nn.py 133.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import paddle
M
minqiyang 已提交
18 19 20
from six.moves import reduce
from .. import core
from ..layers import utils
21
from ..layers import nn as F
22
from .. import dygraph_utils
M
minqiyang 已提交
23
from . import layers
24
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter, _dygraph_tracer, _varbase_creator, default_main_program
25
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
M
minqiyang 已提交
26
from ..param_attr import ParamAttr
27
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
28 29
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
30
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
31
import numpy as np
32
import numbers
33
import logging
34
import os
35
import paddle.utils.deprecated as deprecated
36

37
__all__ = [
38
    'Conv2D', 'Conv3D', 'Pool2D', 'Linear', 'BatchNorm', 'Dropout', 'Embedding',
39 40
    'GRUUnit', 'InstanceNorm', 'LayerNorm', 'NCE', 'PRelu',
    'BilinearTensorProduct', 'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm',
C
ceci3 已提交
41
    'SpectralNorm', 'TreeConv', 'Flatten'
42
]
M
minqiyang 已提交
43 44


X
Xin Pan 已提交
45
class Conv2D(layers.Layer):
46
    r"""
47 48
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
49 50 51
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
52 53 54
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
55
    and W is the width of the filter. If the groups is greater than 1,
56
    C will equal the number of input feature map divided by the groups.
57
    Please refer to UFLDL's `convolution
58
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
T
tianshuo78520a 已提交
59
    for more details.
60 61 62 63 64 65 66 67
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

68
        Out = \\sigma (W \\ast X + b)
69 70 71

    Where:

72 73
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
74
    * :math:`\\ast`: Convolution operation.
75
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

98
    Parameters:
99
        num_channels(int): The number of channels in the input image.
100
        num_filters(int): The number of filter. It is as same as the output
101 102
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
103 104
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
105
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
106
            contain two integers, (stride_H, stride_W). Otherwise, the
107 108
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
109
            contain two integers, (padding_H, padding_W). Otherwise, the
110 111
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
112
            contain two integers, (dilation_H, dilation_W). Otherwise, the
113
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
114
        groups (int, optional): The groups number of the Conv2D Layer. According to grouped
115 116 117
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
118 119
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
120 121 122 123
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
124
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
125 126 127 128
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
129 130 131 132 133
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
134

135 136 137 138
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
139

140 141 142
    Returns:
        None
    
143
    Raises:
144
        ValueError: if ``use_cudnn`` is not a bool value.
145 146 147

    Examples:
        .. code-block:: python
L
lujun 已提交
148

149 150 151 152 153
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

154
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
155
          with fluid.dygraph.guard():
156
              conv2d = Conv2D(3, 2, 3)
157 158
              data = to_variable(data)
              conv = conv2d(data)
159 160 161

    """

M
minqiyang 已提交
162
    def __init__(self,
163
                 num_channels,
M
minqiyang 已提交
164 165 166 167 168 169 170 171
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
172 173 174
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
175
        assert param_attr is not False, "param_attr should not be False here."
176 177
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
178 179 180 181
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
182
        self._act = act
M
minqiyang 已提交
183 184 185
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
186
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
187 188 189 190 191
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
192

193
        if (self._num_channels == self._groups and
194 195
                num_filters % self._num_channels == 0 and
                not self._use_cudnn and not self._use_mkldnn):
196 197 198
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
199

200
        self._num_channels = num_channels
201 202
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
203
        else:
204
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
205
                raise ValueError("num_channels must be divisible by groups.")
206 207
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
208
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
209 210

        def _get_default_param_initializer():
211 212
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
213 214 215
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

216
        self.weight = self.create_parameter(
217
            attr=self._param_attr,
M
minqiyang 已提交
218 219 220 221
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

222
        self.bias = self.create_parameter(
223 224
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
225 226
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
227 228

    def forward(self, input):
229 230 231
        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
232 233
                     if self._groups else 1, 'use_cudnn', self._use_cudnn,
                     'use_mkldnn', self._use_mkldnn)
234 235 236
            out = core.ops.conv2d(input, self.weight, *attrs)
            pre_bias = out

237 238 239 240
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, 1, use_mkldnn=self._use_mkldnn)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
241 242
        inputs = {
            'Input': [input],
243
            'Filter': [self.weight],
244 245 246 247 248 249 250
        }
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
251
            'use_mkldnn': self._use_mkldnn,
252
        }
253 254 255

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'Conv2D')
M
minqiyang 已提交
256 257 258
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
259 260 261 262
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
263
                'Filter': self.weight,
M
minqiyang 已提交
264
            },
M
minqiyang 已提交
265
            outputs={"Output": pre_bias},
266
            attrs=attrs)
M
minqiyang 已提交
267

268
        if self.bias is not None:
269 270 271 272 273
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
274
                        'Y': [self.bias]},
275
                outputs={'Out': [pre_act]},
276 277
                attrs={'axis': 1,
                       'use_mkldnn': self._use_mkldnn})
278 279
        else:
            pre_act = pre_bias
M
minqiyang 已提交
280

L
lujun 已提交
281
        # Currently, we don't support inplace in dygraph mode
282
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
283 284


L
lujun 已提交
285
class Conv3D(layers.Layer):
286
    r"""
287 288 289 290
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
291 292
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
293 294 295 296 297 298 299 300 301 302 303 304 305 306
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
307
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

333
    Parameters:
334
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
335
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
336
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
337
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
338 339 340
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
341
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
342 343
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
344
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
345 346
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
347
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
348
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
349
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
350 351 352
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
353 354
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
355 356 357
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
358 359
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
360 361 362
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
363 364 365 366 367
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
368
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
369

D
DuYao 已提交
370 371 372 373
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
374

