nn.py 119.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
L
lujun 已提交
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26
import numbers
27
import logging
28

29
__all__ = [
L
lujun 已提交
30 31
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
32
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
33
]
M
minqiyang 已提交
34 35


X
Xin Pan 已提交
36
class Conv2D(layers.Layer):
37
    """
38 39
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
40 41 42
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
43 44 45
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
46
    and W is the width of the filter. If the groups is greater than 1,
47
    C will equal the number of input feature map divided by the groups.
48
    Please refer to UFLDL's `convolution
49
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
50 51 52 53 54 55 56 57 58
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

59
        Out = \\sigma (W \\ast X + b)
60 61 62

    Where:

63 64
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
65
    * :math:`\\ast`: Convolution operation.
66
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

89
    Parameters:
90
        num_channels(int): The number of channels in the input image.
91
        num_filters(int): The number of filter. It is as same as the output
92 93
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
94 95
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
96
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
97
            contain two integers, (stride_H, stride_W). Otherwise, the
98 99
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
100
            contain two integers, (padding_H, padding_W). Otherwise, the
101 102
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
103
            contain two integers, (dilation_H, dilation_W). Otherwise, the
104 105
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
106 107 108
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
109 110
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
111 112 113 114
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
115
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
116 117 118 119
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
120 121 122 123 124
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
125

126 127 128 129
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
130

131 132 133
    Returns:
        None
    
134
    Raises:
135
        ValueError: if ``use_cudnn`` is not a bool value.
136 137 138

    Examples:
        .. code-block:: python
L
lujun 已提交
139

140 141 142 143 144
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

145
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
146
          with fluid.dygraph.guard():
147
              conv2d = Conv2D(3, 2, 3)
148 149
              data = to_variable(data)
              conv = conv2d(data)
150 151 152

    """

M
minqiyang 已提交
153
    def __init__(self,
154
                 num_channels,
M
minqiyang 已提交
155 156 157 158 159 160 161 162
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
163 164 165
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
166
        assert param_attr is not False, "param_attr should not be False here."
167 168
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
169 170 171 172
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
173
        self._act = act
M
minqiyang 已提交
174 175 176
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
177 178 179 180 181
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
182 183 184 185 186
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
187

188
        self._num_channels = num_channels
189 190
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
191
        else:
192
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
193
                raise ValueError("num_channels must be divisible by groups.")
194 195
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
196
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
197 198

        def _get_default_param_initializer():
199 200
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
201 202 203
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

204
        self._filter_param = self.create_parameter(
205
            attr=self._param_attr,
M
minqiyang 已提交
206 207 208 209
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

210
        self._bias_param = self.create_parameter(
211 212
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
213 214
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

M
minqiyang 已提交
232
    def forward(self, input):
M
minqiyang 已提交
233 234 235
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
236 237 238 239 240 241
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
242
            outputs={"Output": pre_bias},
M
minqiyang 已提交
243 244 245 246
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
247
                'groups': self._groups if self._groups else 1,
M
minqiyang 已提交
248 249 250 251
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

252 253 254 255 256 257 258 259 260 261 262
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
263

L
lujun 已提交
264
        # Currently, we don't support inplace in dygraph mode
265
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
266 267


L
lujun 已提交
268
class Conv3D(layers.Layer):
269 270 271 272 273
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
274 275
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
276 277 278 279 280 281 282 283 284 285 286 287 288 289
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
290
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

316
    Parameters:
317
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
318
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
319
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
320
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
321 322 323
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
324
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
325 326
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
327
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
328 329
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
330
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
331 332
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
333 334 335
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
336 337
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
338 339 340
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
341 342
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
343 344 345
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
346 347 348 349 350
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
351
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
352

D
DuYao 已提交
353 354 355 356
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
357

358
    Returns:
D
DuYao 已提交
359
        None.
360 361 362 363 364 365 366 367

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

368 369 370 371 372 373
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
374
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
375 376
              ret = conv3d(fluid.dygraph.base.to_variable(data))

377 378
    """

