nn.py 122.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce
from .. import core
from ..layers import utils
20
from ..layers import nn as F
21
from .. import dygraph_utils
M
minqiyang 已提交
22
from . import layers
23
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
24
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
25
from ..param_attr import ParamAttr
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
27 28
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
L
lujun 已提交
29
import numpy as np
30
import numbers
31
import logging
32

33
__all__ = [
34 35 36 37
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
    'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct',
    'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm',
    'TreeConv'
38
]
M
minqiyang 已提交
39 40


X
Xin Pan 已提交
41
class Conv2D(layers.Layer):
42
    """
43 44
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
45 46 47
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
48 49 50
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
51
    and W is the width of the filter. If the groups is greater than 1,
52
    C will equal the number of input feature map divided by the groups.
53
    Please refer to UFLDL's `convolution
54
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
55
    for more details.
56 57 58 59 60 61 62 63
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

64
        Out = \\sigma (W \\ast X + b)
65 66 67

    Where:

68 69
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
70
    * :math:`\\ast`: Convolution operation.
71
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

94
    Parameters:
95
        num_channels(int): The number of channels in the input image.
96
        num_filters(int): The number of filter. It is as same as the output
97 98
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
99 100
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
101
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
102
            contain two integers, (stride_H, stride_W). Otherwise, the
103 104
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
105
            contain two integers, (padding_H, padding_W). Otherwise, the
106 107
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
108
            contain two integers, (dilation_H, dilation_W). Otherwise, the
109 110
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
111 112 113
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
114 115
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
116 117 118 119
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
120
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
121 122 123 124
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
125 126 127 128 129
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
130

131 132 133 134
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
135

136 137 138
    Returns:
        None
    
139
    Raises:
140
        ValueError: if ``use_cudnn`` is not a bool value.
141 142 143

    Examples:
        .. code-block:: python
L
lujun 已提交
144

145 146 147 148 149
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

150
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
151
          with fluid.dygraph.guard():
152
              conv2d = Conv2D(3, 2, 3)
153 154
              data = to_variable(data)
              conv = conv2d(data)
155 156 157

    """

M
minqiyang 已提交
158
    def __init__(self,
159
                 num_channels,
M
minqiyang 已提交
160 161 162 163 164 165 166 167
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
168 169 170
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
171
        assert param_attr is not False, "param_attr should not be False here."
172 173
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
174 175 176 177
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
178
        self._act = act
M
minqiyang 已提交
179 180 181
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
182 183 184 185 186
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
187

188 189 190 191 192
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
193

194
        self._num_channels = num_channels
195 196
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
197
        else:
198
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
199
                raise ValueError("num_channels must be divisible by groups.")
200 201
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
202
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
203 204

        def _get_default_param_initializer():
205 206
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
207 208 209
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

210
        self.weight = self.create_parameter(
211
            attr=self._param_attr,
M
minqiyang 已提交
212 213 214 215
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

216
        self.bias = self.create_parameter(
217 218
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
219 220
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
221 222

    def forward(self, input):
223 224 225 226 227 228 229 230 231 232 233
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
234 235
        inputs = {
            'Input': [input],
236
            'Filter': [self.weight],
237 238 239 240 241 242 243 244 245
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
M
minqiyang 已提交
246 247 248
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
249 250 251 252
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
253
                'Filter': self.weight,
M
minqiyang 已提交
254
            },
M
minqiyang 已提交
255
            outputs={"Output": pre_bias},
256
            attrs=attrs)
M
minqiyang 已提交
257

258
        if self.bias is not None:
259 260 261 262 263
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
264
                        'Y': [self.bias]},
265 266 267 268
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
269

L
lujun 已提交
270
        # Currently, we don't support inplace in dygraph mode
271
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
272 273


L
lujun 已提交
274
class Conv3D(layers.Layer):
275 276 277 278 279
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
280 281
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
282 283 284 285 286 287 288 289 290 291 292 293 294 295
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
296
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