375
    Returns:
D
DuYao 已提交
376
        None.
377 378 379 380 381 382 383 384

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

385 386 387 388 389 390
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
391
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
392 393
              ret = conv3d(fluid.dygraph.base.to_variable(data))

394 395
    """

L
lujun 已提交
396
    def __init__(self,
397
                 num_channels,
L
lujun 已提交
398 399 400 401 402 403 404 405 406
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
407 408
                 act=None,
                 dtype='float32'):
L
lujun 已提交
409
        assert param_attr is not False, "param_attr should not be False here."
410 411
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
412 413 414
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
415
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
416 417
        self._act = act
        self._use_cudnn = use_cudnn
418 419 420 421
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
422
        self._dtype = dtype
423 424

        if self._groups is None:
425
            num_filter_channels = self._num_channels
L
lujun 已提交
426
        else:
427
            if self._num_channels % self._groups != 0:
L
lujun 已提交
428
                raise ValueError("num_channels must be divisible by groups.")
429
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
430

431 432
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
433 434 435

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
436
                2] * self._num_channels
L
lujun 已提交
437 438 439
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

440
        self.weight = self.create_parameter(
441
            attr=self._param_attr,
L
lujun 已提交
442 443 444 445
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

446
        self.bias = self.create_parameter(
447 448
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
449 450 451 452 453 454 455 456
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
457
            type='conv3d',
L
lujun 已提交
458 459
            inputs={
                'Input': input,
460
                'Filter': self.weight,
L
lujun 已提交
461 462 463 464 465 466 467 468 469 470 471
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

472
        if self.bias is not None:
473 474 475 476 477
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
478
                        'Y': [self.bias]},
479 480 481 482
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
483 484 485 486 487

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
488
    r"""
L
lujun 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
553

554
    Parameters:
555
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
556 557
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
558
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
559
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
560
            Otherwise, the filter will be a square.
D
DuYao 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
576
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
577
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
578
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
579 580 581 582
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
583 584
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
585 586
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
587 588
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
589 590 591
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
592 593 594 595 596 597 598
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
599

D
DuYao 已提交
600 601 602 603
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
604

L
lujun 已提交
605
    Returns:
D
DuYao 已提交
606
        None.
L
lujun 已提交
607 608 609 610 611 612 613 614

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

615 616 617 618 619 620
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
621
                    num_channels=3,
622 623 624 625 626
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
627 628
    """

L
lujun 已提交
629
    def __init__(self,
630
                 num_channels,
L
lujun 已提交
631
                 num_filters,
632
                 filter_size,
L
lujun 已提交
633 634 635 636 637 638 639 640
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
641 642
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
643 644 645 646 647 648 649
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
650
        self._num_channels = num_channels
L
lujun 已提交
651 652 653 654 655 656
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
657
        self._dtype = dtype
L
lujun 已提交
658

659 660
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
661

662 663
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
664
        self.weight = self.create_parameter(
L
lujun 已提交
665
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
666 667 668 669 670
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
671 672 673 674 675 676 677

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
678
                    'Filter': [self.weight]},
L
lujun 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
694
                        'Y': [self.bias]},
L
lujun 已提交
695 696 697 698 699 700 701 702 703
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
704
class Pool2D(layers.Layer):
705
    r"""
706

707 708 709 710 711
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
712 713
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
714

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

759
    Parameters:
760
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
761
            it must contain two integers, (pool_size_Height, pool_size_Width).
762 763 764 765
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
766
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
767 768 769
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
770
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
771 772 773 774 775 776 777
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
778 779 780 781
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is 
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
782 783

    Returns:
784
        None
785 786

    Raises:
787 788 789 790
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
791 792 793 794 795

    Examples:

        .. code-block:: python

L
lujun 已提交
796
          import paddle.fluid as fluid
797 798
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
799 800

          with fluid.dygraph.guard():
801
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
802
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
803 804 805
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
806
             pool2d_res = pool2d(to_variable(data))
807 808 809

    """

M
minqiyang 已提交
810 811 812 813 814 815 816 817
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
818 819 820 821
                 exclusive=True,
                 data_format="NCHW"):
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

835 836
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

837 838 839 840 841
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s." % str(data_format))

842
        super(Pool2D, self).__init__()
M
minqiyang 已提交
843 844 845 846 847 848 849 850 851 852

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
853
        self._data_format = data_format
M
minqiyang 已提交
854 855 856
        self._l_type = 'pool2d'

    def forward(self, input):
857 858 859 860 861
        if in_dygraph_mode():
            attrs = ('pooling_type', self._pool_type, 'ksize', self._pool_size,
                     'global_pooling', self._global_pooling, 'strides',
                     self._pool_stride, 'paddings', self._pool_padding,
                     'use_cudnn', self._use_cudnn, 'ceil_mode', self._ceil_mode,
862 863
                     'use_mkldnn', self._use_mkldnn, 'exclusive',
                     self._exclusive, 'data_format', self._data_format)
864 865
            return core.ops.pool2d(input, *attrs)

866 867 868 869
        check_variable_and_dtype(
            input, 'input', ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D')

870 871 872 873 874 875 876 877
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
878
            "use_mkldnn": self._use_mkldnn,
879
            "exclusive": self._exclusive,
880
            "data_format": self._data_format,
881 882 883
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
884 885
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
886 887 888
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
889
            outputs={"Out": pool_out},
890
            attrs=attrs)
M
minqiyang 已提交
891
        return pool_out
M
minqiyang 已提交
892 893


S
songyouwei 已提交
894 895
class Linear(layers.Layer):
    """
896
    
S
songyouwei 已提交
897 898 899 900 901 902 903 904
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

905
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

964 965
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]

