nn.py 121.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..dygraph import dygraph_utils
M
minqiyang 已提交
21
from . import layers
H
hong 已提交
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
25 26
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
27
import numpy as np
28
import numbers
29
import logging
30

31
__all__ = [
S
songyouwei 已提交
32 33 34 35
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'Linear', 'BatchNorm', 'Embedding',
    'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct',
    'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm',
    'TreeConv'
36
]
M
minqiyang 已提交
37 38


X
Xin Pan 已提交
39
class Conv2D(layers.Layer):
40
    """
41 42
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
43 44 45
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
46 47 48
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
49
    and W is the width of the filter. If the groups is greater than 1,
50
    C will equal the number of input feature map divided by the groups.
51
    Please refer to UFLDL's `convolution
52
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
53 54 55 56 57 58 59 60 61
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

62
        Out = \\sigma (W \\ast X + b)
63 64 65

    Where:

66 67
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
68
    * :math:`\\ast`: Convolution operation.
69
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

92
    Parameters:
93
        num_channels(int): The number of channels in the input image.
94
        num_filters(int): The number of filter. It is as same as the output
95 96
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
97 98
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
99
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
100
            contain two integers, (stride_H, stride_W). Otherwise, the
101 102
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
103
            contain two integers, (padding_H, padding_W). Otherwise, the
104 105
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
106
            contain two integers, (dilation_H, dilation_W). Otherwise, the
107 108
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
109 110 111
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
112 113
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
114 115 116 117
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
118
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
119 120 121 122
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
123 124 125 126 127
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
128

129 130 131 132
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
133

134 135 136
    Returns:
        None
    
137
    Raises:
138
        ValueError: if ``use_cudnn`` is not a bool value.
139 140 141

    Examples:
        .. code-block:: python
L
lujun 已提交
142

143 144 145 146 147
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

148
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
149
          with fluid.dygraph.guard():
150
              conv2d = Conv2D(3, 2, 3)
151 152
              data = to_variable(data)
              conv = conv2d(data)
153 154 155

    """

M
minqiyang 已提交
156
    def __init__(self,
157
                 num_channels,
M
minqiyang 已提交
158 159 160 161 162 163 164 165
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
166 167 168
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
169
        assert param_attr is not False, "param_attr should not be False here."
170 171
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
172 173 174 175
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
176
        self._act = act
M
minqiyang 已提交
177 178 179
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
180 181 182 183 184
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
185 186 187 188 189 190 191 192 193

        # TODO: recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17098
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        #     self._l_type = 'conv2d'
        self._l_type = 'conv2d'
M
minqiyang 已提交
194

195
        self._num_channels = num_channels
196 197
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
198
        else:
199
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
200
                raise ValueError("num_channels must be divisible by groups.")
201 202
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
203
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
204 205

        def _get_default_param_initializer():
206 207
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
208 209 210
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

211
        self.weight = self.create_parameter(
212
            attr=self._param_attr,
M
minqiyang 已提交
213 214 215 216
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

217
        self.bias = self.create_parameter(
218 219
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
220 221
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
222 223

    def forward(self, input):
224 225
        inputs = {
            'Input': [input],
226
            'Filter': [self.weight],
227 228 229 230 231 232 233 234 235 236 237 238 239 240
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }

        if in_dygraph_mode():
            outs = core.ops.conv2d(inputs, attrs)
            pre_bias = outs['Output'][0]

241 242
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
243 244 245 246

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

M
minqiyang 已提交
247 248 249
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
250 251 252 253
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
254
                'Filter': self.weight,
M
minqiyang 已提交
255
            },
M
minqiyang 已提交
256
            outputs={"Output": pre_bias},
257
            attrs=attrs)
M
minqiyang 已提交
258

259
        if self.bias is not None:
260 261 262 263 264
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
265
                        'Y': [self.bias]},
266 267 268 269
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
270

L
lujun 已提交
271
        # Currently, we don't support inplace in dygraph mode
272
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
273 274


L
lujun 已提交
275
class Conv3D(layers.Layer):
276 277 278 279 280
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
281 282
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
283 284 285 286 287 288 289 290 291 292 293 294 295 296
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
297
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