322
    Parameters:
323
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
324
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
325
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
326
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
327 328 329
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
330
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
331 332
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
333
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
334 335
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
336
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
337 338
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
339 340 341
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
342 343
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
344 345 346
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
347 348
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
349 350 351
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
352 353 354 355 356
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
357
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
358

D
DuYao 已提交
359 360 361 362
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
363

364
    Returns:
D
DuYao 已提交
365
        None.
366 367 368 369 370 371 372 373

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

374 375 376 377 378 379
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
380
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
381 382
              ret = conv3d(fluid.dygraph.base.to_variable(data))

383 384
    """

L
lujun 已提交
385
    def __init__(self,
386
                 num_channels,
L
lujun 已提交
387 388 389 390 391 392 393 394 395
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
396 397
                 act=None,
                 dtype='float32'):
L
lujun 已提交
398
        assert param_attr is not False, "param_attr should not be False here."
399 400
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
401 402 403
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
404
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
405 406
        self._act = act
        self._use_cudnn = use_cudnn
407 408 409 410
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
411
        self._dtype = dtype
412 413

        if self._groups is None:
414
            num_filter_channels = self._num_channels
L
lujun 已提交
415
        else:
416
            if self._num_channels % self._groups != 0:
L
lujun 已提交
417
                raise ValueError("num_channels must be divisible by groups.")
418
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
419

420 421
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
422 423 424

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
425
                2] * self._num_channels
L
lujun 已提交
426 427 428
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

429
        self.weight = self.create_parameter(
430
            attr=self._param_attr,
L
lujun 已提交
431 432 433 434
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

435
        self.bias = self.create_parameter(
436 437
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
438 439 440 441 442 443 444 445
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
446
            type='conv3d',
L
lujun 已提交
447 448
            inputs={
                'Input': input,
449
                'Filter': self.weight,
L
lujun 已提交
450 451 452 453 454 455 456 457 458 459 460
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

461
        if self.bias is not None:
462 463 464 465 466
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
467
                        'Y': [self.bias]},
468 469 470 471
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
472 473 474 475 476

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
542

543
    Parameters:
544
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
545 546
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
547
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
548
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
549
            Otherwise, the filter will be a square.
D
DuYao 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
565
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
566 567
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
568 569 570 571
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
572 573
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
574 575
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
576 577
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
578 579 580
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
581 582 583 584 585 586 587
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
588

D
DuYao 已提交
589 590 591 592
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
593

L
lujun 已提交
594
    Returns:
D
DuYao 已提交
595
        None.
L
lujun 已提交
596 597 598 599 600 601 602 603

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

604 605 606 607 608 609
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
610
                    num_channels=3,
611 612 613 614 615
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
616 617
    """

L
lujun 已提交
618
    def __init__(self,
619
                 num_channels,
L
lujun 已提交
620
                 num_filters,
621
                 filter_size,
L
lujun 已提交
622 623 624 625 626 627 628 629
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
630 631
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
632 633 634 635 636 637 638
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
639
        self._num_channels = num_channels
L
lujun 已提交
640 641 642 643 644 645
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
646
        self._dtype = dtype
L
lujun 已提交
647

648 649
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
650

651 652
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
653
        self.weight = self.create_parameter(
L
lujun 已提交
654
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
655 656 657 658 659
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
660 661 662 663 664 665 666

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
667
                    'Filter': [self.weight]},
L
lujun 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
683
                        'Y': [self.bias]},
L
lujun 已提交
684 685 686 687 688 689 690 691 692
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
693
class Pool2D(layers.Layer):
694
    """
695 696 697 698 699
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
700 701
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
702

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

747
    Parameters:
748
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
749
            it must contain two integers, (pool_size_Height, pool_size_Width).
750 751 752 753
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
754
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
755 756 757
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
758
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
759 760 761 762 763 764 765
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
766 767