L
lujun 已提交
379
    def __init__(self,
380
                 num_channels,
L
lujun 已提交
381 382 383 384 385 386 387 388 389
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
390 391
                 act=None,
                 dtype='float32'):
L
lujun 已提交
392
        assert param_attr is not False, "param_attr should not be False here."
393 394
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
395 396 397
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
398
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
399 400
        self._act = act
        self._use_cudnn = use_cudnn
401 402 403 404
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
405
        self._dtype = dtype
406 407

        if self._groups is None:
408
            num_filter_channels = self._num_channels
L
lujun 已提交
409
        else:
410
            if self._num_channels % self._groups != 0:
L
lujun 已提交
411
                raise ValueError("num_channels must be divisible by groups.")
412
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
413

414 415
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
416 417 418

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
419
                2] * self._num_channels
L
lujun 已提交
420 421 422 423
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self.create_parameter(
424
            attr=self._param_attr,
L
lujun 已提交
425 426 427 428 429
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        self._bias_param = self.create_parameter(
430 431
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
432 433 434
            dtype=self._dtype,
            is_bias=True)

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
451 452 453 454 455
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
456
            type='conv3d',
L
lujun 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

471 472 473 474 475 476 477 478 479 480 481
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
482 483 484 485 486

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
552

553
    Parameters:
554
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
555 556
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
557
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
558
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
559
            Otherwise, the filter will be a square.
D
DuYao 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
575
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
576 577
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
578 579 580 581
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
582 583
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
584 585
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
586 587
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
588 589 590
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
591 592 593 594 595 596 597
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
598

D
DuYao 已提交
599 600 601 602
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
603

L
lujun 已提交
604
    Returns:
D
DuYao 已提交
605
        None.
L
lujun 已提交
606 607 608 609 610 611 612 613

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

614 615 616 617 618 619
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
620
                    num_channels=3,
621 622 623 624 625
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
626 627
    """

L
lujun 已提交
628
    def __init__(self,
629
                 num_channels,
L
lujun 已提交
630
                 num_filters,
631
                 filter_size,
L
lujun 已提交
632 633 634 635 636 637 638 639
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
640 641
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
642 643 644 645 646 647 648
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
649
        self._num_channels = num_channels
L
lujun 已提交
650 651 652 653 654 655
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
656
        self._dtype = dtype
L
lujun 已提交
657

658 659
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
660

661 662
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
L
lujun 已提交
663 664 665 666 667 668 669 670 671
        self._img_filter = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
720
class Pool2D(layers.Layer):
721
    """
722 723 724 725 726
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
727 728
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

774
    Parameters:
775
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
776
            it must contain two integers, (pool_size_Height, pool_size_Width).
777 778 779 780
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
781
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
782 783 784
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
785
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
786 787 788 789 790 791 792
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
793 794

    Returns:
795
        None
796 797 798 799 800 801 802 803 804 805

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
806
          import paddle.fluid as fluid
807 808
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
809 810

          with fluid.dygraph.guard():
811
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
812
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
813 814 815
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
816
             pool2d_res = pool2d(to_variable(data))
817 818 819

    """

M
minqiyang 已提交
820 821 822 823 824 825 826 827
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
828
                 exclusive=True):
M
minqiyang 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

842
        super(Pool2D, self).__init__()
M
minqiyang 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
856 857
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
858 859 860
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
861
            outputs={"Out": pool_out},
M
minqiyang 已提交
862 863 864 865 866 867 868 869 870 871 872
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
873
        return pool_out
M
minqiyang 已提交
874 875


X
Xin Pan 已提交
876
class FC(layers.Layer):
877
    """
878 879 880 881
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
882 883
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
884 885 886
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
887
    is not None, a bias variable will be created and added to the output.
888
    Finally, if ``act`` is not None, it will be applied to the output as well.
889

890
    When the input is single ``Tensor`` :
891 892 893 894 895

    .. math::

        Out = Act({XW + b})

896
    When the input are multiple ``Tensor`` :
897 898 899 900 901 902 903

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

904 905
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
906 907 908
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
909
    * :math:`Out`: The output ``Tensor`` .
910 911 912 913 914 915

    See below for an example.