323
    Parameters:
324
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
325
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
326
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
327
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
328 329 330
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
331
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
332 333
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
334
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
335 336
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
337
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
338 339
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
340 341 342
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
343 344
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
345 346 347
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
348 349
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
350 351 352
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
353 354 355 356 357
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
358
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
359

D
DuYao 已提交
360 361 362 363
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
364

365
    Returns:
D
DuYao 已提交
366
        None.
367 368 369 370 371 372 373 374

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

375 376 377 378 379 380
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
381
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
382 383
              ret = conv3d(fluid.dygraph.base.to_variable(data))

384 385
    """

L
lujun 已提交
386
    def __init__(self,
387
                 num_channels,
L
lujun 已提交
388 389 390 391 392 393 394 395 396
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
397 398
                 act=None,
                 dtype='float32'):
L
lujun 已提交
399
        assert param_attr is not False, "param_attr should not be False here."
400 401
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
402 403 404
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
405
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
406 407
        self._act = act
        self._use_cudnn = use_cudnn
408 409 410 411
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
412
        self._dtype = dtype
413 414

        if self._groups is None:
415
            num_filter_channels = self._num_channels
L
lujun 已提交
416
        else:
417
            if self._num_channels % self._groups != 0:
L
lujun 已提交
418
                raise ValueError("num_channels must be divisible by groups.")
419
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
420

421 422
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
423 424 425

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
426
                2] * self._num_channels
L
lujun 已提交
427 428 429
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

430
        self.weight = self.create_parameter(
431
            attr=self._param_attr,
L
lujun 已提交
432 433 434 435
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

436
        self.bias = self.create_parameter(
437 438
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
439 440 441 442 443 444 445 446
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
447
            type='conv3d',
L
lujun 已提交
448 449
            inputs={
                'Input': input,
450
                'Filter': self.weight,
L
lujun 已提交
451 452 453 454 455 456 457 458 459 460 461
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

462
        if self.bias is not None:
463 464 465 466 467
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
468
                        'Y': [self.bias]},
469 470 471 472
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
473 474 475 476 477

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
543

544
    Parameters:
545
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
546 547
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
548
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
549
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
550
            Otherwise, the filter will be a square.
D
DuYao 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
566
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
567 568
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
569 570 571 572
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
573 574
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
575 576
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
577 578
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
579 580 581
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
582 583 584 585 586 587 588
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
589

D
DuYao 已提交
590 591 592 593
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
594

L
lujun 已提交
595
    Returns:
D
DuYao 已提交
596
        None.
L
lujun 已提交
597 598 599 600 601 602 603 604

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

605 606 607 608 609 610
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
611
                    num_channels=3,
612 613 614 615 616
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
617 618
    """

L
lujun 已提交
619
    def __init__(self,
620
                 num_channels,
L
lujun 已提交
621
                 num_filters,
622
                 filter_size,
L
lujun 已提交
623 624 625 626 627 628 629 630
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
631 632
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
633 634 635 636 637 638 639
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
640
        self._num_channels = num_channels
L
lujun 已提交
641 642 643 644 645 646
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
647
        self._dtype = dtype
L
lujun 已提交
648

649 650
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
651

652 653
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
654
        self.weight = self.create_parameter(
L
lujun 已提交
655 656
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
657
            self.bias = self.create_parameter(
L
lujun 已提交
658 659 660 661 662 663 664 665 666 667 668
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
669
                    'Filter': [self.weight]},
L
lujun 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
685
                        'Y': [self.bias]},
L
lujun 已提交
686 687 688 689 690 691 692 693 694
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
695
class Pool2D(layers.Layer):
696
    """
697 698 699 700 701
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
702 703
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
704

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

749
    Parameters:
750
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
751
            it must contain two integers, (pool_size_Height, pool_size_Width).
752 753 754 755
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
756
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
757 758 759
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
760
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
761 762 763 764 765 766 767
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
768 769

    Returns:
770
        None
771 772 773 774 775 776 777 778 779 780

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
781
          import paddle.fluid as fluid
782 783
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
784 785

          with fluid.dygraph.guard():
786
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
787
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
788 789 790
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
791
             pool2d_res = pool2d(to_variable(data))
792 793 794

    """