S
songyouwei 已提交
966
    def forward(self, input):
967
        if in_dygraph_mode():
968 969
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(input, self.weight, pre_bias, 'transpose_X', False,
970 971
                            'transpose_Y', False, "alpha", 1, "use_mkldnn",
                            self._use_mkldnn)
972
            pre_act = dygraph_utils._append_bias_in_dygraph(
973 974 975 976
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
                use_mkldnn=self._use_mkldnn)
977

978 979
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, self._act, use_mkldnn=self._use_mkldnn)
980 981 982 983

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], "Linear")

984
        attrs = {
S
songyouwei 已提交
985 986 987
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
988
            "use_mkldnn": self._use_mkldnn,
989 990
        }
        inputs = {"X": [input], "Y": [self.weight]}
991

S
songyouwei 已提交
992 993
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
S
songyouwei 已提交
994
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs)
995
        if self.bias is not None:
S
songyouwei 已提交
996 997 998 999 1000 1001 1002
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
1003 1004 1005 1006
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn
                })
S
songyouwei 已提交
1007 1008 1009 1010 1011
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


1012
class InstanceNorm(layers.Layer):
1013
    r"""
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    This interface is used to construct a callable object of the ``InstanceNorm`` class.
    For more details, refer to code examples.

    Can be used as a normalizer function for convolution or fully_connected operations.
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::
        
        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Note:
        `H` means height of feature map, `W` means width of feature map.

    Parameters:
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
ceci3 已提交
1044
        param_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
1045 1046 1047
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
C
ceci3 已提交
1048 1049
	     one. If it is set to False, will not create param_attr. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
1050 1051 1052
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
C
ceci3 已提交
1053
             If it is set to False, will not create bias_attr. Default: None.
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.

    Returns:
        None.

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
          import paddle

          # x's shape is [1, 3, 1, 2] 
          x = np.array([[[[1.0, 8.0]], [[10.0, 5.0]], [[4.0, 6.0]]]]).astype('float32')
          with fluid.dygraph.guard():
              x = to_variable(x)
              instanceNorm = paddle.nn.InstanceNorm(3)
              ret = instanceNorm(x)
              # ret's shape is [1, 3, 1, 2]; value is [-1 1 0.999999 -0.999999 -0.999995 0.999995] 
              print(ret)

    """

    def __init__(self,
                 num_channels,
                 epsilon=1e-5,
                 param_attr=None,
                 bias_attr=None,
                 dtype='float32'):
        super(InstanceNorm, self).__init__()

C
ceci3 已提交
1088 1089
        if param_attr == False or bias_attr == False:
            assert bias_attr == param_attr, "param_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
1090 1091 1092 1093 1094
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype

C
ceci3 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        if param_attr != False and bias_attr != False:
            self.scale = self.create_parameter(
                attr=self._param_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(1.0),
                is_bias=False)
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_channels],
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True)
        else:
            self.scale = None
            self.bias = None
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

    def forward(self, input):
        if in_dygraph_mode():
            out, _, _ = core.ops.instance_norm(input, self.scale, self.bias,
                                               'epsilon', self._epsilon)
            return out

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 "InstanceNorm")

        attrs = {"epsilon": self._epsilon}

C
ceci3 已提交
1123 1124 1125 1126
        if self.scale and self.bias:
            inputs = {"X": [input], "Scale": [self.scale], "Bias": [self.bias]}
        else:
            inputs = {"X": [input]}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        instance_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        outputs = {
            "Y": [instance_norm_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }

        self._helper.append_op(
            type="instance_norm", inputs=inputs, outputs=outputs, attrs=attrs)
        return instance_norm_out


M
minqiyang 已提交
1146
class BatchNorm(layers.Layer):
1147
    r"""
1148 1149 1150 1151
    :alias_main: paddle.nn.BatchNorm
	:alias: paddle.nn.BatchNorm,paddle.nn.layer.BatchNorm,paddle.nn.layer.norm.BatchNorm
	:old_api: paddle.fluid.dygraph.BatchNorm

1152 1153 1154 1155 1156
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1157 1158 1159 1160
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1161 1162 1163
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1164 1165 1166 1167 1168 1169 1170 1171

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1172 1173
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1174 1175 1176

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1177 1178 1179 1180 1181 1182
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1183

1184 1185
    The normalization function formula is as follows:
 
1186 1187 1188
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1189 1190 1191 1192 1193 1194
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1195

1196
    Parameters:
1197
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
1198
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
1199 1200 1201
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
1202 1203 1204
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1205 1206 1207
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1208
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1209 1210 1211
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1212 1213 1214 1215 1216 1217
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1218 1219
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1220
        use_global_stats(bool, optional): Whether to use global mean and
1221 1222 1223
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1224 1225 1226 1227
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1228 1229

    Returns:
1230
        None
1231 1232 1233

    Examples:
        .. code-block:: python
L
lujun 已提交
1234 1235

          import paddle.fluid as fluid
1236 1237
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1238

1239
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1240
          with fluid.dygraph.guard():
1241
              x = to_variable(x)
1242
              batch_norm = fluid.BatchNorm(10)
1243
              hidden1 = batch_norm(x)
1244 1245
    """

M
minqiyang 已提交
1246 1247 1248 1249 1250 1251 1252 1253
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1254
                 dtype='float32',
M
minqiyang 已提交
1255 1256 1257 1258
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1259
                 do_model_average_for_mean_and_var=True,
1260 1261
                 use_global_stats=False,
                 trainable_statistics=False):
1262
        super(BatchNorm, self).__init__()
1263
        self._param_attr = param_attr
1264
        self._bias_attr = bias_attr
1265
        self._act = act
1266
        self._use_mkldnn = core.globals()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1267 1268 1269