    Returns:
768
        None
769 770 771 772 773 774 775 776 777 778

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
779
          import paddle.fluid as fluid
780 781
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
782 783

          with fluid.dygraph.guard():
784
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
785
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
786 787 788
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
789
             pool2d_res = pool2d(to_variable(data))
790 791 792

    """

M
minqiyang 已提交
793 794 795 796 797 798 799 800
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
801
                 exclusive=True):
M
minqiyang 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

815
        super(Pool2D, self).__init__()
M
minqiyang 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
829 830 831 832 833 834 835 836
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
                     'use_mkldnn', False, 'exclusive', self._exclusive)
            return core.ops.pool2d(input, *attrs)

837 838 839 840 841 842 843 844 845 846 847 848 849
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
            "use_mkldnn": False,
            "exclusive": self._exclusive,
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
850 851
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
852 853 854
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
855
            outputs={"Out": pool_out},
856
            attrs=attrs)
M
minqiyang 已提交
857
        return pool_out
M
minqiyang 已提交
858 859


S
songyouwei 已提交
860 861 862 863 864 865 866 867 868 869
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

870
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
930
        if in_dygraph_mode():
931 932
            pre_bias = core.ops.mul(input, self.weight, 'x_num_col_dims',
                                    len(input.shape) - 1, 'y_num_col_dims', 1)
933 934 935 936 937 938

            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
939 940 941 942 943
        attrs = {
            "x_num_col_dims": len(input.shape) - 1,
            "y_num_col_dims": 1,
        }
        inputs = {"X": [input], "Y": [self.weight]}
944

S
songyouwei 已提交
945 946
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
947
            type="mul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
S
songyouwei 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
962
class BatchNorm(layers.Layer):
963
    """
964 965 966 967 968
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
969 970 971 972
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

973 974 975
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
976 977 978 979 980 981 982 983

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

984 985
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
986 987 988

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
989 990 991 992 993 994
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
995

996 997
    The normalization function formula is as follows:
 
998 999 1000
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1001 1002 1003 1004 1005 1006
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1007

1008
    Parameters:
1009
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1010
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1011 1012 1013
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1014 1015 1016
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1017 1018 1019
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1020
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1021 1022 1023
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1024 1025 1026 1027 1028 1029
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1030 1031
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1032
        use_global_stats(bool, optional): Whether to use global mean and
1033 1034 1035
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1036 1037 1038 1039
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1040 1041

    Returns:
1042
        None
1043 1044 1045

    Examples:
        .. code-block:: python
L
lujun 已提交
1046 1047

          import paddle.fluid as fluid
1048 1049
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1050

1051
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1052
          with fluid.dygraph.guard():
1053
              x = to_variable(x)
1054
              batch_norm = fluid.BatchNorm(10)
1055
              hidden1 = batch_norm(x)
1056 1057
    """

M
minqiyang 已提交
1058 1059 1060 1061 1062 1063 1064 1065
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1066
                 dtype='float32',
M
minqiyang 已提交
1067 1068 1069 1070
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1071
                 do_model_average_for_mean_and_var=True,
1072 1073
                 use_global_stats=False,
                 trainable_statistics=False):
1074
        super(BatchNorm, self).__init__()
1075
        self._param_attr = param_attr
1076
        self._bias_attr = bias_attr
1077
        self._act = act
M
minqiyang 已提交
1078 1079 1080

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1081 1082
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1083 1084 1085 1086 1087 1088
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1089
        self.weight = self.create_parameter(
1090
            attr=self._param_attr,
M
minqiyang 已提交
1091 1092 1093
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1094
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1095

1096
        self.bias = self.create_parameter(
1097
            attr=self._bias_attr,
M
minqiyang 已提交
1098 1099 1100
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1101
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1102

1103
        self._mean = self.create_parameter(
M
minqiyang 已提交
1104 1105 1106 1107 1108 1109 1110
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1111
        self._mean.stop_gradient = True
M
minqiyang 已提交
1112

