_flag_adding_easier matmul_double_grad move_embedding_to_phi move_histogram_to_pten move_sgd_to_phi move_slice_to_pten move_temporal_shift_to_phi move_yolo_box_to_phi npu_fix_alloc numel operator_opt paralleltest pass-compile-eval-frame preln_ernie prv-disable-more-cache prv-md-even-more prv-onednn-2.5 prv-reshape-mkldnn-ut2 pten_tensor_refactor release-deleted/2.5 release-rc/2.5 release/1.7 release/1.8 release/2.0 release/2.0-alpha release/2.0-beta release/2.0-rc release/2.0-rc1 release/2.1 release/2.2 release/2.3 release/2.3-fc-ernie-fix release/2.4 release/2.5 release/llm_2.5 revert-24981-add_device_attr_for_regulization revert-26856-strategy_example2 revert-27520-disable_pr revert-31068-fix_conv3d_windows revert-31562-mean revert-32290-develop-hardlabel revert-33037-forci revert-33475-fix_cifar_label_dimension revert-33630-bug-fix revert-34159-add_npu_bce_logical_dev revert-34406-add_copy_from_tensor revert-34910-spinlocks_for_allocator revert-35069-revert-34910-spinlocks_for_allocator revert-36057-dev/read_flags_in_ut revert-36201-refine_fast_threaded_ssa_graph_executor revert-36985-add_license revert-37318-refactor_dygraph_to_eager revert-37926-eager_coreops_500 revert-37956-revert-37727-pylayer_support_tuple revert-38100-mingdong revert-38301-allocation_rearrange_pr revert-38703-numpy_bf16_package_reupload revert-38732-remove_useless_header_in_elementwise_mul_grad revert-38959-Reduce_Grad revert-39143-adjust_empty revert-39227-move_trace_op_to_pten revert-39268-dev/remove_concat_fluid_kernel revert-40170-support_partial_grad revert-41056-revert-40727-move_some_activaion_to_phi revert-41065-revert-40993-mv_ele_floordiv_pow revert-41068-revert-40790-phi_new revert-41944-smaller_inference_api_test revert-42149-do-not-reset-default-stream-for-stream-safe-cuda-allocator revert-43155-fix_ut_tempfile revert-43882-revert-41944-smaller_inference_api_test revert-45808-phi/simplify_size_op revert-46827-deform_comment revert-47325-remove_cudnn_hardcode revert-47645-add_npu_storage_dims revert-48815-set_free_when_no_cache_hit_default_value_true revert-49499-test_ninja_on_ci revert-49654-prim_api_gen revert-49673-modify_get_single_cov revert-49763-fix_static_composite_gen revert-50158-fix_found_inf_bug_for_custom_optimizer revert-50188-refine_optimizer_create_accumulators revert-50335-fix_optminizer_set_auxiliary_var_bug revert-51676-flag_delete revert-51850-fix_softmaxce_dev revert-52175-dev_peak_memory revert-52186-deve revert-52523-test_py38 revert-52912-develop revert-53248-set_cmake_policy revert-54029-fix_windows_compile_bug revert-54068-support_translating_op_attribute revert-54214-modify_cmake_dependencies revert-54370-offline_pslib revert-54391-fix_cmake_md5error revert-54411-fix_cpp17_compile revert-54466-offline_pslib revert-54480-cmake-rocksdb revert-55568-fix_BF16_bug1 revert-56328-new_ir_support_vector_type_place_transfer revert-56366-fix_openssl_bug revert-56545-revert-56366-fix_openssl_bug revert-56620-fix_new_ir_ocr_bug revert-56925-check_inputs_grad_semantic revert-57005-refine_stride_flag rocm_dev_0217 sd_conv_linear_autocast semi-auto/rule-base support-0D-sort support_weight_transpose test_benchmark_ci test_feature_precision_test_c test_for_Filtetfiles test_model_benchmark test_model_benchmark_ci zhiqiu-patch-1 v2.5.1 v2.5.0 v2.5.0-rc1 v2.5.0-rc0 v2.4.2 v2.4.1 v2.4.0 v2.4.0-rc0 v2.3.2 v2.3.1 v2.3.0 v2.3.0-rc0 v2.2.2 v2.2.1 v2.2.0 v2.2.0-rc0 v2.2.0-bak0 v2.1.3 v2.1.2 v2.1.1 v2.1.0 v2.1.0-rc0 v2.0.2 v2.0.1 v2.0.0 v2.0.0-rc1 v2.0.0-rc0 v2.0.0-beta0 v2.0.0-alpha0 v1.8.5 v1.8.4 v1.8.3 v1.8.2 v1.8.1 v1.8.0 v1.7.2 v1.7.1 v1.7.0