M
minqiyang 已提交
795 796 797 798 799 800 801 802
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
803
                 exclusive=True):
M
minqiyang 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

817
        super(Pool2D, self).__init__()
M
minqiyang 已提交
818 819 820 821 822 823 824 825 826 827 828 829 830

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

        if in_dygraph_mode():
            outs = core.ops.pool2d(inputs, attrs)
            return outs['Out'][0]

M
minqiyang 已提交
848 849
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
850 851 852
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
853
            outputs={"Out": pool_out},
854
            attrs=attrs)
M
minqiyang 已提交
855
        return pool_out
M
minqiyang 已提交
856 857


S
songyouwei 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

    Different from FC layer, Linear layer takes only one ``Tensor`` input.
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}

        if in_dygraph_mode():
            outs = core.ops.matmul(inputs, attrs)
            pre_bias = outs['Out'][0]

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

S
songyouwei 已提交
945 946
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
947
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


X
Xin Pan 已提交
962
class FC(layers.Layer):
963
    """
964 965 966 967
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
968 969
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
970 971 972
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
973
    is not None, a bias variable will be created and added to the output.
974
    Finally, if ``act`` is not None, it will be applied to the output as well.
975

976
    When the input is single ``Tensor`` :
977 978 979 980 981

    .. math::

        Out = Act({XW + b})

982
    When the input are multiple ``Tensor`` :
983 984 985 986 987 988 989

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

990 991
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
992 993 994
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
995
    * :math:`Out`: The output ``Tensor`` .
996 997 998 999 1000 1001

    See below for an example.

    .. code-block:: text

        Given:
1002 1003
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
1004

1005 1006
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
1007

1008 1009
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
1010 1011

        Then:
1012 1013
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
1014

1015
    Parameters:
L
lujun 已提交
1016
        name_scope(str): The name of this class.
1017
        size(int): The number of output units in this layer.
1018 1019
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
1020 1021 1022 1023 1024 1025
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
L
lujun 已提交
1026
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
1027 1028 1029
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
1030 1031
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
1032 1033 1034
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
1035

1036 1037
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
1038

1039
        **bias** (Parameter or None): the learnable bias of this layer.
1040

1041 1042 1043
    Returns:
        None
    
1044 1045
    Examples:
        .. code-block:: python
L
lujun 已提交
1046

1047 1048 1049 1050
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
L
lujun 已提交
1051

1052
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
1053
          with fluid.dygraph.guard():
1054 1055 1056
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
1057 1058 1059

    """

M
minqiyang 已提交
1060
    def __init__(self,
X
Xin Pan 已提交
1061
                 name_scope,
M
minqiyang 已提交
1062
                 size,
1063
                 num_flatten_dims=1,
M
minqiyang 已提交
1064
                 param_attr=None,
M
minqiyang 已提交
1065
                 bias_attr=None,
1066 1067 1068
                 act=None,
                 is_test=False,
                 dtype="float32"):
1069
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
1070

M
minqiyang 已提交
1071
        self._size = size
M
minqiyang 已提交
1072 1073
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
1074
        self._param_attr = param_attr
1075
        self._bias_attr = bias_attr
1076
        self._act = act
1077 1078
        self.__w = list()

1079
    def _build_once(self, input):
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    # TODO(songyouwei): We should remove _w property
    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(self.__w[i], Variable)
        self.__w[i].set_value(value)

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

M
minqiyang 已提交
1133
    def forward(self, input):
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
1173
        # Currently, we don't support inplace in dygraph mode
1174
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
1175 1176 1177


class BatchNorm(layers.Layer):
1178
    """
1179 1180 1181 1182 1183
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1184 1185 1186 1187
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1188 1189 1190
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1191 1192 1193 1194 1195 1196 1197 1198

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1199 1200
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1201 1202 1203

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1204 1205 1206 1207 1208 1209
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1210

1211 1212
    The normalization function formula is as follows:
 
1213 1214 1215
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1216 1217 1218 1219 1220 1221
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1222

1223
    Parameters:
1224 1225 1226 1227 1228 1229
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1230 1231 1232
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1233
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1234 1235 1236
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1237 1238 1239 1240 1241 1242
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1243 1244
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1245
        use_global_stats(bool, optional): Whether to use global mean and
1246 1247 1248
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1249 1250 1251 1252
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1253 1254

