nn.py 117.7 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
L
lujun 已提交
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26
import logging
27

28
__all__ = [
L
lujun 已提交
29 30
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
31
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
32
]
M
minqiyang 已提交
33 34


X
Xin Pan 已提交
35
class Conv2D(layers.Layer):
36
    """
37 38
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
39 40 41
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
42 43 44
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
45
    and W is the width of the filter. If the groups is greater than 1,
46
    C will equal the number of input feature map divided by the groups.
47
    Please refer to UFLDL's `convolution
48
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
49 50 51 52 53 54 55 56 57
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

58
        Out = \\sigma (W \\ast X + b)
59 60 61

    Where:

62 63
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
64
    * :math:`\\ast`: Convolution operation.
65
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

88
    Parameters:
89
        name_scope(str): The name for this class.
90
        num_filters(int): The number of filter. It is as same as the output
91 92
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
93 94
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
95
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
96
            contain two integers, (stride_H, stride_W). Otherwise, the
97 98
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
99
            contain two integers, (padding_H, padding_W). Otherwise, the
100 101
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
102
            contain two integers, (dilation_H, dilation_W). Otherwise, the
103 104
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
105 106 107
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
108 109
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
110 111 112 113
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
114
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
115 116 117 118
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
119 120 121 122 123
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
124

125 126 127 128
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
129

130 131 132
    Returns:
        None
    
133
    Raises:
134
        ValueError: if ``use_cudnn`` is not a bool value.
135 136 137

    Examples:
        .. code-block:: python
L
lujun 已提交
138

139 140 141 142 143
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

144
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
145
          with fluid.dygraph.guard():
146 147 148
              conv2d = Conv2D("conv2d", 2, 3)
              data = to_variable(data)
              conv = conv2d(data)
149 150 151

    """

M
minqiyang 已提交
152
    def __init__(self,
X
Xin Pan 已提交
153
                 name_scope,
M
minqiyang 已提交
154 155 156 157 158 159 160 161
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
162 163 164
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
165
        assert param_attr is not False, "param_attr should not be False here."
166
        super(Conv2D, self).__init__(name_scope, dtype)
M
minqiyang 已提交
167 168 169 170
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
171
        self._act = act
M
minqiyang 已提交
172 173 174
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
175 176 177 178 179
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
180 181 182 183 184 185 186
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        # TODO(jiabin): recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17275
        self._l_type = 'conv2d'
M
minqiyang 已提交
187

188 189 190 191
    def _build_once(self, input):
        self._num_channels = input.shape[1]
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
192
        else:
193
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
194
                raise ValueError("num_channels must be divisible by groups.")
195 196 197 198
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
        filter_shape = [self._num_filters, int(num_filter_channels)
                        ] + filter_size
M
minqiyang 已提交
199 200

        def _get_default_param_initializer():
201 202
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
203 204 205
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

206
        self._filter_param = self.create_parameter(
207
            attr=self._param_attr,
M
minqiyang 已提交
208 209 210 211
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

212
        self._bias_param = self.create_parameter(
213 214
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
215 216
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

M
minqiyang 已提交
234
    def forward(self, input):
M
minqiyang 已提交
235 236 237
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
238 239 240 241 242 243
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
244
            outputs={"Output": pre_bias},
M
minqiyang 已提交
245 246 247 248
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
249
                'groups': self._groups if self._groups else 1,
M
minqiyang 已提交
250 251 252 253
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

254 255 256 257 258 259 260 261 262 263 264
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
265

L
lujun 已提交
266
        # Currently, we don't support inplace in dygraph mode
267
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
268 269


L
lujun 已提交
270
class Conv3D(layers.Layer):
271 272 273 274 275
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
276 277
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
278 279 280 281 282 283 284 285 286 287 288 289 290 291
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
292
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

318
    Parameters:
L
lujun 已提交
319 320
        name_scope(str) : The name for this class.
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
321
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
322
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
323 324 325
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
326
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
327 328
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
329
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
330 331
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
332
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
333 334
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
335 336 337
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
338 339
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
340 341 342
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
343 344
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
345 346 347
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
348 349 350 351 352
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
353

D
DuYao 已提交
354 355 356 357
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
358