    .. code-block:: text

        Given:
916 917
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
918

919 920
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
921

922 923
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
924 925

        Then:
926 927
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
928

929
    Parameters:
L
lujun 已提交
930
        name_scope(str): The name of this class.
931
        size(int): The number of output units in this layer.
932 933
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
934 935 936 937 938 939
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
L
lujun 已提交
940
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
941 942 943
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
944 945
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
946 947 948
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
949

950 951
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
952

953
        **bias** (Parameter or None): the learnable bias of this layer.
954

955 956 957
    Returns:
        None
    
958 959
    Examples:
        .. code-block:: python
L
lujun 已提交
960

961 962 963 964
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
L
lujun 已提交
965

966
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
967
          with fluid.dygraph.guard():
968 969 970
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
971 972 973

    """

M
minqiyang 已提交
974
    def __init__(self,
X
Xin Pan 已提交
975
                 name_scope,
M
minqiyang 已提交
976
                 size,
977
                 num_flatten_dims=1,
M
minqiyang 已提交
978
                 param_attr=None,
M
minqiyang 已提交
979
                 bias_attr=None,
980 981 982
                 act=None,
                 is_test=False,
                 dtype="float32"):
983
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
984

M
minqiyang 已提交
985
        self._size = size
M
minqiyang 已提交
986 987
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
988
        self._param_attr = param_attr
989
        self._bias_attr = bias_attr
990
        self._act = act
991 992
        self.__w = list()

993
    def _build_once(self, input):
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    # TODO(songyouwei): We should remove _w property
    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(self.__w[i], Variable)
        self.__w[i].set_value(value)

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

M
minqiyang 已提交
1047
    def forward(self, input):
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
1087
        # Currently, we don't support inplace in dygraph mode
1088
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
1089 1090 1091


class BatchNorm(layers.Layer):
1092
    """
1093 1094 1095 1096 1097
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1098 1099 1100 1101
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1102 1103 1104
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1105 1106 1107 1108 1109 1110 1111 1112

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1113 1114
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1115 1116 1117

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1118 1119 1120 1121 1122 1123
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1124

1125 1126
    The normalization function formula is as follows:
 
1127 1128 1129
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1130 1131 1132 1133 1134 1135
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1136

1137
    Parameters:
1138 1139 1140 1141 1142 1143
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1144 1145 1146
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1147
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1148 1149 1150
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1151 1152 1153 1154 1155 1156
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1157 1158
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1159
        use_global_stats(bool, optional): Whether to use global mean and
1160 1161 1162
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1163 1164 1165 1166
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1167 1168

    Returns:
1169
        None
1170 1171 1172

    Examples:
        .. code-block:: python
L
lujun 已提交
1173 1174

          import paddle.fluid as fluid
1175 1176
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1177

1178
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1179
          with fluid.dygraph.guard():
1180
              x = to_variable(x)
1181
              batch_norm = fluid.BatchNorm(10)
1182
              hidden1 = batch_norm(x)
1183 1184
    """

M
minqiyang 已提交
1185 1186 1187 1188 1189 1190 1191 1192
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1193
                 dtype='float32',
M
minqiyang 已提交
1194 1195 1196 1197
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1198
                 do_model_average_for_mean_and_var=True,
1199 1200
                 use_global_stats=False,
                 trainable_statistics=False):
1201
        super(BatchNorm, self).__init__()
1202
        self._param_attr = param_attr
1203
        self._bias_attr = bias_attr
1204
        self._act = act
M
minqiyang 已提交
1205 1206 1207

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1208 1209
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1210 1211 1212 1213 1214 1215
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1216 1217
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
1218 1219 1220
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1221
        if use_global_stats and self._param_attr.learning_rate == 0.:
1222
            self._scale.stop_gradient = True
M
minqiyang 已提交
1223

1224
        self._bias = self.create_parameter(
1225
            attr=self._bias_attr,
M
minqiyang 已提交
1226 1227 1228
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1229
        if use_global_stats and self._param_attr.learning_rate == 0.:
1230
            self._bias.stop_gradient = True
M
minqiyang 已提交
1231

1232
        self._mean = self.create_parameter(
M
minqiyang 已提交
1233 1234 1235 1236 1237 1238 1239
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1240
        self._mean.stop_gradient = True
M
minqiyang 已提交
1241

1242
        self._variance = self.create_parameter(
M
minqiyang 已提交
1243 1244 1245 1246 1247 1248 1249
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1250
        self._variance.stop_gradient = True
M
minqiyang 已提交
1251 1252

        self._in_place = in_place
1253
        self._data_layout = data_layout
M
minqiyang 已提交
1254 1255 1256
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1257
        self._fuse_with_relu = False
M
minqiyang 已提交
1258
        self._use_global_stats = use_global_stats
1259
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1269
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1270
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1271
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1272
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1273
            self._dtype)
M
minqiyang 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
1295
                "data_layout": self._data_layout,
M
minqiyang 已提交
1296 1297
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1298 1299
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1300 1301
            })