    Returns:
1255
        None
1256 1257 1258

    Examples:
        .. code-block:: python
L
lujun 已提交
1259 1260

          import paddle.fluid as fluid
1261 1262
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1263

1264
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1265
          with fluid.dygraph.guard():
1266
              x = to_variable(x)
1267
              batch_norm = fluid.BatchNorm(10)
1268
              hidden1 = batch_norm(x)
1269 1270
    """

M
minqiyang 已提交
1271 1272 1273 1274 1275 1276 1277 1278
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1279
                 dtype='float32',
M
minqiyang 已提交
1280 1281 1282 1283
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1284
                 do_model_average_for_mean_and_var=True,
1285 1286
                 use_global_stats=False,
                 trainable_statistics=False):
1287
        super(BatchNorm, self).__init__()
1288
        self._param_attr = param_attr
1289
        self._bias_attr = bias_attr
1290
        self._act = act
M
minqiyang 已提交
1291

H
hong 已提交
1292 1293 1294
        self._full_name = unique_name.generate("batch_norm")
        self._helper = LayerObjectHelper(self._full_name)

M
minqiyang 已提交
1295 1296
        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1297 1298
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1299 1300 1301 1302 1303 1304
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1305
        self.weight = self.create_parameter(
1306
            attr=self._param_attr,
M
minqiyang 已提交
1307 1308 1309
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1310
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1311

1312
        self.bias = self.create_parameter(
1313
            attr=self._bias_attr,
M
minqiyang 已提交
1314 1315 1316
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1317
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1318

1319
        self._mean = self.create_parameter(
M
minqiyang 已提交
1320 1321 1322 1323 1324 1325 1326
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1327
        self._mean.stop_gradient = True
M
minqiyang 已提交
1328

1329
        self._variance = self.create_parameter(
M
minqiyang 已提交
1330 1331 1332 1333 1334 1335 1336
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1337
        self._variance.stop_gradient = True
M
minqiyang 已提交
1338 1339

        self._in_place = in_place
1340
        self._data_layout = data_layout
M
minqiyang 已提交
1341 1342 1343
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1344
        self._fuse_with_relu = False
M
minqiyang 已提交
1345
        self._use_global_stats = use_global_stats
1346
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1356
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1357
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1358
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1359
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1360
            self._dtype)
M
minqiyang 已提交
1361 1362 1363 1364 1365

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
1366 1367
                "Scale": self.weight,
                "Bias": self.bias,
M
minqiyang 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
1382
                "data_layout": self._data_layout,
M
minqiyang 已提交
1383 1384
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1385 1386
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1387 1388
            })

L
lujun 已提交
1389
        # Currently, we don't support inplace in dygraph mode
1390
        return self._helper.append_activation(batch_norm_out, self._act)
1391 1392


1393 1394 1395 1396
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1397 1398 1399 1400 1401 1402
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1403 1404
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1405

1406
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1407 1408 1409 1410 1411 1412 1413
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1414 1415
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1429

1430
    Parameters:
L
lujun 已提交
1431 1432
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1455

Z
zhongpu 已提交
1456 1457
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1458

1459
    Returns:
Z
zhongpu 已提交
1460
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1461 1462

    Examples:
1463

1464 1465
        .. code-block:: python

L
lujun 已提交
1466 1467 1468 1469
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1470
          # example 1
1471 1472
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1473 1474
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1475
              emb = fluid.dygraph.Embedding(
1476 1477 1478
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1479
              static_rlt3 = emb(base.to_variable(inp_word))
1480
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1495 1496
    """

1497 1498 1499 1500 1501 1502 1503
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1504
        super(Embedding, self).__init__()
1505 1506 1507 1508
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1509
            size[0] + padding_idx)
1510 1511 1512

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1513
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1514 1515 1516
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1517
        self.weight = self.create_parameter(
1518 1519 1520 1521 1522 1523
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1524 1525 1526 1527 1528 1529
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1530

1531
        if in_dygraph_mode():
1532
            inputs = {'Ids': [input], 'W': [self.weight]}
1533 1534 1535
            outs = core.ops.lookup_table_v2(inputs, attrs)
            return outs['Out'][0]