359
    Returns:
D
DuYao 已提交
360
        None.
361 362 363 364 365 366 367 368

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

369 370 371 372 373 374 375 376 377
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
                    'Conv3D', num_filters=2, filter_size=3, act="relu")
              ret = conv3d(fluid.dygraph.base.to_variable(data))

378 379
    """

L
lujun 已提交
380 381 382 383 384 385 386 387 388 389 390
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
391
                 act=None):
L
lujun 已提交
392 393 394 395 396
        assert param_attr is not False, "param_attr should not be False here."
        super(Conv3D, self).__init__(name_scope)
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
397
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
398 399 400 401
        self._act = act
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
402 403 404 405
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
L
lujun 已提交
406

407
    def _build_once(self, input):
408 409 410 411
        num_channels = input.shape[1]
        self._dtype = self._helper.input_dtype(input)

        if self._groups is None:
L
lujun 已提交
412 413
            num_filter_channels = num_channels
        else:
414
            if num_channels % self._groups != 0:
L
lujun 已提交
415
                raise ValueError("num_channels must be divisible by groups.")
416
            num_filter_channels = num_channels // self._groups
L
lujun 已提交
417

418
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
L
lujun 已提交
419

420
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
421 422 423 424 425 426 427 428

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
                2] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self.create_parameter(
429
            attr=self._param_attr,
L
lujun 已提交
430 431 432 433 434
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        self._bias_param = self.create_parameter(
435 436
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
437 438 439
            dtype=self._dtype,
            is_bias=True)

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
456 457 458 459 460
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
461
            type='conv3d',
L
lujun 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

476 477 478 479 480 481 482 483 484 485 486
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
487 488 489 490 491

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
557

558
    Parameters:
L
lujun 已提交
559
        name_scope(str) : The name for this class.
L
lujun 已提交
560 561
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
D
DuYao 已提交
562 563 564 565 566 567
        output_size(int|tuple, optional): The output image size. If output size is a
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. The default value is None.
            Output_size and filter_size should not be None at the same time.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lujun 已提交
568 569
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
D
DuYao 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
            calculate filter_size. The default value is None.
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
586
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
587 588
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
589 590 591 592
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
593 594
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
595 596
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
597 598
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
599 600 601
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
602 603 604 605 606 607 608
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
609

D
DuYao 已提交
610 611 612 613
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
614

L
lujun 已提交
615
    Returns:
D
DuYao 已提交
616
        None.
L
lujun 已提交
617 618 619 620 621 622 623 624

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

625 626 627 628 629 630 631 632 633 634 635 636 637
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')

             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
                    'Conv3DTranspose',
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
638 639
    """

L
lujun 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
                 name=None):
        super(Conv3DTranspose, self).__init__(name_scope)
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
        self._filter_size = filter_size
        self._output_size = output_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act

670
    def _build_once(self, input):
L
lujun 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        self._dtype = self._helper.input_dtype(input)
        self._input_channel = input.shape[1]

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            d_in = input.shape[2]
            h_in = input.shape[3]
            w_in = input.shape[4]

            filter_size_d = (self._output_size[0] -
                             (d_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_h = (self._output_size[1] -
                             (h_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            filter_size_w = (self._output_size[2] -
                             (w_in - 1) * self._stride[2] + 2 * self._padding[2]
                             - 1) // self._dilation[2] + 1
            self._filter_size = [filter_size_d, filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
                self._filter_size, 3, 'conv3d_transpose.filter_size')

        filter_shape = [
            self._input_channel, self._num_filters // self._groups
        ] + self._filter_size
        self._img_filter = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
759
class Pool2D(layers.Layer):
760
    """
761 762 763 764 765
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
766 767
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

813
    Parameters:
814
        name_scope(str) : The name of this class.
815
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
816
            it must contain two integers, (pool_size_Height, pool_size_Width).
817 818 819 820
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
821
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
822 823 824
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
825
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
826 827 828 829 830 831 832 833
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32". 
834 835

    Returns:
836
        None
837 838 839 840 841 842 843 844 845 846

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
847
          import paddle.fluid as fluid
848 849
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
850 851

          with fluid.dygraph.guard():
852
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
L
lujun 已提交
853
             pool2d = fluid.dygraph.Pool2D("pool2d",pool_size=2,
854 855 856
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
857
             pool2d_res = pool2d(to_variable(data))
858 859 860