1113
        self._variance = self.create_parameter(
M
minqiyang 已提交
1114 1115 1116 1117 1118 1119 1120
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1121
        self._variance.stop_gradient = True
M
minqiyang 已提交
1122 1123

        self._in_place = in_place
1124
        self._data_layout = data_layout
M
minqiyang 已提交
1125 1126 1127
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1128
        self._fuse_with_relu = False
M
minqiyang 已提交
1129
        self._use_global_stats = use_global_stats
1130
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1131 1132 1133 1134 1135 1136 1137

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1138 1139

        if in_dygraph_mode():
1140
            _is_test = not self.training and not self._trainable_statistics
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                     "is_test", _is_test, "data_layout", self._data_layout,
                     "use_mkldnn", False, "fuse_with_relu",
                     self._fuse_with_relu, "use_global_stats",
                     self._use_global_stats)
            batch_norm_out, _, _, _, _ = core.ops.batch_norm(
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
            return dygraph_utils._append_activation_in_dygraph(
                batch_norm_out, act=self._act)

1152 1153 1154
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1155 1156 1157 1158 1159 1160 1161
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1162
            "use_global_stats": self._use_global_stats
1163
        }
M
minqiyang 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1173 1174 1175 1176 1177 1178
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1179 1180 1181 1182 1183 1184 1185 1186 1187

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

M
minqiyang 已提交
1188
        self._helper.append_op(
1189
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1190

L
lujun 已提交
1191
        # Currently, we don't support inplace in dygraph mode
1192
        return self._helper.append_activation(batch_norm_out, self._act)
1193 1194


1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1304 1305 1306 1307
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1308 1309 1310 1311 1312 1313
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1314 1315
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1316

1317
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1318 1319 1320 1321 1322 1323 1324
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1325 1326
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1340

1341
    Parameters:
L
lujun 已提交
1342 1343
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1362
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1363 1364 1365
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1366

Z
zhongpu 已提交
1367 1368
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1369

1370
    Returns:
Z
zhongpu 已提交
1371
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1372 1373

    Examples:
1374

1375 1376
        .. code-block:: python

L
lujun 已提交
1377 1378 1379 1380
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1381
          # example 1
1382 1383
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1384 1385
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1386
              emb = fluid.dygraph.Embedding(
1387 1388 1389
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1390
              static_rlt3 = emb(base.to_variable(inp_word))
1391
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1406 1407
    """

1408 1409 1410 1411 1412 1413 1414
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1415
        super(Embedding, self).__init__()
1416 1417 1418 1419
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1420
            size[0] + padding_idx)
1421 1422 1423

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1424
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1425 1426 1427
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1428
        self.weight = self.create_parameter(
1429 1430 1431 1432 1433 1434
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1435 1436 1437 1438 1439 1440
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1441 1442 1443 1444 1445 1446
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1447

1448 1449
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1450
            type='lookup_table_v2',
1451
            inputs={'Ids': input,
1452
                    'W': self.weight},
1453
            outputs={'Out': out},
1454
            attrs=attrs)
1455 1456

        return out
M
minqiyang 已提交
1457 1458


1459
class LayerNorm(layers.Layer):
1460
    """
1461 1462 1463
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1464
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1465

1466
    The formula is as follows:
1467

1468
    ..  math::
1469

1470
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1471

1472
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1473

1474
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1475

1476 1477 1478 1479 1480
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1481

1482
    Parameters:
1483 1484 1485 1486
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1487
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1488
            normalization. Default: True.
1489
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1490
            normalization. Default: True.
1491
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1492
            division by zero. Default: 1e-05.
1493
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1494 1495 1496
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1497
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1498
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1499 1500 1501
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1502
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1503
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1504
                  Default: None.
1505 1506
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1507
    Returns:
1508
        None
1509

1510
    Examples:
1511

1512 1513 1514
        .. code-block:: python

          import paddle.fluid as fluid
1515
          from paddle.fluid.dygraph.base import to_variable
1516 1517
          import numpy