2 合并请求!22487test,!22186Fix bug in reduce ops
......@@ -16,7 +16,7 @@ from __future__ import print_function
import os
import collections
from ..framework import Variable, default_main_program, in_dygraph_mode, dygraph_only, Parameter
from ..framework import Variable, default_main_program, in_dygraph_mode, dygraph_only, Parameter, ParamBase
import pickle
from . import learning_rate_scheduler
import warnings
......@@ -68,20 +68,33 @@ def save_dygraph(state_dict, model_path):
assert len(state_dict) > 0, "state_dict is empty, no need to save"
for k, v in state_dict.items():
if not isinstance(v, Parameter):
if not isinstance(v, ParamBase):
suffix = ".pdopt"
break
core._save_dygraph_dict(model_path + suffix, state_dict)
model_dict = {}
name_table = {}
for k, v in state_dict.items():
if isinstance(v, (Variable, core.VarBase)):
model_dict[k] = v.numpy()
else:
model_dict[k] = v
name_table[k] = v.name
model_dict["StructuredToParameterName@@"] = name_table
with open(model_path + suffix, 'wb') as f:
pickle.dump(model_dict, f)
@dygraph_only
def load_dygraph(model_path):
def load_dygraph(model_path, keep_name_table=False):
'''
Load parameter state_dict from disk.
Args:
model_path(str) : The file prefix store the state_dict. (The path should Not contain suffix '.pdparams')
keep_name_table(bool, optional) : Whether keep structed name to parameter name conversion table in output dict.
Default : False
Returns:
state_dict(dict) : the dict store the state_dict
......@@ -111,45 +124,15 @@ def load_dygraph(model_path):
raise RuntimeError("Parameter file [ {} ] not exists".format(
params_file_path))
para_dict = core._load_dygraph_dict(params_file_path)
with open(params_file_path, 'rb') as f:
para_dict = pickle.load(f)
if not keep_name_table and "StructuredToParameterName@@" in para_dict:
del para_dict["StructuredToParameterName@@"]
opti_dict = None
opti_file_path = model_path + ".pdopt"
if os.path.exists(opti_file_path):
opti_dict = core._load_dygraph_dict(opti_file_path)
with open(opti_file_path, 'rb') as f:
opti_dict = pickle.load(f)
return para_dict, opti_dict
@dygraph_only
def load_optimizer(model_path):
'''
Load optimizer state_dict from disk.
Args:
model_path(str) : The file prefix store the state_dict. (The path should Not contain shuffix '.pdparams')
Returns:
state_dict(dict) : the dict store the state_dict
Examples:
.. code-block:: python
import paddle.fluid as fluid
with fluid.dygraph.guard():
adam = fluid.optimizer.Adam(0.001)
state_dict = adam.state_dict()
fluid.save_optimizer( state_dict, "opt_adam")
fluid.load_optimizer( "opt_adam")
'''
assert in_dygraph_mode(), "save_optimizer only work in dygraph mode"
opt_file_path = model_path + ".pdopt"
if not os.path.exists(opt_file_path):
raise RuntimeError("Optimizer file [ {} ] not exists".format(
opt_file_path))
return core._load_dygraph_dict(opt_file_path)
......@@ -25,6 +25,8 @@ from .layer_object_helper import LayerObjectHelper
from .base import program_desc_tracing_guard
from paddle.fluid import framework
from ..param_attr import ParamAttr
import copy
import warnings
__all__ = ['Layer']
......@@ -99,11 +101,10 @@ class Layer(core.Layer):
Returns:
:ref:`api_guide_Variable_en` : created parameter.