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1270 1271
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1272 1273 1274 1275 1276 1277
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1278
        self.weight = self.create_parameter(
1279
            attr=self._param_attr,
M
minqiyang 已提交
1280 1281 1282
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1283
        self.weight.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1284

1285
        self.bias = self.create_parameter(
1286
            attr=self._bias_attr,
M
minqiyang 已提交
1287 1288 1289
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1290
        self.bias.stop_gradient = use_global_stats and self._param_attr.learning_rate == 0.
M
minqiyang 已提交
1291

1292
        self._mean = self.create_parameter(
M
minqiyang 已提交
1293 1294 1295 1296 1297 1298 1299
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1300
        self._mean.stop_gradient = True
M
minqiyang 已提交
1301

1302
        self._variance = self.create_parameter(
M
minqiyang 已提交
1303 1304 1305 1306 1307 1308 1309
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1310
        self._variance.stop_gradient = True
M
minqiyang 已提交
1311

1312 1313 1314 1315 1316 1317
        self._has_reserve_space = False
        if data_layout == 'NHWC':
            flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
            if flag is not None and flag.lower() in ['true', '1']:
                self._has_reserve_space = True

M
minqiyang 已提交
1318
        self._in_place = in_place
1319
        self._data_layout = data_layout
M
minqiyang 已提交
1320 1321 1322
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1323
        self._fuse_with_relu = False
M
minqiyang 已提交
1324
        self._use_global_stats = use_global_stats
1325
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1326 1327 1328 1329 1330 1331 1332

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1333 1334 1335

        if in_dygraph_mode():
            attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
1336
                     "is_test", not self.training, "data_layout",
1337 1338
                     self._data_layout, "use_mkldnn", self._use_mkldnn,
                     "fuse_with_relu", self._fuse_with_relu, "use_global_stats",
1339 1340
                     self._use_global_stats, 'trainable_statistics',
                     self._trainable_statistics)
1341
            batch_norm_out, _, _, _, _, _ = core.ops.batch_norm(
1342 1343
                input, self.weight, self.bias, self._mean, self._variance,
                mean_out, variance_out, *attrs)
1344

1345
            return dygraph_utils._append_activation_in_dygraph(
1346
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn)
1347

1348 1349 1350
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'], 'BatchNorm')

1351 1352 1353 1354 1355 1356 1357
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1358 1359
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1360
        }
M
minqiyang 已提交
1361

1362 1363 1364 1365 1366 1367 1368 1369
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
            "Variance": [self._variance]
        }

1370 1371 1372 1373
        saved_mean = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        saved_variance = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
1374 1375 1376 1377 1378 1379

        reserve_space = None
        if self._has_reserve_space:
            reserve_space = self._helper.create_variable_for_type_inference(
                dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

1380 1381
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
            self._dtype)
1382 1383 1384 1385 1386 1387 1388 1389

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
            "SavedVariance": [saved_variance]
        }
1390 1391
        if reserve_space is not None:
            outputs["ReserveSpace"] = reserve_space
1392

M
minqiyang 已提交
1393
        self._helper.append_op(
1394
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
M
minqiyang 已提交
1395

L
lujun 已提交
1396
        # Currently, we don't support inplace in dygraph mode
1397
        return self._helper.append_activation(batch_norm_out, self._act)
1398 1399


1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
class Dropout(layers.Layer):
    """
   This interface is used to construct a callable object of the ``Dropout`` class.
   For more details, refer to code examples.

   Drop or keep each element of input independently. Dropout is a regularization
   technique for reducing overfitting by preventing neuron co-adaption during
   training. The dropout operator randomly sets (according to the given dropout
   probability) the outputs of some units to zero, while others are remain
   unchanged.

   Dropout layer can be removed for efficiency concern.

   Parameters:
       p (float, optional): Probability of setting units to zero. Default: 0.5
       seed (int, optional): A Python integer used to create random seeds. If this
                   parameter is set to None, a random seed is used.
                   NOTE: If an integer seed is given, always the same output
                   units will be dropped. DO NOT use a fixed seed in training. Default: None.
       dropout_implementation(string, optional): ['downgrade_in_infer'(default)|'upscale_in_train']

                                       1. downgrade_in_infer(default), downgrade the outcome at inference

                                          - train: out = input * mask
                                          - inference: out = input * (1.0 - p)

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is dropout_prob)
                                       2. upscale_in_train, upscale the outcome at training time

                                          - train: out = input * mask / ( 1.0 - p )
                                          - inference: out = input

                                          (mask is a tensor same shape with input, value is 0 or 1
                                          ratio of 0 is p)
       is_test (bool, optional): A flag indicating whether it is in test phrase or not.
                   This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
                   Default: False.

   Returns:
       None

   Examples:

       .. code-block:: python

           import paddle.fluid as fluid
           from paddle.fluid.dygraph.base import to_variable
           import numpy as np

           x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
           with fluid.dygraph.guard():
               x = to_variable(x)
               m = fluid.dygraph.Dropout(p=0.5)
               droped_train = m(x)
               # switch to eval mode
               m.eval()
               droped_eval = m(x)
   """

    def __init__(self,
                 p=0.5,
                 seed=None,
                 dropout_implementation="downgrade_in_infer",
                 is_test=False):
        super(Dropout, self).__init__()
        assert isinstance(p, (float, int)), "p argument should be a number"
        assert 0 <= p <= 1, "p argument should between 0 and 1"
        self._dropout_prob = p
        assert seed is None or isinstance(
            seed, int), "seed argument should be None or a integer"
        self._seed = seed
        assert dropout_implementation in (
            'downgrade_in_infer', 'upscale_in_train'
        ), "dropout_implementation argument should be 'downgrade_in_infer' or 'upscale_in_train'"
        self._dropout_implementation = dropout_implementation
        self._is_test = is_test

    def forward(self, input):
        prog = default_main_program()
        if (self._seed is None or self._seed == 0) and prog.random_seed != 0:
            self._seed = prog.random_seed
        attrs = {
            'dropout_prob': self._dropout_prob,
            'is_test': not self.training
            if in_dygraph_mode() else self._is_test,
            'fix_seed': self._seed is not None,
            'seed': self._seed if self._seed is not None else 0,
            'dropout_implementation': self._dropout_implementation,
        }

        if in_dygraph_mode():
            attrs = sum(attrs.items(), ())
            out, mask = core.ops.dropout(input, *attrs)
            return out