1536 1537
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1538
            type='lookup_table_v2',
1539
            inputs={'Ids': input,
1540
                    'W': self.weight},
1541
            outputs={'Out': out},
1542
            attrs=attrs)
1543 1544

        return out
M
minqiyang 已提交
1545 1546


1547
class LayerNorm(layers.Layer):
1548
    """
1549 1550 1551
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1552
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1553

1554
    The formula is as follows:
1555

1556
    ..  math::
1557

1558
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1559

1560
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1561

1562
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1563

1564 1565 1566 1567 1568
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1569

1570
    Parameters:
1571 1572 1573 1574
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1575
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1576
            normalization. Default: True.
1577
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1578
            normalization. Default: True.
1579
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1580
            division by zero. Default: 1e-05.
1581
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1582 1583 1584
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1585
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1586
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1587 1588 1589
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1590
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1591
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1592
                  Default: None.
1593 1594
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1595
    Returns:
1596
        None
1597

1598
    Examples:
1599

1600 1601 1602
        .. code-block:: python

          import paddle.fluid as fluid
1603
          from paddle.fluid.dygraph.base import to_variable
1604 1605
          import numpy

1606
          x = numpy.random.random((3, 32, 32)).astype('float32')
1607
          with fluid.dygraph.guard():
1608
              x = to_variable(x)
1609
              layerNorm = fluid.LayerNorm([32, 32])
1610
              ret = layerNorm(x)
1611

1612
    """
1613

1614
    def __init__(self,
1615
                 normalized_shape,
1616 1617 1618 1619 1620
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1621 1622 1623 1624 1625
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1626 1627 1628 1629

        self._full_name = unique_name.generate("layer_norm")
        self._helper = LayerObjectHelper(self._full_name)

1630
        self._normalized_shape = list(normalized_shape)
1631 1632 1633 1634 1635 1636
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1637 1638
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1639
        if self._scale:
1640
            self.weight = self.create_parameter(
1641 1642 1643 1644
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1645 1646 1647 1648
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1649 1650
        if self._shift:
            assert self._bias_attr is not False
1651
            self.bias = self.create_parameter(
1652 1653 1654 1655
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1656 1657 1658
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1659 1660

    def forward(self, input):
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1672 1673 1674
        inputs = dict()
        inputs['X'] = input
        if self._scale:
1675
            inputs['Scale'] = self.weight
1676
        if self._shift:
1677
            inputs['Bias'] = self.bias
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1699
        return self._helper.append_activation(layer_norm_out, act=self._act)
1700 1701


M
minqiyang 已提交
1702 1703 1704
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1705 1706 1707 1708 1709
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1720
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1746
    Parameters:
L
lujun 已提交
1747
        size (int): The input dimension value.
D
DuYao 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1757 1758 1759 1760


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1761 1762 1763 1764
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1765 1766 1767 1768 1769
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1770
            is initialized zero. The default value is None.
L
lujun 已提交
1771
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1772
                             The default value is 'tanh'.
L
lujun 已提交
1773
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1774 1775 1776
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1777

D
DuYao 已提交
1778 1779 1780 1781
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1782

M
minqiyang 已提交
1783
    Returns:
D
DuYao 已提交
1784 1785 1786 1787
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1801
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1802 1803 1804
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1805
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1806 1807 1808
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1819
        super(GRUUnit, self).__init__()
1820
        self._bias_attr = bias_attr
M
minqiyang 已提交
1821 1822 1823 1824 1825
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1826 1827
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1828

M
minqiyang 已提交
1829
        self._dtype = dtype
M
minqiyang 已提交
1830 1831
        size = size // 3
        # create weight
1832
        self.weight = self.create_parameter(
M
minqiyang 已提交
1833
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1834 1835

        # create bias
M
minqiyang 已提交
1836
        bias_size = [1, 3 * size]
1837
        self._bias_size = bias_size
1838
        self.bias = self.create_parameter(
M
minqiyang 已提交
1839
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1840