"""
if isinstance(attr, ParamAttr) and (attr.name is not None):
attr.name = ".".join([self._full_name, attr.name])
elif isinstance(attr, six.string_types):
attr = ".".join([self._full_name, attr])
return self._helper.create_parameter(attr, shape, dtype, is_bias,
temp_attr = copy.deepcopy(attr)
if isinstance(temp_attr, six.string_types) and temp_attr == "":
temp_attr = None
return self._helper.create_parameter(temp_attr, shape, dtype, is_bias,
default_initializer)
# TODO: Add more parameter list when we need them
......@@ -283,7 +284,10 @@ class Layer(core.Layer):
else:
object.__delattr__(self, name)
def state_dict(self, destination=None, include_sublayers=True):
def state_dict(self,
destination=None,
include_sublayers=True,
structured_name_prefix=""):
'''
Get all parameters of current layer and its sub-layers. And set all the parameters into a dict
......@@ -310,25 +314,31 @@ class Layer(core.Layer):
destination = collections.OrderedDict()
for name, data in self._parameters.items():
if data is not None:
destination[data.name] = data
destination[structured_name_prefix + name] = data
if include_sublayers:
for layer_name, layer_item in self._sub_layers.items():
if layer_item is not None:
destination_temp = destination.copy()
destination_temp.update(
layer_item.state_dict(destination_temp,
include_sublayers))
layer_item.state_dict(
destination_temp, include_sublayers,
structured_name_prefix + layer_name + "."))
destination = destination_temp
return destination
def set_dict(self, stat_dict, include_sublayers=True):
def set_dict(self,
stat_dict,
include_sublayers=True,
use_structured_name=True):
'''
Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
Parameters:
state_dict(dict) : Dict contains all the parameters
include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key.
Default: True
Returns:
None
......@@ -347,9 +357,15 @@ class Layer(core.Layer):
emb.set_dict( para_state_dict )
'''
self.load_dict(stat_dict, include_sublayers=include_sublayers)
def load_dict(self, stat_dict, include_sublayers=True):
self.load_dict(
stat_dict,
include_sublayers=include_sublayers,
use_structured_name=use_structured_name)
def load_dict(self,
stat_dict,
include_sublayers=True,
use_structured_name=True):
'''
Set parameters from stat_dict. All the parameters will be reset by the tensor in the stat_dict
......@@ -358,6 +374,8 @@ class Layer(core.Layer):
Parameters:
state_dict(dict) : Dict contains all the parameters
include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key.
Default: True
Returns:
None
......@@ -377,16 +395,22 @@ class Layer(core.Layer):
'''
self._loaddict_holder = stat_dict
for name, item in self.__dict__.get('_parameters', None).items():
if item.name in stat_dict:
item.set_value(stat_dict[item.name])
inner_state_dict = self.state_dict()
for name, para in inner_state_dict.items():
key_name = name if use_structured_name else para.name
if key_name in stat_dict:
para.set_value(stat_dict[key_name])
else:
raise RuntimeError(
"Parameter not found, Can't not find [ {} ] in stat_dict".
format(item.name))
if include_sublayers:
for layer_name, layer_item in self._sub_layers.items():
if layer_item is not None:
layer_item.load_dict(stat_dict)
"Parameter not found, Can't not find [ {} ] in stat_dict"
"use_structured_name is set to [{}]".format(
key_name, use_structured_name))
unused_para_list = []
for k, v in stat_dict.items():
if k not in inner_state_dict:
unused_para_list.append(k)
if len(unused_para_list) > 0:
warnings.warn(
"Varibale [ {} ] are not used, because not included in layers state_dict".
format(" ".join(unused_para_list)))
......@@ -19,9 +19,11 @@ from .. import core
from ..layers import utils
from ..dygraph import dygraph_utils
from . import layers
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer_
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant, NumpyArrayInitializer
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
import numpy as np
import numbers
import logging
......@@ -1287,6 +1289,9 @@ class BatchNorm(layers.Layer):
self._bias_attr = bias_attr
self._act = act
self._full_name = unique_name.generate("batch_norm")
self._helper = LayerObjectHelper(self._full_name)
assert bias_attr is not False, "bias_attr should not be False in batch_norm."
if dtype == "float16":
......@@ -1618,6 +1623,10 @@ class LayerNorm(layers.Layer):
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = [normalized_shape]
self._full_name = unique_name.generate("layer_norm")
self._helper = LayerObjectHelper(self._full_name)
self._normalized_shape = list(normalized_shape)
self._scale = scale
self._shift = shift
......