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        mask = self._helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

        self._helper.append_op(
            type='dropout',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'Mask': [mask]},
            attrs=attrs)
        return out


1509
class Embedding(layers.Layer):
1510
    r"""
1511 1512 1513 1514
    :alias_main: paddle.nn.Embedding
	:alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
	:old_api: paddle.fluid.dygraph.Embedding

1515 1516
    **Embedding Layer**

Z
zhongpu 已提交
1517 1518 1519 1520 1521 1522
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1523 1524
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1525

1526
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1527 1528 1529 1530 1531 1532 1533
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1534 1535
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1549

1550
    Parameters:
L
lujun 已提交
1551 1552
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1571
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1572 1573 1574
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1575

Z
zhongpu 已提交
1576 1577
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1578

1579
    Returns:
Z
zhongpu 已提交
1580
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1581 1582

    Examples:
1583

1584 1585
        .. code-block:: python

L
lujun 已提交
1586 1587 1588 1589
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1590
          # example 1
1591 1592
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1593 1594
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1595
              emb = fluid.dygraph.Embedding(
1596 1597 1598
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1599
              static_rlt3 = emb(base.to_variable(inp_word))
1600
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1615 1616
    """

1617 1618 1619 1620 1621 1622 1623
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1624
        super(Embedding, self).__init__()
1625 1626 1627 1628
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1629
            size[0] + padding_idx)
1630 1631 1632

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1633
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1634 1635 1636
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1637
        self.weight = self.create_parameter(
1638 1639 1640 1641 1642 1643
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
1644 1645 1646 1647 1648 1649
        if in_dygraph_mode():
            return core.ops.lookup_table_v2(
                self.weight, input, 'is_sparse', self._is_sparse,
                'is_distributed', self._is_distributed, 'remote_prefetch',
                self._remote_prefetch, 'padding_idx', self._padding_idx)

1650
        check_variable_and_dtype(input, 'input', ['int64'], 'Embedding')
1651 1652 1653 1654 1655 1656
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
            'padding_idx': self._padding_idx
        }
1657

1658 1659
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1660
            type='lookup_table_v2',
1661
            inputs={'Ids': input,
1662
                    'W': self.weight},
1663
            outputs={'Out': out},
1664
            attrs=attrs)
1665 1666

        return out
M
minqiyang 已提交
1667 1668


1669
class LayerNorm(layers.Layer):
1670
    r"""
1671 1672 1673 1674
    :alias_main: paddle.nn.LayerNorm
	:alias: paddle.nn.LayerNorm,paddle.nn.layer.LayerNorm,paddle.nn.layer.norm.LayerNorm
	:old_api: paddle.fluid.dygraph.LayerNorm

1675 1676 1677
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1678
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1679

1680
    The formula is as follows:
1681

1682
    ..  math::
1683

1684
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1685

1686
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1687

1688
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1689

1690 1691 1692 1693 1694
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1695

1696
    Parameters:
1697 1698 1699 1700
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1701
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1702
            normalization. Default: True.
1703
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1704
            normalization. Default: True.
1705
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1706
            division by zero. Default: 1e-05.
1707
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1708 1709 1710
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1711
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1712
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1713 1714 1715
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1716
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
1717
        act(str, optional): Activation to be applied to the output of layer normalization.
L
lujun 已提交
1718
                  Default: None.
1719 1720
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1721
    Returns:
1722
        None
1723

1724
    Examples:
1725

1726 1727 1728
        .. code-block:: python

          import paddle.fluid as fluid
1729
          from paddle.fluid.dygraph.base import to_variable
1730 1731
          import numpy

1732
          x = numpy.random.random((3, 32, 32)).astype('float32')
1733
          with fluid.dygraph.guard():
1734
              x = to_variable(x)
1735
              layerNorm = fluid.LayerNorm([32, 32])
1736
              ret = layerNorm(x)
1737

1738
    """
1739

1740
    def __init__(self,
1741
                 normalized_shape,
1742 1743 1744 1745 1746
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1747 1748 1749 1750 1751
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
H
hong 已提交
1752

1753
        self._normalized_shape = list(normalized_shape)
1754 1755 1756 1757 1758 1759
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1760 1761
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1762
        if self._scale:
1763
            self.weight = self.create_parameter(
1764 1765 1766 1767
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1768 1769
        else:
            if self._param_attr:
T
tianshuo78520a 已提交
1770
                logging.warn("param_attr are only available with scale is True")
1771
            self.weight = None
1772

1773 1774
        if self._shift:
            assert self._bias_attr is not False
1775
            self.bias = self.create_parameter(
1776 1777 1778 1779
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1780 1781
        else:
            if self._bias_attr:
T
tianshuo78520a 已提交
1782
                logging.warn("bias_attr are only available with shift is True")
1783
            self.bias = None
1784 1785

    def forward(self, input):
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1797 1798 1799 1800 1801 1802 1803 1804

        if in_dygraph_mode():
            pre_act, _, _ = core.ops.layer_norm(
                input, self.weight, self.bias, 'epsilon', self._epsilon,
                'begin_norm_axis', self._begin_norm_axis)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