M
minqiyang 已提交
1841
    def forward(self, input, hidden):
1842 1843 1844
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self.weight}
        if self.bias:
            inputs['Bias'] = self.bias
M
minqiyang 已提交
1845 1846 1847 1848 1849 1850

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1860 1861
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1862 1863 1864
            })

        return updated_hidden, reset_hidden_pre, gate
1865 1866 1867 1868


class NCE(layers.Layer):
    """
1869 1870 1871 1872 1873
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1874
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1875

1876
    Parameters:
1877 1878
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1879
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1880 1881 1882
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1883
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1884 1885 1886 1887
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1888 1889
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1890 1891
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1892
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1893
                       It is used when sampler is set to 'custom_dist'.
1894
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1895
                       Default: None.
1896 1897
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1898
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1899

1900 1901
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1902

1903 1904
        **bias** (Parameter or None): the learnable bias of this layer.
    
1905
    Returns:
1906
        None
1907 1908 1909 1910

    Examples:
        .. code-block:: python

1911 1912 1913
            import numpy as np
            import paddle.fluid as fluid

1914
            window_size = 5
1915 1916
            dict_size = 20
            label_word = int(window_size // 2) + 1
1917
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1939
                nce = fluid.NCE(
1940
                             num_total_classes=dict_size,
1941
                             dim=embs3.shape[1],
1942 1943 1944 1945 1946 1947 1948
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1949 1950
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1951 1952 1953 1954 1955

    """

    def __init__(self,
                 num_total_classes,
1956
                 dim,
1957
                 sample_weight=None,
1958 1959 1960 1961 1962 1963
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1964 1965 1966
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1967 1968 1969
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1970
        self._dtype = dtype
1971
        self._inputs = dict()
1972
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2060
        self.weight = self.create_parameter(
2061 2062 2063
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2064
            dtype=self._dtype)
2065
        if self._bias_attr:
2066
            self.bias = self.create_parameter(
2067 2068 2069
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2070
                dtype=self._dtype)
2071 2072
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2103 2104 2105 2106
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2107 2108 2109 2110 2111
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2112
    Parameters:
L
lujun 已提交
2113
        mode (str): The mode for weight sharing. It supports all, channel
2114 2115 2116
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
2117 2118
        input_shape (list or tuple, optional): The shape of input.
          This parameter is required when mode is not "all". Default: None.
2119 2120
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2121
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2122

2123 2124 2125
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2126
    Returns:
2127
        None
2128 2129 2130 2131 2132

    Examples:

        .. code-block:: python

L
lujun 已提交
2133
          import paddle.fluid as fluid
2134
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2135 2136 2137 2138
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2139
              inp_np = to_variable(inp_np)
L
lujun 已提交
2140 2141 2142
              mode = 'channel'
              prelu = fluid.PRelu(
                 mode=mode,
2143
                 input_shape=inp_np.shape,
L
lujun 已提交
2144
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
2145
              dy_rlt = prelu(inp_np)
L
lujun 已提交
2146

2147 2148
    """

2149 2150 2151
    def __init__(self, mode, input_shape=None, param_attr=None,
                 dtype='float32'):
        super(PRelu, self).__init__()
2152 2153 2154 2155
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
2156
        self._dtype = dtype
2157
        self._alpha_shape = [1]
2158 2159 2160 2161 2162 2163 2164
        if mode is not 'all':
            assert input_shape is not None
            input_shape = list(input_shape)
            if self._mode == 'channel':
                self._alpha_shape = [1, input_shape[1], 1, 1]
            elif self._mode == 'element':
                self._alpha_shape = input_shape
2165
        self.weight = self.create_parameter(
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2177
                    'Alpha': self.weight},
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2198
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2199

2200
    Parameters:
2201 2202 2203 2204 2205
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2206 2207 2208 2209
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2210
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2211
           If it is set to None, the bias is initialized zero. The default value is None.
2212
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2213

D
DuYao 已提交
2214 2215 2216 2217
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2218

2219 2220 2221 2222 2223 2224
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2225 2226 2227 2228 2229 2230 2231
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2232
                    input1_dim=5, input2_dim=4, output_dim=1000)
2233 2234
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2235 2236 2237
    """

    def __init__(self,
2238 2239 2240
                 input1_dim,
                 input2_dim,
                 output_dim,
2241 2242 2243
                 name=None,
                 act=None,
                 param_attr=None,
2244 2245 2246
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2247 2248 2249 2250
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2251 2252 2253
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2254
        self._inputs = dict()
2255
        self._dtype = dtype
2256