......@@ -71,6 +71,9 @@ class ParamAttr(object):
gradient_clip=None,
do_model_average=True):
self.name = name
if isinstance(self.name, six.string_types) and self.name == "":
raise ValueError("name of ParamAttr can not be empty str")
self.initializer = initializer
self.learning_rate = learning_rate
self.regularizer = regularizer
......
......@@ -101,8 +101,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False,
param_attr=fluid.ParamAttr(name="weights"))
bias_attr=False)
# disable BatchNorm in multi-card. disable LayerNorm because of complex input_shape
# self._batch_norm = BatchNorm(num_filters, act=act)
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import paddle.fluid.framework as framework
from paddle.fluid.dygraph.nn import *
import numpy as np
print("11")
class TestDygraphLoadStatic(unittest.TestCase):
def testLoadStaticModel(self):
# static mode
a = fluid.data(name="a", shape=[10, 10])
conv_in = fluid.data(name="conv_in", shape=[None, 10, 10, 10])
fc_out1 = fluid.layers.fc(a, 10)
fc_out2 = fluid.layers.fc(a, 20)
conv_out_1 = fluid.layers.conv2d(
conv_in, num_filters=10, filter_size=5, act="relu")
conv_out_2 = fluid.layers.conv2d(
conv_in, num_filters=10, filter_size=5, act="relu")
conv3d_in = fluid.data(
name='conv3d_in', shape=[None, 3, 12, 32, 32], dtype='float32')
conv3d_out_1 = fluid.layers.conv3d(
input=conv3d_in, num_filters=2, filter_size=3, act="relu")
conv3d_out_2 = fluid.layers.conv3d(
input=conv3d_in, num_filters=2, filter_size=3, act="relu")
batchnorm_in = fluid.data(
name="batchnorm_in", shape=[None, 10], dtype='float32')
batchnorm_out_1 = fluid.layers.batch_norm(batchnorm_in)
batchnorm_out_2 = fluid.layers.batch_norm(batchnorm_in)
emb_in = fluid.data(name='emb_in', shape=[None, 10], dtype='int64')
emb_out_1 = fluid.embedding(emb_in, [1000, 100])
emb_out_2 = fluid.embedding(emb_in, [2000, 200])
layernorm = fluid.data(name="ln", shape=[None, 10], dtype='float32')
layernorm_1 = fluid.layers.layer_norm(layernorm)
layernorm_2 = fluid.layers.layer_norm(layernorm)
nce_in = fluid.data(name="nce_in", shape=[None, 100], dtype='float32')
nce_label = fluid.data(
name="nce_label", shape=[None, 10], dtype='int64')
nce_out_1 = fluid.layers.nce(nce_in, nce_label, 10000)
nce_out_2 = fluid.layers.nce(nce_in, nce_label, 10000)
prelu_in = fluid.data(
name="prelu_in", shape=[None, 5, 10, 10], dtype='float32')
prelu_out_1 = fluid.layers.prelu(prelu_in, "channel")
prelu_out_2 = fluid.layers.prelu(prelu_in, "channel")
bilinear_tensor_pro_x = fluid.data(
"t1", shape=[None, 5], dtype="float32")
bilinear_tensor_pro_y = fluid.data(
"t2", shape=[None, 4], dtype="float32")
bilinear_tensor_pro_out_1 = fluid.layers.bilinear_tensor_product(
x=bilinear_tensor_pro_x, y=bilinear_tensor_pro_y, size=1000)
bilinear_tensor_pro_out_2 = fluid.layers.bilinear_tensor_product(
x=bilinear_tensor_pro_x, y=bilinear_tensor_pro_y, size=1000)
conv2d_trans_in = fluid.data(
name="conv2d_trans_in", shape=[None, 10, 10, 10])
conv2d_trans_out_1 = fluid.layers.conv2d_transpose(
conv2d_trans_in, num_filters=10, filter_size=5, act="relu")
conv2d_trans_out_2 = fluid.layers.conv2d_transpose(
conv2d_trans_in, num_filters=10, filter_size=5, act="relu")
conv3d_trans_in = fluid.data(
name='conv3d_trans_in',
shape=[None, 3, 12, 32, 32],
dtype='float32')
conv3d_trans_out_1 = fluid.layers.conv3d_transpose(
input=conv3d_trans_in, num_filters=2, filter_size=3, act="relu")
conv3d_trans_out_2 = fluid.layers.conv3d_transpose(
input=conv3d_trans_in, num_filters=2, filter_size=3, act="relu")
groupnorm_in = fluid.data(
name='groupnorm_in', shape=[None, 8, 32, 32], dtype='float32')
groupnorm_out1 = fluid.layers.group_norm(input=groupnorm_in, groups=4)