    """

M
minqiyang 已提交
861
    def __init__(self,
X
Xin Pan 已提交
862
                 name_scope,
M
minqiyang 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

X
Xin Pan 已提交
885
        super(Pool2D, self).__init__(name_scope, dtype=dtype)
M
minqiyang 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
899 900
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
901 902 903
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
904
            outputs={"Out": pool_out},
M
minqiyang 已提交
905 906 907 908 909 910 911 912 913 914 915
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
916
        return pool_out
M
minqiyang 已提交
917 918


X
Xin Pan 已提交
919
class FC(layers.Layer):
920
    """
921 922 923 924
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
925 926
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
927 928 929
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
930
    is not None, a bias variable will be created and added to the output.
931
    Finally, if ``act`` is not None, it will be applied to the output as well.
932

933
    When the input is single ``Tensor`` :
934 935 936 937 938

    .. math::

        Out = Act({XW + b})

939
    When the input are multiple ``Tensor`` :
940 941 942 943 944 945 946

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

947 948
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
949 950 951
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
952
    * :math:`Out`: The output ``Tensor`` .
953 954 955 956 957 958

    See below for an example.

    .. code-block:: text

        Given:
959 960
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
961

962 963
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
964

965 966
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
967 968

        Then:
969 970
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
971

972
    Parameters:
L
lujun 已提交
973
        name_scope(str): The name of this class.
974
        size(int): The number of output units in this layer.
975 976
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
977 978 979 980 981 982
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
L
lujun 已提交
983
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
984 985 986
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
987 988
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
989 990 991
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
992

993 994
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
995

996
        **bias** (Parameter or None): the learnable bias of this layer.
997

998 999 1000
    Returns:
        None
    
1001 1002
    Examples:
        .. code-block:: python
L
lujun 已提交
1003

1004 1005 1006 1007
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
L
lujun 已提交
1008

1009
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
1010
          with fluid.dygraph.guard():
1011 1012 1013
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
1014 1015 1016

    """

M
minqiyang 已提交
1017
    def __init__(self,
X
Xin Pan 已提交
1018
                 name_scope,
M
minqiyang 已提交
1019
                 size,
1020
                 num_flatten_dims=1,
M
minqiyang 已提交
1021
                 param_attr=None,
M
minqiyang 已提交
1022
                 bias_attr=None,
1023 1024 1025
                 act=None,
                 is_test=False,
                 dtype="float32"):
1026
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
1027

M
minqiyang 已提交
1028
        self._size = size
M
minqiyang 已提交
1029 1030
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
1031
        self._param_attr = param_attr
1032
        self._bias_attr = bias_attr
1033
        self._act = act
1034 1035
        self.__w = list()

1036
    def _build_once(self, input):
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    # TODO(songyouwei): We should remove _w property
    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(self.__w[i], Variable)
        self.__w[i].set_value(value)

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

M
minqiyang 已提交
1090
    def forward(self, input):
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
1130
        # Currently, we don't support inplace in dygraph mode
1131
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
1132 1133 1134


class BatchNorm(layers.Layer):
1135
    """
1136 1137 1138 1139 1140
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1141 1142 1143 1144
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1145 1146 1147
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1148 1149 1150 1151 1152 1153 1154 1155

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1156 1157
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1158 1159 1160

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1161 1162 1163 1164 1165 1166
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1167

1168 1169
    The normalization function formula is as follows:
 
1170 1171 1172
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1173 1174 1175 1176 1177 1178
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1179

1180
    Parameters:
L
lujun 已提交
1181
        name_scope(str): The name of this class.
1182 1183 1184 1185 1186 1187
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1188 1189 1190
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1191
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1192 1193 1194
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
        do_model_average_for_mean_and_var(bool, optional): Do model average for mean and variance or not. Default: False.
        fuse_with_relu (bool, optional): When setting fuse_with_relu True, this OP performs relu after batch norm. 
            Default: False.
        use_global_stats(bool, optional): Whether to use global mean and
1205 1206 1207
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1208 1209 1210 1211
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1212 1213

    Returns:
1214
        None
1215 1216 1217

    Examples:
        .. code-block:: python
L
lujun 已提交
1218 1219

          import paddle.fluid as fluid
1220 1221
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1222