2257
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2258
        self.weight = self.create_parameter(
2259 2260 2261 2262
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2263
        bias_size = [1, self._output_dim]
2264
        self.bias = self.create_parameter(
2265 2266 2267 2268
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2269 2270

    def forward(self, x, y):
2271 2272 2273
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
        if self.bias:
            self._inputs["Bias"] = self.bias
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2288
        return self._helper.append_activation(out, act=self._act)
2289 2290 2291 2292


class Conv2DTranspose(layers.Layer):
    """
2293 2294
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2295
    The convolution2D transpose layer calculates the output based on the input,
2296 2297 2298
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2299 2300
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2301 2302
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2303 2304 2305
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2306 2307
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2308 2309 2310 2311 2312 2313 2314 2315 2316

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2317 2318
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2319
    * :math:`\\ast`: Convolution operation.
2320
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2345
    Parameters:
2346
        num_channels(int): The number of channels in the input image.
2347
        num_filters(int): The number of the filter. It is as same as the output
2348
            feature map.
2349 2350 2351
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2352
        output_size(int or tuple, optional): The output image size. If output size is a
2353 2354 2355
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2356
            should follow the formula above. Default: None.
2357
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2358
            contain two integers, (padding_H, padding_W). Otherwise, the
2359 2360
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2361
            contain two integers, (stride_H, stride_W). Otherwise, the
2362 2363
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2364
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2365 2366
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2367 2368 2369 2370
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2371 2372
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2373 2374 2375
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2376
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2377 2378 2379 2380
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2381
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2382
            library is installed. Default: True.
2383
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2384
            Default: None.
2385
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2386

2387 2388
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2389

2390
        **bias** (Parameter or None): the learnable bias of this layer.
2391

2392 2393
    Returns:
        None
2394 2395 2396 2397

    Examples:
       .. code-block:: python

2398
          import paddle.fluid as fluid
2399
          import numpy as np
2400 2401

          with fluid.dygraph.guard():
2402
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2403
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2404
                    num_channels=32, num_filters=2, filter_size=3)
2405 2406
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2407 2408 2409
    """

    def __init__(self,
2410
                 num_channels,
2411
                 num_filters,
2412
                 filter_size,
2413 2414 2415 2416 2417 2418 2419 2420
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2421 2422 2423
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2424 2425 2426
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2427
        self._act = act
2428
        self._groups = groups
2429
        self._num_channels = num_channels
2430 2431 2432 2433 2434 2435 2436
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2437
        self._dtype = dtype
2438

2439 2440 2441
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2442
            self._op_type = 'depthwise_conv2d_transpose'
2443 2444
        else:
            self._op_type = 'conv2d_transpose'
2445 2446 2447 2448 2449

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2450 2451
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2463
        filter_shape = [self._num_channels, self._num_filters // self._groups
2464 2465
                        ] + self._filter_size

2466
        self.weight = self.create_parameter(
2467
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2468

2469
        self.bias = self.create_parameter(
2470 2471 2472 2473 2474
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2475 2476 2477 2478 2479 2480
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
2481
                    'Filter': [self.weight]},
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

2492
        if self.bias is not None:
2493 2494 2495 2496 2497
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2498
                        'Y': [self.bias]},
2499 2500 2501 2502 2503 2504
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2505 2506 2507 2508 2509 2510 2511 2512 2513
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2514
    Parameters:
L
lujun 已提交
2515
        name_scope(str): The name of this class.
2516
        num_filters (int): number of filters.
L
lujun 已提交
2517 2518 2519
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2532 2533 2534 2535
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2549
        assert not in_dygraph_mode(
2550
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2551 2552 2553 2554 2555 2556 2557
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2558
        self._act = act
2559

2560
    def _build_once(self, input):
2561 2562
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2563
        self.weight = self.create_parameter(
2564
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2565

2566
        self.bias = self.create_parameter(
2567 2568 2569 2570 2571
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2572 2573 2574 2575 2576 2577
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2578
                'Filter': [self.weight],
2579 2580 2581 2582 2583 2584 2585
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2586