groupnorm_out2 = fluid.layers.group_norm(input=groupnorm_in, groups=4)
'''
spec_norm = fluid.data(name='spec_norm', shape=[2, 8, 32, 32], dtype='float32')
spe_norm_out_1 = fluid.layers.spectral_norm(weight=spec_norm, dim=1, power_iters=2)
spe_norm_out_2 = fluid.layers.spectral_norm(weight=spec_norm, dim=1, power_iters=2)
'''
nodes_vector = fluid.data(
name='vectors', shape=[None, 10, 5], dtype='float32')
edge_set = fluid.data(
name='edge_set', shape=[None, 10, 2], dtype='float32')
tree_conv_out1 = fluid.contrib.layers.tree_conv(nodes_vector, edge_set,
6, 1, 2)
tree_conv_out2 = fluid.contrib.layers.tree_conv(nodes_vector, edge_set,
6, 1, 2)
para1 = fluid.layers.create_parameter(
[100, 100], 'float32', name="weight_test_1")
para2 = fluid.layers.create_parameter(
[20, 200], 'float32', name="weight_test_2")
para_list = fluid.default_main_program().list_vars()
exe = fluid.Executor(fluid.CPUPlace(
) if not fluid.is_compiled_with_cuda() else fluid.CUDAPlace(0))
out = exe.run(framework.default_startup_program())
fluid.save(framework.default_main_program(), "./test_1")
para_dict = fluid.load_program_state("./test_1")
new_dict = {}
for k, v in para_dict.items():
#print( k, v.shape )
if k.startswith("fc"):
name = k.replace("fc", "linear", 1)
new_dict[name] = v
else:
new_dict[k] = v
with fluid.dygraph.guard():
class MyTest(fluid.dygraph.Layer):
def __init__(self):
super(MyTest, self).__init__()
self.linear1 = Linear(10, 10)
self.lienar2 = Linear(10, 20)
self.conv2d_1 = Conv2D(
num_channels=10,
num_filters=10,
filter_size=5,
act="relu")
self.conv2d_2 = Conv2D(
num_channels=10,
num_filters=10,
filter_size=5,
act="relu")
self.conv3d_1 = Conv3D(
num_channels=3,
num_filters=2,
filter_size=3,
act="relu")
self.conv3d_2 = Conv3D(
num_channels=3,
num_filters=2,
filter_size=3,
act="relu")
self.batch_norm_1 = BatchNorm(10)
self.batch_norm_2 = BatchNorm(10)
self.emb1 = Embedding([1000, 100])
self.emb2 = Embedding([2000, 200])
self.layer_norm_1 = LayerNorm([10])
self.layer_norm_2 = LayerNorm(10)
self.nce1 = NCE(10000, 100)
self.nce2 = NCE(10000, 100)
self.prelu1 = PRelu("channel", [-1, 5, 10, 10])
self.prelu2 = PRelu("channel", [-1, 5, 10, 10])
self.group_norm1 = GroupNorm(8, 4)
self.gourp_norm2 = GroupNorm(8, 4)
self.w_1 = self.create_parameter(
[100, 100], dtype='float32', attr="weight_test_1")
self.w_2 = self.create_parameter(
[20, 200], dtype='float32', attr="weight_test_2")
my_test = MyTest()
my_test.set_dict(new_dict, use_structured_name=False)
for k, v in my_test.state_dict().items():
self.assertTrue(np.array_equal(v.numpy(), new_dict[v.name]))
if __name__ == '__main__':
unittest.main()
......@@ -17,7 +17,7 @@ from __future__ import print_function
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.dygraph.nn import Embedding, FC
from paddle.fluid.dygraph.nn import Embedding, Linear
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Adam
from paddle.fluid.dygraph.base import to_variable
......@@ -29,13 +29,12 @@ import six
class SimpleLSTMRNN(fluid.Layer):
def __init__(self,
name_scope,
hidden_size,
num_steps,
num_layers=2,
init_scale=0.1,
dropout=None):
super(SimpleLSTMRNN, self).__init__(name_scope)
super(SimpleLSTMRNN, self).__init__()
self._hidden_size = hidden_size
self._num_layers = num_layers
self._init_scale = init_scale
......@@ -44,8 +43,6 @@ class SimpleLSTMRNN(fluid.Layer):
self._num_steps = num_steps
self.cell_array = []
self.hidden_array = []
def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
self.weight_1_arr = []
self.weight_2_arr = []
self.bias_arr = []
......@@ -149,7 +146,6 @@ class PtbModel(fluid.Layer):
self.num_steps = num_steps
self.dropout = dropout