1518
          x = numpy.random.random((3, 32, 32)).astype('float32')
1519
          with fluid.dygraph.guard():
1520
              x = to_variable(x)
1521
              layerNorm = fluid.LayerNorm([32, 32])
1522
              ret = layerNorm(x)
1523

1524
    """
1525

1526
    def __init__(self,
1527
                 normalized_shape,
1528 1529 1530 1531 1532
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1533 1534 1535 1536 1537
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1538

1539
        self._normalized_shape = list(normalized_shape)
1540 1541 1542 1543 1544 1545
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1546 1547
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1548
        if self._scale:
1549
            self.weight = self.create_parameter(
1550 1551 1552 1553
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1554 1555
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1556
                logging.warn("param_attr are only available with scale is True")
1557
            self.weight = None
1558

1559 1560
        if self._shift:
            assert self._bias_attr is not False
1561
            self.bias = self.create_parameter(
1562 1563 1564 1565
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1566 1567
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1568
                logging.warn("bias_attr are only available with shift is True")
1569
            self.bias = None
1570 1571

    def forward(self, input):
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1583 1584 1585 1586 1587 1588 1589 1590

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1591 1592 1593
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1594
        inputs = dict()
1595
        inputs['X'] = [input]
1596
        if self._scale:
1597
            inputs['Scale'] = [self.weight]
1598
        if self._shift:
1599 1600 1601 1602 1603 1604
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1626
        return self._helper.append_activation(layer_norm_out, act=self._act)
1627 1628


M
minqiyang 已提交
1629 1630 1631
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1632 1633 1634 1635 1636
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1647
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1673
    Parameters:
L
lujun 已提交
1674
        size (int): The input dimension value.
D
DuYao 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1684 1685 1686 1687


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1688 1689 1690 1691
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1692 1693 1694 1695 1696
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1697
            is initialized zero. The default value is None.
L
lujun 已提交
1698
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1699
                             The default value is 'tanh'.
L
lujun 已提交
1700
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1701 1702 1703
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1704

D
DuYao 已提交
1705 1706 1707 1708
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1709

M
minqiyang 已提交
1710
    Returns:
D
DuYao 已提交
1711 1712 1713 1714
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1728
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1729 1730 1731
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1732
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1733 1734 1735
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1746
        super(GRUUnit, self).__init__()
1747
        self._bias_attr = bias_attr
M
minqiyang 已提交
1748 1749 1750 1751 1752
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1753 1754
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1755

M
minqiyang 已提交
1756
        self._dtype = dtype
M
minqiyang 已提交
1757 1758
        size = size // 3
        # create weight
1759
        self.weight = self.create_parameter(
M
minqiyang 已提交
1760
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1761 1762

        # create bias
M
minqiyang 已提交
1763
        bias_size = [1, 3 * size]
1764
        self._bias_size = bias_size
1765
        self.bias = self.create_parameter(
M
minqiyang 已提交
1766
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1767

M
minqiyang 已提交
1768
    def forward(self, input, hidden):
1769 1770 1771 1772 1773 1774
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1775 1776 1777 1778 1779
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1780
        if self.bias is not None:
1781 1782 1783 1784 1785
            inputs['Bias'] = [self.bias]
        attrs = {
            'activation': self.activation,
            'gate_activation': self.gate_activation,
        }
M
minqiyang 已提交
1786 1787 1788 1789 1790
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1800 1801
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1802 1803 1804
            })

        return updated_hidden, reset_hidden_pre, gate
1805 1806 1807 1808


class NCE(layers.Layer):
    """
1809 1810 1811 1812 1813
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1814
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1815

1816
    Parameters:
1817 1818
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1819
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1820 1821 1822
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1823
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1824 1825 1826 1827
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1828
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1829
        sampler (str, optional): The sampler used to sample class from negative classes.
1830 1831
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1832
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1833
                       It is used when sampler is set to 'custom_dist'.
1834
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1835
                       Default: None.
1836 1837
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1838
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1839

1840 1841
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1842

1843 1844
        **bias** (Parameter or None): the learnable bias of this layer.
    