1805 1806 1807
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'LayerNorm')

1808
        inputs = dict()
1809
        inputs['X'] = [input]
1810
        if self._scale:
1811
            inputs['Scale'] = [self.weight]
1812
        if self._shift:
1813 1814 1815 1816 1817 1818
            inputs['Bias'] = [self.bias]
        attrs = {
            "epsilon": self._epsilon,
            "begin_norm_axis": self._begin_norm_axis
        }

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1840
        return self._helper.append_activation(layer_norm_out, act=self._act)
1841 1842


M
minqiyang 已提交
1843 1844 1845
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1846 1847 1848 1849 1850
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1861
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1887
    Parameters:
L
lujun 已提交
1888
        size (int): The input dimension value.
D
DuYao 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1898 1899 1900 1901


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1902 1903 1904 1905
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1906 1907 1908 1909 1910
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1911
            is initialized zero. The default value is None.
L
lujun 已提交
1912
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1913
                             The default value is 'tanh'.
L
lujun 已提交
1914
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1915 1916 1917
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1918

D
DuYao 已提交
1919 1920 1921 1922
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1923

M
minqiyang 已提交
1924
    Returns:
D
DuYao 已提交
1925 1926 1927 1928
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1942
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1943 1944 1945
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1946
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1947 1948 1949
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1960
        super(GRUUnit, self).__init__()
1961
        self._bias_attr = bias_attr
M
minqiyang 已提交
1962 1963 1964 1965 1966
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1967 1968
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1969

M
minqiyang 已提交
1970
        self._dtype = dtype
M
minqiyang 已提交
1971 1972
        size = size // 3
        # create weight
1973
        self.weight = self.create_parameter(
M
minqiyang 已提交
1974
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1975 1976

        # create bias
M
minqiyang 已提交
1977
        bias_size = [1, 3 * size]
1978
        self._bias_size = bias_size
1979
        self.bias = self.create_parameter(
M
minqiyang 已提交
1980
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1981

M
minqiyang 已提交
1982
    def forward(self, input, hidden):
1983 1984 1985 1986 1987 1988
        if in_dygraph_mode():
            gate, reset_hidden_pre, updated_hidden = core.ops.gru_unit(
                input, hidden, self.weight, self.bias, 'activation',
                self.activation, 'gate_activation', self.gate_activation)
            return updated_hidden, reset_hidden_pre, gate

1989 1990 1991 1992
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'GRUUnit')
        check_variable_and_dtype(hidden, 'hidden', ['float32', 'float64'],
                                 'GRUUnit')
1993 1994 1995 1996 1997
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
            'Weight': [self.weight]
        }
1998
        if self.bias is not None:
1999
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
2000 2001 2002 2003 2004
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
2014 2015
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
2016 2017 2018
            })

        return updated_hidden, reset_hidden_pre, gate
2019 2020 2021 2022


class NCE(layers.Layer):
    """
2023 2024 2025 2026 2027
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
2028
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
2029

2030
    Parameters:
2031 2032
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
2033
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2034 2035 2036
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
2037
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
2038 2039 2040 2041
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
2042
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
2043
        sampler (str, optional): The sampler used to sample class from negative classes.
2044 2045
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
2046
        custom_dist (float[], optional): A float[] with size=num_total_classes.
2047
                       It is used when sampler is set to 'custom_dist'.
2048
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
2049
                       Default: None.
2050 2051
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
2052
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2053

2054 2055
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
2056

2057 2058
        **bias** (Parameter or None): the learnable bias of this layer.
    
2059
    Returns:
2060
        None
2061 2062 2063 2064

    Examples:
        .. code-block:: python

2065 2066 2067
            import numpy as np
            import paddle.fluid as fluid

2068
            window_size = 5
2069 2070
            dict_size = 20
            label_word = int(window_size // 2) + 1
2071
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
2093
                nce = fluid.NCE(
2094
                             num_total_classes=dict_size,
2095
                             dim=embs3.shape[1],
2096 2097 2098 2099 2100 2101 2102
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

2103 2104
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
2105 2106 2107 2108 2109

    """

    def __init__(self,
                 num_total_classes,
2110
                 dim,
2111
                 sample_weight=None,
2112 2113 2114 2115 2116 2117
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
2118 2119 2120
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
2121 2122 2123
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
2124
        self._dtype = dtype
2125
        self._inputs = dict()
2126
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

2214
        self.weight = self.create_parameter(
2215 2216 2217
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2218
            dtype=self._dtype)
2219
        if self._bias_attr:
2220
            self.bias = self.create_parameter(
2221 2222 2223
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2224
                dtype=self._dtype)
2225 2226
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
2227

2228
    def forward(self, input, label, sample_weight=None):
2229 2230 2231 2232
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
        check_type(sample_weight, 'sample_weight', (Variable, type(None)),
                   'NCE')
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
2260
    r"""
2261 2262 2263 2264
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2265 2266 2267 2268 2269
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2270
    Parameters:
L
lujun 已提交
2271
        mode (str): The mode for weight sharing. It supports all, channel
2272 2273 2274
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
2275 2276 2277
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
2278
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
2279 2280
          This argument is required when mode is "element".
          Default: None.
2281 2282
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2283
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2284

2285 2286 2287
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2288
    Returns:
2289
        None
2290 2291 2292 2293 2294

    Examples:

        .. code-block:: python

L
lujun 已提交
2295
          import paddle.fluid as fluid
2296
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2297 2298 2299 2300
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2301
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
2313
                 input_shape=inp_np.shape,
L
lujun 已提交
2314
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
2315
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
2316

2317 2318
    """