L
lujun 已提交
1302
        # Currently, we don't support inplace in dygraph mode
1303
        return self._helper.append_activation(batch_norm_out, self._act)
1304 1305


1306 1307 1308 1309
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1310 1311 1312 1313 1314 1315
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1316 1317
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1318

1319
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1320 1321 1322 1323 1324 1325 1326
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1327 1328
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1342

1343
    Parameters:
L
lujun 已提交
1344 1345
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1368

Z
zhongpu 已提交
1369 1370
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1371

1372
    Returns:
Z
zhongpu 已提交
1373
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1374 1375

    Examples:
1376

1377 1378
        .. code-block:: python

L
lujun 已提交
1379 1380 1381 1382
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1383
          # example 1
1384 1385
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1386 1387
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1388
              emb = fluid.dygraph.Embedding(
1389 1390 1391
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1392
              static_rlt3 = emb(base.to_variable(inp_word))
1393
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1408 1409
    """

1410 1411 1412 1413 1414 1415 1416
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1417
        super(Embedding, self).__init__()
1418 1419 1420 1421
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1422
            size[0] + padding_idx)
1423 1424 1425

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1426
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1427 1428 1429
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1430
        self._w = self.create_parameter(
1431 1432 1433 1434 1435
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

1436 1437 1438 1439 1440 1441 1442 1443
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

1444 1445 1446
    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1447
            type='lookup_table_v2',
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out
M
minqiyang 已提交
1459 1460


1461
class LayerNorm(layers.Layer):
1462
    """
1463 1464 1465
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1466
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1467

1468
    The formula is as follows:
1469

1470
    ..  math::
1471

1472
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1473

1474
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1475

1476
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1477

1478 1479 1480 1481 1482
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1483

1484
    Parameters:
1485 1486 1487 1488
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1489
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1490
            normalization. Default: True.
1491
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1492
            normalization. Default: True.
1493
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1494
            division by zero. Default: 1e-05.
1495
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1496 1497 1498
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1499
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1500
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1501 1502 1503
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1504
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1505
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1506
                  Default: None.
1507 1508
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1509
    Returns:
1510
        None
1511

1512
    Examples:
1513

1514 1515 1516
        .. code-block:: python

          import paddle.fluid as fluid
1517
          from paddle.fluid.dygraph.base import to_variable
1518 1519
          import numpy

1520
          x = numpy.random.random((3, 32, 32)).astype('float32')
1521
          with fluid.dygraph.guard():
1522
              x = to_variable(x)
1523
              layerNorm = fluid.LayerNorm([32, 32])
1524
              ret = layerNorm(x)
1525

1526
    """
1527

1528
    def __init__(self,
1529
                 normalized_shape,
1530 1531 1532 1533 1534
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1535 1536 1537 1538 1539 1540
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
        self._normalized_shape = list(normalized_shape)
1541 1542 1543 1544 1545 1546
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1547 1548
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1549 1550 1551 1552 1553 1554
        if self._scale:
            self._scale_w = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1555 1556 1557 1558
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1559 1560 1561 1562 1563 1564 1565
        if self._shift:
            assert self._bias_attr is not False
            self._bias_w = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1566 1567 1568
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1569 1570

    def forward(self, input):
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
        inputs = dict()
        inputs['X'] = input
        if self._scale:
            inputs['Scale'] = self._scale_w
        if self._shift:
            inputs['Bias'] = self._bias_w
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1609
        return self._helper.append_activation(layer_norm_out, act=self._act)
1610 1611


M
minqiyang 已提交
1612 1613 1614
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1615 1616 1617 1618 1619
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1630
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1656
    Parameters:
L
lujun 已提交
1657
        size (int): The input dimension value.
D
DuYao 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1667 1668 1669 1670


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1671 1672 1673 1674
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1675 1676 1677 1678 1679
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1680
            is initialized zero. The default value is None.
L
lujun 已提交
1681
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1682
                             The default value is 'tanh'.
L
lujun 已提交
1683
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1684 1685 1686
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1687