1845
    Returns:
1846
        None
1847 1848 1849 1850

    Examples:
        .. code-block:: python

1851 1852 1853
            import numpy as np
            import paddle.fluid as fluid

1854
            window_size = 5
1855 1856
            dict_size = 20
            label_word = int(window_size // 2) + 1
1857
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1879
                nce = fluid.NCE(
1880
                             num_total_classes=dict_size,
1881
                             dim=embs3.shape[1],
1882 1883 1884 1885 1886 1887 1888
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1889 1890
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1891 1892 1893 1894 1895

    """

    def __init__(self,
                 num_total_classes,
1896
                 dim,
1897
                 sample_weight=None,
1898 1899 1900 1901 1902 1903
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1904 1905 1906
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1907 1908 1909
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1910
        self._dtype = dtype
1911
        self._inputs = dict()
1912
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2000
        self.weight = self.create_parameter(
2001 2002 2003
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2004
            dtype=self._dtype)
2005
        if self._bias_attr:
2006
            self.bias = self.create_parameter(
2007 2008 2009
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2010
                dtype=self._dtype)
2011 2012
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2043 2044 2045 2046
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2047 2048 2049 2050 2051
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2052
    Parameters:
L
lujun 已提交
2053
        mode (str): The mode for weight sharing. It supports all, channel
2054 2055 2056
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2057 2058 2059
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2060
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2061 2062
          This argument is required when mode is "element".
          Default: None.
2063 2064
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2065
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2066

2067 2068 2069
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2070
    Returns:
2071
        None
2072 2073 2074 2075 2076

    Examples:

        .. code-block:: python

L
lujun 已提交
2077
          import paddle.fluid as fluid
2078
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2079 2080 2081 2082
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2083
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2095
                 input_shape=inp_np.shape,
L
lujun 已提交
2096
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2097
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2098

2099 2100
    """

S
songyouwei 已提交
2101 2102 2103 2104 2105
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2106
                 dtype='float32'):
2107 2108
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2109 2110
        self._mode = mode
        self._param_attr = param_attr
2111
        self._dtype = dtype
S
songyouwei 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
            self._alpha_shape = [1, channel, 1, 1]
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2126
        self.weight = self.create_parameter(
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2138
                    'Alpha': self.weight},
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2159
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2160

2161
    Parameters:
2162 2163 2164 2165 2166
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2167 2168 2169 2170
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2171
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2172
           If it is set to None, the bias is initialized zero. The default value is None.
2173
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2174

D
DuYao 已提交
2175 2176 2177 2178
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2179

2180 2181 2182 2183 2184 2185
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2186 2187 2188 2189 2190 2191 2192
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2193
                    input1_dim=5, input2_dim=4, output_dim=1000)
2194 2195
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2196 2197 2198
    """

    def __init__(self,
2199 2200 2201
                 input1_dim,
                 input2_dim,
                 output_dim,
2202 2203 2204
                 name=None,
                 act=None,
                 param_attr=None,
2205 2206 2207
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2208 2209 2210 2211
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2212 2213 2214
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2215
        self._inputs = dict()
2216
        self._dtype = dtype
2217

2218
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2219
        self.weight = self.create_parameter(
2220 2221 2222 2223
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2224
        bias_size = [1, self._output_dim]
2225
        self.bias = self.create_parameter(
2226 2227 2228 2229
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2230 2231

    def forward(self, x, y):
2232
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2233
        if self.bias is not None:
2234
            self._inputs["Bias"] = self.bias
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2249
        return self._helper.append_activation(out, act=self._act)
2250 2251 2252 2253


class Conv2DTranspose(layers.Layer):
    """
2254 2255
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2256
    The convolution2D transpose layer calculates the output based on the input,
2257 2258 2259
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2260 2261
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2262 2263
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2264 2265 2266
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2267 2268
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2269 2270 2271 2272 2273 2274 2275 2276 2277