1223
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1224
          with fluid.dygraph.guard():
1225
              x = to_variable(x)
L
lujun 已提交
1226
              batch_norm = fluid.BatchNorm("batch_norm", 10)
1227
              hidden1 = batch_norm(x)
1228 1229
    """

M
minqiyang 已提交
1230
    def __init__(self,
X
Xin Pan 已提交
1231
                 name_scope,
M
minqiyang 已提交
1232 1233 1234 1235 1236 1237 1238
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1239
                 dtype='float32',
M
minqiyang 已提交
1240 1241 1242 1243 1244 1245
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
1246 1247
                 use_global_stats=False,
                 trainable_statistics=False):
1248
        super(BatchNorm, self).__init__(name_scope, dtype)
1249
        self._param_attr = param_attr
1250
        self._bias_attr = bias_attr
1251
        self._act = act
M
minqiyang 已提交
1252 1253 1254

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1255 1256
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1257 1258 1259 1260 1261 1262
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1263 1264
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
1265 1266 1267
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1268
        if use_global_stats and self._param_attr.learning_rate == 0.:
1269
            self._scale.stop_gradient = True
M
minqiyang 已提交
1270

1271
        self._bias = self.create_parameter(
1272
            attr=self._bias_attr,
M
minqiyang 已提交
1273 1274 1275
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1276
        if use_global_stats and self._param_attr.learning_rate == 0.:
1277
            self._bias.stop_gradient = True
M
minqiyang 已提交
1278

1279
        self._mean = self.create_parameter(
M
minqiyang 已提交
1280 1281 1282 1283 1284 1285 1286
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1287
        self._mean.stop_gradient = True
M
minqiyang 已提交
1288

1289
        self._variance = self.create_parameter(
M
minqiyang 已提交
1290 1291 1292 1293 1294 1295 1296
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1297
        self._variance.stop_gradient = True
M
minqiyang 已提交
1298 1299

        self._in_place = in_place
1300
        self._data_layout = data_layout
M
minqiyang 已提交
1301 1302 1303 1304 1305
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats
1306
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1307

1308
    def _build_once(self, input):
M
minqiyang 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1319
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1320
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1321
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1322
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1323
            self._dtype)
M
minqiyang 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
1345
                "data_layout": self._data_layout,
M
minqiyang 已提交
1346 1347
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1348 1349
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1350 1351
            })

L
lujun 已提交
1352
        # Currently, we don't support inplace in dygraph mode
1353
        return self._helper.append_activation(batch_norm_out, self._act)
1354 1355


1356 1357 1358 1359 1360 1361 1362
class Embedding(layers.Layer):
    """
    **Embedding Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
1363
    All the input variables are passed in as local variables to the LayerHelper constructor
1364

1365
    Parameters:
L
lujun 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        name_scope(str): The name of this class.
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. Default: False
        is_distributed(bool): Whether to run lookup table from remote parameter server. Default: False.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters
            it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`. Default: None.
        param_attr(ParamAttr): Parameters for this layer. Default: None.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc. Default: 'float32'.
1376

1377 1378 1379
    Attributes:
        weight (Parameter): the learnable weights of this layer.

1380 1381 1382 1383 1384
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
1385

1386 1387
        .. code-block:: python

L
lujun 已提交
1388 1389 1390 1391
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

1392 1393 1394
          inp_word = np.array([[[1]]]).astype('int64')
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1395
              emb = fluid.dygraph.Embedding(
1396 1397 1398 1399
                  name_scope='embedding',
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1400
              static_rlt3 = emb(base.to_variable(inp_word))
1401 1402
    """

1403
    def __init__(self,
X
Xin Pan 已提交
1404
                 name_scope,
1405 1406 1407 1408 1409 1410
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1411
        super(Embedding, self).__init__(name_scope, dtype)
1412 1413 1414 1415
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1416
            size[0] + padding_idx)
1417 1418 1419

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1420
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1421 1422 1423
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1424
        self._w = self.create_parameter(
1425 1426 1427 1428 1429
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

1430 1431 1432 1433 1434 1435 1436 1437
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out
M
minqiyang 已提交
1453 1454


1455
class LayerNorm(layers.Layer):
1456
    """
1457 1458 1459
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1460
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1461