2587
        if self.bias is not None:
2588 2589 2590 2591 2592
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2593
                        'Y': [self.bias]},
2594 2595 2596 2597 2598 2599
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2600 2601 2602


class RowConv(layers.Layer):
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2621
    Parameters:
L
lujun 已提交
2622
        name_scope(str): The name of this class.
2623 2624 2625
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2626 2627
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2628

2629 2630 2631
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2632
    Returns:
L
lujun 已提交
2633 2634
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2650 2651 2652 2653 2654
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2655
        assert not in_dygraph_mode(
2656
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2657 2658 2659 2660 2661
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2662
    def _build_once(self, input):
L
lujun 已提交
2663 2664
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2665
        self.weight = self.create_parameter(
2666 2667 2668 2669
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2670 2671 2672 2673 2674 2675

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2676
                    'Filter': [self.weight]},
L
lujun 已提交
2677 2678 2679 2680 2681 2682
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2683 2684 2685 2686 2687 2688
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2689
        channels(int): The number of channels of input.
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2713
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2714
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2715 2716 2717 2718

    """

    def __init__(self,
2719
                 channels,
L
lujun 已提交
2720 2721 2722 2723 2724
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2725 2726 2727
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2728 2729 2730
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2731
        self._channels = channels
L
lujun 已提交
2732 2733
        self._groups = groups
        self._act = act
2734
        self._dtype = dtype
L
lujun 已提交
2735 2736 2737
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2738
        param_shape = [self._channels]
L
lujun 已提交
2739

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2751 2752 2753

    def forward(self, input):
        inputs = {'X': input}
2754 2755 2756 2757
        if self.bias:
            inputs['Bias'] = self.bias
        if self.weight:
            inputs['Scale'] = self.weight
L
lujun 已提交
2758 2759

        # create output
2760
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2782
    """
2783 2784
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2816
    Parameters:
2817
        weight_shape(list or tuple): The shape of weight parameter.
2818 2819 2820 2821
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2822
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2823 2824

    Returns:
2825
        None
2826 2827 2828 2829 2830

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2831
            import numpy as np
2832 2833

            with fluid.dygraph.guard():
2834 2835 2836
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2837 2838 2839

    """

2840 2841 2842 2843 2844 2845 2846
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2847 2848 2849
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2850
        self._dtype = dtype
L
lujun 已提交
2851

2852 2853 2854
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2855

2856
        self.weight_u = self.create_parameter(
L
lujun 已提交
2857 2858 2859 2860
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2861
        self.weight_u.stop_gradient = True
L
lujun 已提交
2862

2863
        self.weight_v = self.create_parameter(
L
lujun 已提交
2864 2865 2866 2867
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2868
        self.weight_v.stop_gradient = True
L
lujun 已提交
2869 2870

    def forward(self, weight):
2871
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2887
    """
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2898
        feature_size(int): last dimension of nodes_vector.
2899 2900 2901 2902 2903 2904 2905
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2906
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2907

2908 2909
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2910

2911
        **bias** (Parameter or None): the learnable bias of this layer.
2912

2913 2914
    Returns:
        None
L
lujun 已提交
2915

2916
    Examples:
L
lujun 已提交
2917

2918
        .. code-block:: python
2919

2920 2921
          import paddle.fluid as fluid
          import numpy
2922

2923 2924 2925 2926
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2927
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2928
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2929 2930
    """

L
lujun 已提交
2931
    def __init__(self,
2932
                 feature_size,
L
lujun 已提交
2933 2934 2935 2936 2937 2938
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2939 2940 2941
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2942
        self._name = name
2943
        self._feature_size = feature_size
L
lujun 已提交
2944 2945 2946 2947 2948 2949
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2950 2951
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2952
        if self._bias_attr:
2953
            self.bias = self.create_parameter(
L
lujun 已提交
2954 2955 2956 2957
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2958
        self.weight = self.create_parameter(
L
lujun 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2976
                'Filter': self.weight
L
lujun 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2986
                        'Y': [self.bias]},
L
lujun 已提交
2987 2988 2989 2990 2991
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)