S
songyouwei 已提交
2319 2320 2321 2322 2323
    def __init__(self,
                 mode,
                 channel=None,
                 input_shape=None,
                 param_attr=None,
2324
                 dtype='float32'):
2325 2326
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
        super(PRelu, self).__init__(name_scope='prelu')
2327 2328
        self._mode = mode
        self._param_attr = param_attr
2329
        self._dtype = dtype
S
songyouwei 已提交
2330 2331 2332 2333 2334 2335
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
                channel,
                int), "channel argument is required when mode is 'channel'."
2336 2337 2338
            #NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation. 
            # And, input_shape is not required when mode is 'channel', so it is simplified.
2339 2340
            #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
2341 2342 2343 2344 2345 2346 2347
        elif mode == 'element':
            assert isinstance(input_shape, (
                list, tuple
            )), "input_shape argument is required when mode is 'element'."
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
2348
        self.weight = self.create_parameter(
2349 2350 2351 2352 2353 2354 2355
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):
2356
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
2357 2358 2359 2360
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
2361
                    'Alpha': self.weight},
2362 2363 2364 2365 2366 2367
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
2368
    r"""
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2383
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2384

2385
    Parameters:
2386 2387 2388 2389 2390
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2391 2392 2393 2394
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2395
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2396
           If it is set to None, the bias is initialized zero. The default value is None.
2397
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2398

D
DuYao 已提交
2399 2400 2401 2402
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2403

2404
    Returns:
W
wanghuancoder 已提交
2405
       Tensor: A 2-D Tensor of shape [batch_size, size].
2406 2407 2408 2409

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2419

2420 2421 2422
    """

    def __init__(self,
2423 2424 2425
                 input1_dim,
                 input2_dim,
                 output_dim,
2426 2427 2428
                 name=None,
                 act=None,
                 param_attr=None,
2429 2430 2431
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2432 2433 2434 2435
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2436 2437 2438
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2439
        self._inputs = dict()
2440
        self._dtype = dtype
2441

2442
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2443
        self.weight = self.create_parameter(
2444 2445 2446 2447
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2448
        bias_size = [1, self._output_dim]
2449
        self.bias = self.create_parameter(
2450 2451 2452 2453
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2454

2455 2456 2457 2458
    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.")
2459
    def forward(self, x, y):
2460 2461 2462 2463
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'BilinearTensorProduct')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'BilinearTensorProduct')
2464
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2465
        if self.bias is not None:
2466
            self._inputs["Bias"] = self.bias
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2481
        return self._helper.append_activation(out, act=self._act)
2482 2483 2484


class Conv2DTranspose(layers.Layer):
2485
    r"""
2486 2487
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2488
    The convolution2D transpose layer calculates the output based on the input,
2489 2490 2491
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2492 2493
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2494 2495
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2496 2497 2498
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2499 2500
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2501 2502 2503 2504 2505 2506 2507 2508 2509

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2510 2511
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2512
    * :math:`\\ast`: Convolution operation.
2513
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2538
    Parameters:
2539
        num_channels(int): The number of channels in the input image.
2540
        num_filters(int): The number of the filter. It is as same as the output
2541
            feature map.
2542 2543 2544
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2545
        output_size(int or tuple, optional): The output image size. If output size is a
2546 2547 2548
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2549
            should follow the formula above. Default: None.
2550
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2551
            contain two integers, (padding_H, padding_W). Otherwise, the
2552 2553
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2554
            contain two integers, (stride_H, stride_W). Otherwise, the
2555 2556
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2557
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2558
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2559
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2560 2561 2562 2563
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2564 2565
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2566 2567 2568
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2569
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2570 2571 2572 2573
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2574
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2575
            library is installed. Default: True.
2576
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2577
            Default: None.
2578
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2579

2580 2581
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2582

2583
        **bias** (Parameter or None): the learnable bias of this layer.
2584

2585 2586
    Returns:
        None
2587 2588 2589 2590

    Examples:
       .. code-block:: python

2591
          import paddle.fluid as fluid
2592
          import numpy as np
2593 2594

          with fluid.dygraph.guard():
2595
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2596
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2597
                    num_channels=32, num_filters=2, filter_size=3)
2598 2599
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2600 2601 2602
    """

    def __init__(self,
2603
                 num_channels,
2604
                 num_filters,
2605
                 filter_size,
2606 2607 2608 2609 2610 2611 2612 2613
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2614 2615 2616
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2617 2618 2619
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2620
        self._act = act
2621
        self._groups = groups
2622
        self._num_channels = num_channels
2623 2624 2625 2626 2627 2628 2629
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2630
        self._dtype = dtype
2631

2632 2633 2634
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2635
            self._op_type = 'depthwise_conv2d_transpose'
2636 2637
        else:
            self._op_type = 'conv2d_transpose'
2638 2639 2640 2641 2642

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2643 2644
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2656
        filter_shape = [self._num_channels, self._num_filters // self._groups
2657 2658
                        ] + self._filter_size

2659
        self.weight = self.create_parameter(
2660
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2661

2662
        self.bias = self.create_parameter(
2663 2664 2665 2666 2667
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2668
    def forward(self, input):
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
        if in_dygraph_mode():
            op = getattr(core.ops, self._op_type)
            out = op(input, self.weight, 'output_size', self._output_size,
                     'strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups,
                     'use_cudnn', self._use_cudnn)
            pre_bias = out
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act)

2681 2682 2683 2684
        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "Conv2DTranspose")

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
            'use_cudnn': self._use_cudnn
        }

2695 2696 2697 2698
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
2699
            inputs=inputs,
2700
            outputs={'Output': pre_bias},
2701
            attrs=attrs)
2702