1462
    The formula is as follows:
1463

1464
    ..  math::
1465

1466
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1467

1468
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1469

1470
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1471

1472 1473 1474 1475 1476
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1477

1478
    Parameters:
L
lujun 已提交
1479
        name_scope(str): The name of this class.
1480
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1481
            normalization. Default: True.
1482
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1483
            normalization. Default: True.
1484
        begin_norm_axis(int, optional): The normalization will be performed along
1485
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
L
lujun 已提交
1486
            Default: 1.
1487
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1488
            division by zero. Default: 1e-05.
1489
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1490 1491 1492
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1493
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1494
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1495 1496 1497
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1498
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1499
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1500
                  Default: None.
1501
    Returns:
1502
        None
1503

1504
    Examples:
1505

1506 1507 1508
        .. code-block:: python

          import paddle.fluid as fluid
1509
          from paddle.fluid.dygraph.base import to_variable
1510 1511
          import numpy

1512
          x = numpy.random.random((3, 32, 32)).astype('float32')
1513
          with fluid.dygraph.guard():
1514 1515 1516
              x = to_variable(x)
              layerNorm = fluid.LayerNorm('LayerNorm', begin_norm_axis=1)
              ret = layerNorm(x)
1517

1518
    """
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528
    def __init__(self,
                 name_scope,
                 scale=True,
                 shift=True,
                 begin_norm_axis=1,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None):
1529 1530 1531 1532 1533 1534 1535 1536 1537
        super(LayerNorm, self).__init__(name_scope)
        self._scale = scale
        self._shift = shift
        self._begin_norm_axis = begin_norm_axis
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act

1538
    def _build_once(self, input):
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
        self._dtype = self._helper.input_dtype(input)
        input_shape = input.shape
        param_shape = [
            reduce(lambda x, y: x * y, input_shape[self._begin_norm_axis:])
        ]
        if self._scale:
            self._scale_w = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1550 1551 1552 1553
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1554 1555 1556 1557 1558 1559 1560
        if self._shift:
            assert self._bias_attr is not False
            self._bias_w = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1561 1562 1563
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

    def forward(self, input):
        inputs = dict()
        inputs['X'] = input
        if self._scale:
            inputs['Scale'] = self._scale_w
        if self._shift:
            inputs['Bias'] = self._bias_w
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1593
        return self._helper.append_activation(layer_norm_out, act=self._act)
1594 1595


M
minqiyang 已提交
1596 1597 1598
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1599 1600 1601 1602 1603
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1614
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1640
    Parameters:
L
lujun 已提交
1641 1642
        name_scope(str): The name of this class.
        size (int): The input dimension value.
D
DuYao 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1652 1653 1654 1655


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1656 1657 1658 1659
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1660 1661 1662 1663 1664
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1665
            is initialized zero. The default value is None.
L
lujun 已提交
1666
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1667
                             The default value is 'tanh'.
L
lujun 已提交
1668
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1669 1670 1671
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1672

D
DuYao 已提交
1673 1674 1675 1676
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1677

M
minqiyang 已提交
1678
    Returns:
D
DuYao 已提交
1679 1680 1681 1682
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1696
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1697 1698 1699 1700 1701 1702 1703
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
              gru = fluid.dygraph.GRUUnit('gru', size=D * 3)
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1704 1705 1706
    """

    def __init__(self,
M
minqiyang 已提交
1707
                 name_scope,
M
minqiyang 已提交
1708 1709 1710 1711 1712 1713 1714
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1715
        super(GRUUnit, self).__init__(name_scope, dtype)
1716
        self._bias_attr = bias_attr
M
minqiyang 已提交
1717 1718 1719 1720 1721 1722

        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1723 1724
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1725

M
minqiyang 已提交
1726
        self._dtype = dtype
M
minqiyang 已提交
1727 1728
        size = size // 3
        # create weight
M
minqiyang 已提交
1729 1730
        self._weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1731 1732

        # create bias
M
minqiyang 已提交
1733
        bias_size = [1, 3 * size]
1734
        self._bias_size = bias_size
M
minqiyang 已提交
1735 1736
        self._bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1737

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, value):
        self._weight = value