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2278 2279
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2280
    * :math:`\\ast`: Convolution operation.
2281
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2306
    Parameters:
2307
        num_channels(int): The number of channels in the input image.
2308
        num_filters(int): The number of the filter. It is as same as the output
2309
            feature map.
2310 2311 2312
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2313
        output_size(int or tuple, optional): The output image size. If output size is a
2314 2315 2316
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2317
            should follow the formula above. Default: None.
2318
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2319
            contain two integers, (padding_H, padding_W). Otherwise, the
2320 2321
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2322
            contain two integers, (stride_H, stride_W). Otherwise, the
2323 2324
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2325
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2326 2327
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2328 2329 2330 2331
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2332 2333
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2334 2335 2336
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2337
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2338 2339 2340 2341
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2342
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2343
            library is installed. Default: True.
2344
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2345
            Default: None.
2346
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2347

2348 2349
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2350

2351
        **bias** (Parameter or None): the learnable bias of this layer.
2352

2353 2354
    Returns:
        None
2355 2356 2357 2358

    Examples:
       .. code-block:: python

2359
          import paddle.fluid as fluid
2360
          import numpy as np
2361 2362

          with fluid.dygraph.guard():
2363
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2364
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2365
                    num_channels=32, num_filters=2, filter_size=3)
2366 2367
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2368 2369 2370
    """

    def __init__(self,
2371
                 num_channels,
2372
                 num_filters,
2373
                 filter_size,
2374 2375 2376 2377 2378 2379 2380 2381
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2382 2383 2384
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2385 2386 2387
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2388
        self._act = act
2389
        self._groups = groups
2390
        self._num_channels = num_channels
2391 2392 2393 2394 2395 2396 2397
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2398
        self._dtype = dtype
2399

2400 2401 2402
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2403
            self._op_type = 'depthwise_conv2d_transpose'
2404 2405
        else:
            self._op_type = 'conv2d_transpose'
2406 2407 2408 2409 2410

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2411 2412
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2424
        filter_shape = [self._num_channels, self._num_filters // self._groups
2425 2426
                        ] + self._filter_size

2427
        self.weight = self.create_parameter(
2428
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2429

2430
        self.bias = self.create_parameter(
2431 2432 2433 2434 2435
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2436
    def forward(self, input):
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2459 2460 2461 2462
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2463
            inputs=inputs,
2464
            outputs={'Output': pre_bias},
2465
            attrs=attrs)
2466

2467
        if self.bias is not None:
2468 2469 2470 2471 2472
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2473
                        'Y': [self.bias]},
2474 2475 2476 2477 2478 2479
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2480 2481 2482 2483 2484 2485 2486 2487 2488
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2489
    Parameters:
L
lujun 已提交
2490
        name_scope(str): The name of this class.
2491
        num_filters (int): number of filters.
L
lujun 已提交
2492 2493 2494
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2507 2508 2509 2510
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2524
        assert not in_dygraph_mode(
2525
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2526 2527 2528 2529 2530 2531 2532
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2533
        self._act = act
2534

2535
    def _build_once(self, input):
2536 2537
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2538
        self.weight = self.create_parameter(
2539
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2540

2541
        self.bias = self.create_parameter(
2542 2543 2544 2545 2546
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2547 2548 2549 2550 2551 2552
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2553
                'Filter': [self.weight],
2554 2555 2556 2557 2558 2559 2560
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2561

2562
        if self.bias is not None:
2563 2564 2565 2566 2567
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2568
                        'Y': [self.bias]},
2569 2570 2571 2572 2573 2574
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2575 2576 2577


class RowConv(layers.Layer):
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2596
    Parameters:
L
lujun 已提交
2597
        name_scope(str): The name of this class.
2598 2599 2600
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2601 2602
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2603