2703
        if self.bias is not None:
2704 2705 2706 2707 2708
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2709
                        'Y': [self.bias]},
2710 2711 2712 2713 2714 2715
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2716 2717 2718 2719 2720 2721 2722 2723 2724
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2725
    Parameters:
L
lujun 已提交
2726
        name_scope(str): The name of this class.
2727
        num_filters (int): number of filters.
L
lujun 已提交
2728 2729 2730
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2743 2744 2745 2746
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2760
        assert not in_dygraph_mode(
2761
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2762 2763 2764 2765 2766 2767 2768
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2769
        self._act = act
2770

2771
    def _build_once(self, input):
2772 2773
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2774
        self.weight = self.create_parameter(
2775
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2776

2777
        self.bias = self.create_parameter(
2778 2779 2780 2781 2782
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2783 2784 2785 2786 2787 2788
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
2789
                'Filter': [self.weight],
2790 2791 2792 2793 2794 2795 2796
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2797

2798
        if self.bias is not None:
2799 2800 2801 2802 2803
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
2804
                        'Y': [self.bias]},
2805 2806 2807 2808 2809 2810
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2811 2812 2813


class RowConv(layers.Layer):
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2832
    Parameters:
L
lujun 已提交
2833
        name_scope(str): The name of this class.
2834 2835 2836
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2837 2838
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2839

2840 2841 2842
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2843
    Returns:
L
lujun 已提交
2844 2845
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2861 2862 2863 2864 2865
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2866
        assert not in_dygraph_mode(
2867
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2868 2869 2870 2871 2872
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2873
    def _build_once(self, input):
L
lujun 已提交
2874 2875
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2876
        self.weight = self.create_parameter(
2877 2878 2879 2880
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2881 2882 2883 2884 2885 2886

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2887
                    'Filter': [self.weight]},
L
lujun 已提交
2888 2889 2890 2891 2892 2893
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2894 2895 2896 2897
    :alias_main: paddle.nn.GroupNorm
	:alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
	:old_api: paddle.fluid.dygraph.GroupNorm

2898 2899 2900 2901 2902 2903
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2904
        channels(int): The number of channels of input.
2905 2906 2907 2908 2909 2910 2911 2912 2913
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2914
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2928
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2929
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2930 2931 2932 2933

    """

    def __init__(self,
2934
                 channels,
L
lujun 已提交
2935 2936 2937 2938 2939
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2940 2941 2942
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2943 2944 2945
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2946
        self._channels = channels
L
lujun 已提交
2947 2948
        self._groups = groups
        self._act = act
2949
        self._dtype = dtype
L
lujun 已提交
2950 2951 2952
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2953
        param_shape = [self._channels]
L
lujun 已提交
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))

        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
L
lujun 已提交
2966 2967 2968

    def forward(self, input):
        inputs = {'X': input}
2969
        if self.bias is not None:
2970
            inputs['Bias'] = self.bias
2971
        if self.weight is not None:
2972
            inputs['Scale'] = self.weight
L
lujun 已提交
2973 2974

        # create output
2975
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2997
    r"""
2998 2999
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
3010
    :attr:`power_iters` should be a positive integer, do following
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

3031
    Parameters:
3032
        weight_shape(list or tuple): The shape of weight parameter.
3033 3034 3035 3036
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3037
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3038 3039

    Returns:
3040
        None
3041 3042 3043 3044

    Examples:
       .. code-block:: python

C
Chen Long 已提交
3045 3046
            import paddle
            x = paddle.rand((2,8,32,32))
3047

C
Chen Long 已提交
3048 3049 3050 3051
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
3052 3053 3054

    """

3055 3056 3057 3058 3059 3060 3061
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
3062 3063 3064
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
3065
        self._dtype = dtype
L
lujun 已提交
3066

3067 3068 3069
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
3070

3071
        self.weight_u = self.create_parameter(
L
lujun 已提交
3072 3073 3074 3075
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3076
        self.weight_u.stop_gradient = True
L
lujun 已提交
3077

3078
        self.weight_v = self.create_parameter(
L
lujun 已提交
3079 3080 3081 3082
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
3083
        self.weight_v.stop_gradient = True
L
lujun 已提交
3084 3085

    def forward(self, weight):
3086 3087
        check_variable_and_dtype(weight, "weight", ['float32', 'float64'],
                                 'SpectralNorm')
3088
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
3104
    """
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
3115
        feature_size(int): last dimension of nodes_vector.
3116 3117 3118 3119 3120 3121 3122
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
3123
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
3124

3125 3126
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
3127

3128
        **bias** (Parameter or None): the learnable bias of this layer.
3129

3130 3131
    Returns:
        None
L
lujun 已提交
3132

3133
    Examples:
L
lujun 已提交
3134

3135
        .. code-block:: python
3136

3137 3138
          import paddle.fluid as fluid
          import numpy
3139

3140 3141 3142 3143
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3144
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3145
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3146 3147
    """

L
lujun 已提交
3148
    def __init__(self,
3149
                 feature_size,
L
lujun 已提交
3150 3151 3152 3153 3154 3155
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3156 3157 3158
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3159
        self._name = name
3160
        self._feature_size = feature_size
L
lujun 已提交
3161 3162 3163 3164 3165 3166
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3167 3168
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3169
        if self._bias_attr:
3170
            self.bias = self.create_parameter(
L
lujun 已提交
3171 3172 3173 3174
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
3175
        self.weight = self.create_parameter(
L
lujun 已提交
3176 3177 3178 3179 3180 3181
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
3182 3183
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
3195
                'Filter': self.weight
L
lujun 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
3205
                        'Y': [self.bias]},
L
lujun 已提交
3206 3207 3208 3209 3210
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
    
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
3234
          inp_np = paddle.to_tensor(inp_np)
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
        super(Flatten, self).__init__()
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
3246 3247
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis)
3248
        return out