    @property
    def bias(self):
        return self._bias

    @bias.setter
    def bias(self, value):
        self._bias = value

M
minqiyang 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    def forward(self, input, hidden):
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
        if self._bias:
            inputs['Bias'] = self._bias

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1773 1774
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1775 1776 1777
            })

        return updated_hidden, reset_hidden_pre, gate
1778 1779 1780 1781


class NCE(layers.Layer):
    """
1782
    Compute and return the noise-contrastive estimation training loss. See
1783
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1784
    By default this operator uses a uniform distribution for sampling.
1785

1786
    Parameters:
L
lujun 已提交
1787
        name_scope(str): The name of this class.
1788
        num_total_classes (int): Total number of classes in all samples
1789 1790 1791 1792 1793 1794 1795 1796 1797
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1798
        num_neg_samples (int): The number of negative classes. The default value is 10.
1799 1800 1801
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
L
lujun 已提交
1802
        custom_dist (float[]|None): A float[] with size=num_total_classes.
1803
                       It is used when sampler is set to 'custom_dist'.
1804
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1805 1806 1807
                       Default: None.
        seed (int): The seed used in sampler. Default: 0.
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1808

1809 1810 1811 1812
    Attributes:
        weight (Parameter): the learnable weights of this layer.
        bias (Parameter|None): the learnable bias of this layer.

1813 1814 1815 1816 1817 1818
    Returns:
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

1819 1820 1821
            import numpy as np
            import paddle.fluid as fluid

1822
            window_size = 5
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
            dict_size = 20
            label_word = int(window_size // 2) + 1
            inp_word = np.array([[[1]], [[2]], [[3]], [[4]], [[5]]]).astype('int64')
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    'embedding',
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
                nce = fluid.NCE('nce',
                             num_total_classes=dict_size,
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

                nce_loss3 = nce(embs3, words[label_word])
1858 1859 1860 1861 1862 1863

    """

    def __init__(self,
                 name_scope,
                 num_total_classes,
1864
                 sample_weight=None,
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
                 is_sparse=False):
        super(NCE, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes

        self._inputs = dict()
1878
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1966
    def _build_once(self, input, label, sample_weight=None):
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        dim = input.shape[1]
        num_true_class = label.shape[1]
        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
            dtype=input.dtype)
        if self._bias_attr:
            self._b = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
                dtype=input.dtype)
            self._inputs['Bias'] = self._b
        self._inputs['Weight'] = self._w

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2036
    Parameters:
L
lujun 已提交
2037 2038
        name_scope(str): The name of this class.
        mode (str): The mode for weight sharing. It supports all, channel
2039 2040 2041
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
2042 2043
        param_attr(ParamAttr|None): The parameter attribute for the learnable
          weight (alpha).
2044

2045 2046 2047
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2048 2049 2050 2051 2052 2053 2054
    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

L
lujun 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
          import paddle.fluid as fluid
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
              mode = 'channel'
              prelu = fluid.PRelu(
                 'prelu',
                 mode=mode,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt = prelu(fluid.dygraph.base.to_variable(inp_np))

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
    """

    def __init__(self, name_scope, mode, param_attr=None):

        super(PRelu, self).__init__(name_scope)
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
        self._alpha_shape = [1]

2078
    def _build_once(self, input):
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        if self._mode == 'channel':
            self._alpha_shape = [1, input.shape[1], 1, 1]
        elif self._mode == 'element':
            self._alpha_shape = input.shape
        self._dtype = self._helper.input_dtype(input)
        self._alpha = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

2091 2092 2093 2094 2095 2096 2097 2098
    @property
    def weight(self):
        return self._alpha

    @weight.setter
    def weight(self, value):
        self._alpha = value

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    def forward(self, input):

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
                    'Alpha': self._alpha},
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2126
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2127

2128
    Parameters:
L
lujun 已提交
2129
       name_scope(str): The name of this class.
2130
       size (int): The dimension of this layer.
D
DuYao 已提交
2131 2132 2133 2134 2135 2136
       name (str): The default value is None. Normally there is no need for user 
           to set this property. For more information, please refer to :ref:`api_guide_Name`.
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2137
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2138
           If it is set to None, the bias is initialized zero. The default value is None.
2139

D
DuYao 已提交
2140 2141 2142 2143
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2144