self.simple_lstm_rnn = SimpleLSTMRNN(
self.full_name(),
hidden_size,
num_steps,
num_layers=num_layers,
......@@ -164,9 +160,7 @@ class PtbModel(fluid.Layer):
initializer=fluid.initializer.UniformInitializer(
low=-init_scale, high=init_scale)))
self.out_project = FC(self.full_name(),
self.vocab_size,
num_flatten_dims=2)
self.out_project = Linear(self.hidden_size, self.vocab_size)
def forward(self, input, label, init_hidden, init_cell):
init_h = fluid.layers.reshape(
......@@ -277,10 +271,11 @@ class TestDygraphPtbRnn(unittest.TestCase):
fluid.save_dygraph(self.opti_dict, "./test_dy")
self.state_dict = ptb_model.state_dict()
self.model_base = {}
for k, v in self.state_dict.items():
np_t = v.numpy()
self.model_base[v.name] = np_t
self.model_base[k] = np_t
fluid.save_dygraph(self.state_dict, "./test_dy")
......@@ -386,7 +381,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[v.name]
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
......@@ -491,7 +486,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[v.name]
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
......@@ -588,7 +583,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
np_state_dict = {}
for k, v in state_dict.items():
np_t = v.numpy()
np_state_dict[v.name] = np_t
np_state_dict[k] = np_t
var = v.value().get_tensor()
var.set(np.zeros_like(np_t), place)
......@@ -600,7 +595,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[v.name]
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
......@@ -626,20 +621,10 @@ class TestDygraphPtbRnn(unittest.TestCase):
num_steps=num_steps,
init_scale=init_scale)
bd = []
lr_arr = [1.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
#set lr to 0.0, not udpate parameter
new_lr = 0.0
lr_arr.append(new_lr)
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr_arr),
learning_rate=0.0,
beta1=0.8,
beta2=0.6,
parameter_list=ptb_model.parameters())
......@@ -686,14 +671,12 @@ class TestDygraphPtbRnn(unittest.TestCase):
np.array_equal(v.numpy(), self.base_opti[v.name] *
adam._beta2))
# check parameter
state_dict = ptb_model.state_dict()
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[v.name]
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testLoadAndSetVarBaseBeforeTrain(self):
......@@ -719,7 +702,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
init_scale=init_scale)
bd = []
lr_arr = [1.0]
lr_arr = [0.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
......@@ -730,8 +713,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
adam = Adam(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr_arr),
learning_rate=0.0,
beta1=0.8,
beta2=0.6,
parameter_list=ptb_model.parameters())
......@@ -786,7 +768,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[v.name]
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testSetNumpyBeforeTrain(self):
......@@ -812,7 +794,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
init_scale=init_scale)
bd = []
lr_arr = [1.0]
lr_arr = [0.0]
# this a fake lr decay strategy
for i in range(1, 10):
bd.append(100 * i)
......@@ -841,11 +823,10 @@ class TestDygraphPtbRnn(unittest.TestCase):
np_opti_dict[v.name] = v.numpy()
for k, v in self.state_dict.items():
np_state_dict[v.name] = v.numpy()
np_state_dict[k] = v.numpy()
adam.set_dict(np_opti_dict)
ptb_model.set_dict(np_state_dict)
for i in range(1):
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
......@@ -887,7 +868,7 @@ class TestDygraphPtbRnn(unittest.TestCase):
for k, v in state_dict.items():
new_t = v.numpy()
base_t = self.model_base[v.name]
base_t = self.model_base[k]
self.assertTrue(np.array_equal(new_t, base_t))
def testOnlyLoadParams(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部