D
DuYao 已提交
1688 1689 1690 1691
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1692

M
minqiyang 已提交
1693
    Returns:
D
DuYao 已提交
1694 1695 1696 1697
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1711
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1712 1713 1714
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1715
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1716 1717 1718
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1729
        super(GRUUnit, self).__init__()
1730
        self._bias_attr = bias_attr
M
minqiyang 已提交
1731 1732 1733 1734 1735
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1736 1737
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1738

M
minqiyang 已提交
1739
        self._dtype = dtype
M
minqiyang 已提交
1740 1741
        size = size // 3
        # create weight
M
minqiyang 已提交
1742 1743
        self._weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1744 1745

        # create bias
M
minqiyang 已提交
1746
        bias_size = [1, 3 * size]
1747
        self._bias_size = bias_size
M
minqiyang 已提交
1748 1749
        self._bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, value):
        self._weight = value

    @property
    def bias(self):
        return self._bias

    @bias.setter
    def bias(self, value):
        self._bias = value

M
minqiyang 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
    def forward(self, input, hidden):
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
        if self._bias:
            inputs['Bias'] = self._bias

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1786 1787
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1788 1789 1790
            })

        return updated_hidden, reset_hidden_pre, gate
1791 1792 1793 1794


class NCE(layers.Layer):
    """
1795 1796 1797 1798 1799
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1800
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1801

1802
    Parameters:
1803 1804
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1805
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1806 1807 1808
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1809
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1810 1811 1812 1813
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1814 1815
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1816 1817
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1818
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1819
                       It is used when sampler is set to 'custom_dist'.
1820
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1821
                       Default: None.
1822 1823
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1824
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1825

1826 1827
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1828

1829 1830
        **bias** (Parameter or None): the learnable bias of this layer.
    
1831
    Returns:
1832
        None
1833 1834 1835 1836

    Examples:
        .. code-block:: python

1837 1838 1839
            import numpy as np
            import paddle.fluid as fluid

1840
            window_size = 5
1841 1842
            dict_size = 20
            label_word = int(window_size // 2) + 1
1843
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1865
                nce = fluid.NCE(
1866
                             num_total_classes=dict_size,
1867
                             dim=embs3.shape[1],
1868 1869 1870 1871 1872 1873 1874
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1875 1876
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1877 1878 1879 1880 1881

    """

    def __init__(self,
                 num_total_classes,
1882
                 dim,
1883
                 sample_weight=None,
1884 1885 1886 1887 1888 1889
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1890 1891 1892
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1893 1894 1895
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1896
        self._dtype = dtype
1897
        self._inputs = dict()
1898
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1990
            dtype=self._dtype)
1991 1992 1993 1994 1995
        if self._bias_attr:
            self._b = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1996
                dtype=self._dtype)
1997 1998 1999
            self._inputs['Bias'] = self._b
        self._inputs['Weight'] = self._w

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2045 2046 2047 2048
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2049 2050 2051 2052 2053
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2054
    Parameters:
L
lujun 已提交
2055
        mode (str): The mode for weight sharing. It supports all, channel
2056 2057 2058
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
2059 2060
        input_shape (list or tuple, optional): The shape of input.
          This parameter is required when mode is not "all". Default: None.
2061 2062
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2063
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2064

2065 2066 2067
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2068
    Returns:
2069
        None
2070 2071 2072 2073 2074

    Examples:

        .. code-block:: python

L
lujun 已提交
2075
          import paddle.fluid as fluid
2076
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2077 2078 2079 2080
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2081
              inp_np = to_variable(inp_np)
L
lujun 已提交
2082 2083 2084
              mode = 'channel'
              prelu = fluid.PRelu(
                 mode=mode,
2085
                 input_shape=inp_np.shape,
L
lujun 已提交
2086
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
2087
              dy_rlt = prelu(inp_np)
L
lujun 已提交
2088

2089 2090
    """

2091 2092 2093
    def __init__(self, mode, input_shape=None, param_attr=None,
                 dtype='float32'):
        super(PRelu, self).__init__()
2094 2095 2096 2097
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
2098
        self._dtype = dtype
2099
        self._alpha_shape = [1]
2100 2101 2102 2103 2104 2105 2106
        if mode is not 'all':
            assert input_shape is not None
            input_shape = list(input_shape)
            if self._mode == 'channel':
                self._alpha_shape = [1, input_shape[1], 1, 1]
            elif self._mode == 'element':
                self._alpha_shape = input_shape
2107 2108 2109 2110 2111 2112 2113
        self._alpha = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