2145 2146 2147 2148 2149 2150
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
                    'BilinearTensorProduct', size=1000)
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    """

    def __init__(self,
                 name_scope,
                 size,
                 name=None,
                 act=None,
                 param_attr=None,
                 bias_attr=None):
        super(BilinearTensorProduct, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._size = size
        self._name = name
        self._inputs = dict()

2178
    def _build_once(self, x, y):
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
        self._dtype = self._helper.input_dtype(x)

        param_shape = [self._size, x.shape[1], y.shape[1]]

        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

2189 2190 2191 2192 2193 2194
        bias_size = [1, self._size]
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2195

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2212 2213
    def forward(self, x, y):
        self._inputs = {"X": x, "Y": y, "Weight": self._w}
2214 2215
        if self._bias_param:
            self._inputs["Bias"] = self._bias_param
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2230
        return self._helper.append_activation(out, act=self._act)
2231 2232 2233 2234


class Conv2DTranspose(layers.Layer):
    """
2235 2236
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2237
    The convolution2D transpose layer calculates the output based on the input,
2238 2239 2240 2241 2242 2243 2244
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2245 2246 2247
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2248 2249
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2250 2251 2252 2253 2254 2255 2256 2257 2258

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2259 2260
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2261
    * :math:`\\ast`: Convolution operation.
2262
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2287
    Parameters:
L
lujun 已提交
2288
        name_scope(str): The name of this class.
2289
        num_filters(int): The number of the filter. It is as same as the output
2290 2291
            feature map.
        output_size(int or tuple, optional): The output image size. If output size is a
2292 2293 2294
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2295
            should follow the formula above. Default: None.
2296
        filter_size(int or tuple, optional): The filter size. If filter_size is a tuple,
2297 2298
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
L
lujun 已提交
2299
            calculate filter_size. Default: None.
2300
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2301
            contain two integers, (padding_H, padding_W). Otherwise, the
2302 2303
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2304
            contain two integers, (stride_H, stride_W). Otherwise, the
2305 2306
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2307
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2308 2309
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2310 2311 2312 2313
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2314 2315
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2316 2317 2318
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2319
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2320 2321 2322 2323
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2324
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2325
            library is installed. Default: True.
2326
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2327 2328
            Default: None.

2329 2330
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2331

2332
        **bias** (Parameter or None): the learnable bias of this layer.
2333

2334 2335
    Returns:
        None
2336 2337 2338 2339

    Examples:
       .. code-block:: python

2340
          import paddle.fluid as fluid
2341
          import numpy as np
2342 2343

          with fluid.dygraph.guard():
2344
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2345 2346 2347 2348
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
                    'Conv2DTranspose', num_filters=2, filter_size=3)
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None):
        super(Conv2DTranspose, self).__init__(name_scope)
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2368
        self._act = act
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
        self._groups = groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
        self._op_type = 'conv2d_transpose'

2379
    def _build_once(self, input):
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        input_channel = input.shape[1]
        if (input_channel == self._groups and
                self._num_filters == input_channel and not self._use_cudnn):
            self._op_type = 'depthwise_conv2d_transpose'

        if not isinstance(input, Variable):
            raise TypeError("Input of conv2d_transpose must be Variable")

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

        if not isinstance(self._use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            h_in = input.shape[2]
            w_in = input.shape[3]

            filter_size_h = (self._output_size[0] -
                             (h_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_w = (self._output_size[1] -
                             (w_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            self._filter_size = [filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
H
Hongyu Liu 已提交
2414
                self._filter_size, 2, 'conv2d_transpose.filter_size')
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
        filter_shape = [input_channel, self._num_filters // self._groups
                        ] + self._filter_size

        self._img_filter = self.create_parameter(
            dtype=input.dtype, shape=filter_shape, attr=self._param_attr)

2432 2433 2434 2435 2436 2437
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2484 2485 2486 2487 2488 2489 2490 2491 2492
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2493
    Parameters:
L
lujun 已提交
2494
        name_scope(str): The name of this class.
2495
        num_filters (int): number of filters.
L
lujun 已提交
2496 2497 2498
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2511 2512 2513 2514
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2528
        assert not in_dygraph_mode(
2529
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2530 2531 2532 2533 2534 2535 2536
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2537
        self._act = act
2538