2604 2605 2606
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2607
    Returns:
L
lujun 已提交
2608 2609
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2625 2626 2627 2628 2629
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2630
        assert not in_dygraph_mode(
2631
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2632 2633 2634 2635 2636
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2637
    def _build_once(self, input):
L
lujun 已提交
2638 2639
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2640
        self.weight = self.create_parameter(
2641 2642 2643 2644
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2645 2646 2647 2648 2649 2650

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2651
                    'Filter': [self.weight]},
L
lujun 已提交
2652 2653 2654 2655 2656 2657
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2658 2659 2660 2661 2662 2663
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2664
        channels(int): The number of channels of input.
2665 2666 2667 2668 2669 2670 2671 2672 2673
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2674
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2688
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2689
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2690 2691 2692 2693

    """

    def __init__(self,
2694
                 channels,
L
lujun 已提交
2695 2696 2697 2698 2699
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2700 2701 2702
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2703 2704 2705
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2706
        self._channels = channels
L
lujun 已提交
2707 2708
        self._groups = groups
        self._act = act
2709
        self._dtype = dtype
L
lujun 已提交
2710 2711 2712
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2713
        param_shape = [self._channels]
L
lujun 已提交
2714

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2726 2727 2728

    def forward(self, input):
        inputs = {'X': input}
2729
        if self.bias is not None:
2730
            inputs['Bias'] = self.bias
2731
        if self.weight is not None:
2732
            inputs['Scale'] = self.weight
L
lujun 已提交
2733 2734

        # create output
2735
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2757
    """
2758 2759
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2770
    :attr:`power_iters` should be a positive integer, do following
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2791
    Parameters:
2792
        weight_shape(list or tuple): The shape of weight parameter.
2793 2794 2795 2796
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2797
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2798 2799

    Returns:
2800
        None
2801 2802 2803 2804 2805

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2806
            import numpy as np
2807 2808

            with fluid.dygraph.guard():
2809 2810 2811
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2812 2813 2814

    """

2815 2816 2817 2818 2819 2820 2821
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2822 2823 2824
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2825
        self._dtype = dtype
L
lujun 已提交
2826

2827 2828 2829
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2830

2831
        self.weight_u = self.create_parameter(
L
lujun 已提交
2832 2833 2834 2835
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2836
        self.weight_u.stop_gradient = True
L
lujun 已提交
2837

2838
        self.weight_v = self.create_parameter(
L
lujun 已提交
2839 2840 2841 2842
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
2843
        self.weight_v.stop_gradient = True
L
lujun 已提交
2844 2845

    def forward(self, weight):
2846
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2862
    """
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2873
        feature_size(int): last dimension of nodes_vector.
2874 2875 2876 2877 2878 2879 2880
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2881
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2882

2883 2884
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2885

2886
        **bias** (Parameter or None): the learnable bias of this layer.
2887

2888 2889
    Returns:
        None
L
lujun 已提交
2890

2891
    Examples:
L
lujun 已提交
2892

2893
        .. code-block:: python
2894

2895 2896
          import paddle.fluid as fluid
          import numpy
2897

2898 2899 2900 2901
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2902
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2903
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2904 2905
    """

L
lujun 已提交
2906
    def __init__(self,
2907
                 feature_size,
L
lujun 已提交
2908 2909 2910 2911 2912 2913
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
2914 2915 2916
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
2917
        self._name = name
2918
        self._feature_size = feature_size
L
lujun 已提交
2919 2920 2921 2922 2923 2924
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2925 2926
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2927
        if self._bias_attr:
2928
            self.bias = self.create_parameter(
L
lujun 已提交
2929 2930 2931 2932
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
2933
        self.weight = self.create_parameter(
L
lujun 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
2951
                'Filter': self.weight
L
lujun 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
2961
                        'Y': [self.bias]},
L
lujun 已提交
2962 2963 2964 2965 2966
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)