2114 2115 2116 2117 2118 2119 2120 2121
    @property
    def weight(self):
        return self._alpha

    @weight.setter
    def weight(self, value):
        self._alpha = value

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
    def forward(self, input):

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
                    'Alpha': self._alpha},
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2149
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2150

2151
    Parameters:
2152 2153 2154 2155 2156
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2157 2158 2159 2160
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2161
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2162
           If it is set to None, the bias is initialized zero. The default value is None.
2163
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2164

D
DuYao 已提交
2165 2166 2167 2168
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2169

2170 2171 2172 2173 2174 2175
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2176 2177 2178 2179 2180 2181 2182
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2183
                    input1_dim=5, input2_dim=4, output_dim=1000)
2184 2185
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2186 2187 2188
    """

    def __init__(self,
2189 2190 2191
                 input1_dim,
                 input2_dim,
                 output_dim,
2192 2193 2194
                 name=None,
                 act=None,
                 param_attr=None,
2195 2196 2197
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2198 2199 2200 2201
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2202 2203 2204
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2205
        self._inputs = dict()
2206
        self._dtype = dtype
2207

2208
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2209 2210 2211 2212 2213
        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2214
        bias_size = [1, self._output_dim]
2215 2216 2217 2218 2219
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2237 2238
    def forward(self, x, y):
        self._inputs = {"X": x, "Y": y, "Weight": self._w}
2239 2240
        if self._bias_param:
            self._inputs["Bias"] = self._bias_param
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2255
        return self._helper.append_activation(out, act=self._act)
2256 2257 2258 2259


class Conv2DTranspose(layers.Layer):
    """
2260 2261
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2262
    The convolution2D transpose layer calculates the output based on the input,
2263 2264 2265
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2266 2267
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2268 2269
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2270 2271 2272
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2273 2274
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2275 2276 2277 2278 2279 2280 2281 2282 2283

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2284 2285
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2286
    * :math:`\\ast`: Convolution operation.
2287
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2312
    Parameters:
2313
        num_channels(int): The number of channels in the input image.
2314
        num_filters(int): The number of the filter. It is as same as the output
2315
            feature map.
2316 2317 2318
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2319
        output_size(int or tuple, optional): The output image size. If output size is a
2320 2321 2322
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2323
            should follow the formula above. Default: None.
2324
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2325
            contain two integers, (padding_H, padding_W). Otherwise, the
2326 2327
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2328
            contain two integers, (stride_H, stride_W). Otherwise, the
2329 2330
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2331
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2332 2333
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2334 2335 2336 2337
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2338 2339
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2340 2341 2342
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2343
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2344 2345 2346 2347
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2348
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2349
            library is installed. Default: True.
2350
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2351
            Default: None.
2352
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2353

2354 2355
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2356

2357
        **bias** (Parameter or None): the learnable bias of this layer.
2358

2359 2360
    Returns:
        None
2361 2362 2363 2364

    Examples:
       .. code-block:: python

2365
          import paddle.fluid as fluid
2366
          import numpy as np
2367 2368

          with fluid.dygraph.guard():
2369
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2370
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2371
                    num_channels=32, num_filters=2, filter_size=3)
2372 2373
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2374 2375 2376
    """

    def __init__(self,
2377
                 num_channels,
2378
                 num_filters,
2379
                 filter_size,
2380 2381 2382 2383 2384 2385 2386 2387
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2388 2389 2390
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2391 2392 2393
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2394
        self._act = act
2395
        self._groups = groups
2396
        self._num_channels = num_channels
2397 2398 2399 2400 2401 2402 2403
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2404
        self._dtype = dtype
2405

2406 2407 2408
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2409
            self._op_type = 'depthwise_conv2d_transpose'
2410 2411
        else:
            self._op_type = 'conv2d_transpose'
2412 2413 2414 2415 2416

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2417 2418
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2430
        filter_shape = [self._num_channels, self._num_filters // self._groups
2431 2432 2433
                        ] + self._filter_size

        self._img_filter = self.create_parameter(
2434
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2435