2539
    def _build_once(self, input):
2540 2541 2542
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
        self._filter_param = self.create_parameter(
2543
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2544

2545 2546 2547 2548 2549 2550
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self._filter_param],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2579 2580 2581


class RowConv(layers.Layer):
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2600
    Parameters:
L
lujun 已提交
2601
        name_scope(str): The name of this class.
2602 2603 2604
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2605 2606
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2607

2608 2609 2610
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2611
    Returns:
L
lujun 已提交
2612 2613
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2629 2630 2631 2632 2633
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2634
        assert not in_dygraph_mode(
2635
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2636 2637 2638 2639 2640
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2641
    def _build_once(self, input):
L
lujun 已提交
2642 2643
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2644 2645 2646 2647 2648
        self._filter_param = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2649 2650 2651 2652 2653 2654

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2655
                    'Filter': [self._filter_param]},
L
lujun 已提交
2656 2657 2658 2659 2660 2661
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        name_scope(str): The name of this class.
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
              groupNorm = fluid.dygraph.nn.GroupNorm('GroupNorm', groups=4)
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713

    """

    def __init__(self,
                 name_scope,
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 data_layout='NCHW'):
        super(GroupNorm, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._groups = groups
        self._act = act
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2714
    def _build_once(self, input):
L
lujun 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
        self._dtype = self._helper.input_dtype(input)
        param_shape = [input.shape[1]]
        if self._bias_attr:
            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

        if self._param_attr:
            self._scale = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))

    def forward(self, input):
        inputs = {'X': input}
2733
        if self._bias_attr:
L
lujun 已提交
2734
            inputs['Bias'] = self._bias
2735
        if self._param_attr:
L
lujun 已提交
2736 2737 2738
            inputs['Scale'] = self._scale

        # create output
2739
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2761
    """
2762 2763
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2795
    Parameters:
L
lujun 已提交
2796
        name_scope(str): The name of this class.
2797 2798 2799 2800
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2801 2802

    Returns:
2803
        None
2804 2805 2806 2807 2808

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2809
            import numpy as np
2810 2811

            with fluid.dygraph.guard():
2812
                x = np.random.random((2, 8, 32, 32)).astype('float32')
2813 2814 2815 2816 2817
                spectralNorm = fluid.dygraph.nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2818 2819 2820 2821 2822 2823
    def __init__(self, name_scope, dim=0, power_iters=1, eps=1e-12, name=None):
        super(SpectralNorm, self).__init__(name_scope)
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim

2824
    def _build_once(self, weight):
L
lujun 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
        self._dtype = self._helper.input_dtype(weight)
        input_shape = weight.shape
        h = input_shape[self._dim]
        w = np.prod(input_shape) // h

        self.u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.u.stop_gradient = True

        self.v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.v.stop_gradient = True

    def forward(self, weight):
        inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2861
    """
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
        name_scope(str): The name of this class.
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2880

2881 2882
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2883

2884
        **bias** (Parameter or None): the learnable bias of this layer.
2885

2886 2887
    Returns:
        None
L
lujun 已提交
2888

2889
    Examples:
L
lujun 已提交
2890

2891
        .. code-block:: python
2892

2893 2894
          import paddle.fluid as fluid
          import numpy
2895

2896 2897 2898 2899 2900 2901
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
                'TreeConv', output_size=6, num_filters=1, max_depth=2)
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2902 2903
    """

L
lujun 已提交
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
    def __init__(self,
                 name_scope,
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
                 name=None):
        super(TreeConv, self).__init__(name_scope)
        self._name = name
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr

2922
    def _build_once(self, nodes_vector, edge_set):
L
lujun 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
        assert isinstance(nodes_vector, Variable)
        assert isinstance(edge_set, Variable)
        self._dtype = self._helper.input_dtype(nodes_vector)

        feature_size = nodes_vector.shape[2]
        w_shape = [feature_size, 3, self._output_size, self._num_filters]
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
        self.W = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
    @property
    def weight(self):
        return self.W

    @weight.setter
    def weight(self, value):
        self.W = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
2957
    def forward(self, nodes_vector, edge_set):
2958

L
lujun 已提交
2959 2960 2961 2962
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
2963

L
lujun 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)

        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.W
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)