2436 2437 2438 2439 2440 2441
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2488 2489 2490 2491 2492 2493 2494 2495 2496
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2497
    Parameters:
L
lujun 已提交
2498
        name_scope(str): The name of this class.
2499
        num_filters (int): number of filters.
L
lujun 已提交
2500 2501 2502
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2515 2516 2517 2518
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2532
        assert not in_dygraph_mode(
2533
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2534 2535 2536 2537 2538 2539 2540
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2541
        self._act = act
2542

2543
    def _build_once(self, input):
2544 2545 2546
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
        self._filter_param = self.create_parameter(
2547
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2548

2549 2550 2551 2552 2553 2554
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self._filter_param],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2583 2584 2585


class RowConv(layers.Layer):
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2604
    Parameters:
L
lujun 已提交
2605
        name_scope(str): The name of this class.
2606 2607 2608
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2609 2610
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2611

2612 2613 2614
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2615
    Returns:
L
lujun 已提交
2616 2617
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2633 2634 2635 2636 2637
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2638
        assert not in_dygraph_mode(
2639
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2640 2641 2642 2643 2644
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2645
    def _build_once(self, input):
L
lujun 已提交
2646 2647
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2648 2649 2650 2651 2652
        self._filter_param = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2653 2654 2655 2656 2657 2658

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2659
                    'Filter': [self._filter_param]},
L
lujun 已提交
2660 2661 2662 2663 2664 2665
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2666 2667 2668 2669 2670 2671
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2672
        channels(int): The number of channels of input.
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2696
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2697
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2698 2699 2700 2701

    """

    def __init__(self,
2702
                 channels,
L
lujun 已提交
2703 2704 2705 2706 2707
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2708 2709 2710
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2711 2712 2713
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2714
        self._channels = channels
L
lujun 已提交
2715 2716
        self._groups = groups
        self._act = act
2717
        self._dtype = dtype
L
lujun 已提交
2718 2719 2720
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2721
        param_shape = [self._channels]
L
lujun 已提交
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
        if self._bias_attr:
            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

        if self._param_attr:
            self._scale = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))

    def forward(self, input):
        inputs = {'X': input}
2738
        if self._bias_attr:
L
lujun 已提交
2739
            inputs['Bias'] = self._bias
2740
        if self._param_attr:
L
lujun 已提交
2741 2742 2743
            inputs['Scale'] = self._scale

        # create output
2744
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2766
    """
2767 2768
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2800
    Parameters:
2801
        weight_shape(list or tuple): The shape of weight parameter.
2802 2803 2804 2805
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2806
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2807 2808

    Returns:
2809
        None
2810 2811 2812 2813 2814

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2815
            import numpy as np
2816 2817

            with fluid.dygraph.guard():
2818 2819 2820
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2821 2822 2823

    """

2824 2825 2826 2827 2828 2829 2830
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2831 2832 2833
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2834
        self._dtype = dtype
L
lujun 已提交
2835

2836 2837 2838
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

        self.u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.u.stop_gradient = True

        self.v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.v.stop_gradient = True

    def forward(self, weight):
        inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2871
    """
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2882
        feature_size(int): last dimension of nodes_vector.
2883 2884 2885 2886 2887 2888 2889
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2890
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2891

2892 2893
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2894

2895
        **bias** (Parameter or None): the learnable bias of this layer.
2896

2897 2898
    Returns:
        None
L
lujun 已提交
2899

2900
    Examples:
L
lujun 已提交
2901

2902
        .. code-block:: python
2903

2904 2905
          import paddle.fluid as fluid
          import numpy
2906

2907 2908 2909 2910
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2911
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2912
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2913 2914
    """

L
lujun 已提交
2915
    def __init__(self,
2916
                 feature_size,
L
lujun 已提交
2917 2918 2919 2920 2921 2922
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2923 2924 2925
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2926
        self._name = name
2927
        self._feature_size = feature_size
L
lujun 已提交
2928 2929 2930 2931 2932 2933
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2934 2935
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
        self.W = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
    @property
    def weight(self):
        return self.W

    @weight.setter
    def weight(self, value):
        self.W = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
2964
    def forward(self, nodes_vector, edge_set):
2965

L
lujun 已提交
2966 2967 2968 2969
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
2970

L
lujun 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)

        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.W
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)