提交 224c90a8 编写于 作者: M minqiyang

Add nn to imperative

test=develop
上级 74ead6ff
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from six.moves import reduce
from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
__all__ = [
'Conv2D',
'Pool2D',
'FC',
]
class Conv2D(layers.PyLayer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
padding=0,
dilation=1,
groups=None,
use_cudnn=True,
act=None,
param_attr=None,
bias_attr=None,
name=None,
dtype=core.VarDesc.VarType.FP32):
assert param_attr is not False, "param_attr should not be False here."
super(Conv2D, self).__init__(
param_attr=param_attr, bias_attr=bias_attr, name=name, dtype=dtype)
self._groups = groups
self._stride = utils.convert_to_list(stride, 2, 'stride')
self._padding = utils.convert_to_list(padding, 2, 'padding')
self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
self._use_cudnn = use_cudnn
self._num_channels = num_channels
if (self._num_channels == self._groups and
num_filters % self._num_channels == 0 and not self._use_cudnn):
self._l_type = 'depthwise_conv2d'
else:
self._l_type = 'conv2d'
if groups is None:
num_filter_channels = num_channels
else:
if num_channels % groups != 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels // groups
filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
filter_shape = [num_filters, int(num_filter_channels)] + filter_size
def _get_default_param_initializer():
filter_elem_num = filter_size[0] * filter_size[1] * num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0)
self._filter_param = self._helper.create_parameter(
attr=self._helper.param_attr,
shape=filter_shape,
dtype=self._dtype,
default_initializer=_get_default_param_initializer())
if self._use_cudnn:
self._helper.create_variable(
name="kCUDNNFwdAlgoCache",
persistable=True,
type=core.VarDesc.VarType.RAW)
self._helper.create_variable(
name="kCUDNNBwdDataAlgoCache",
persistable=True,
type=core.VarDesc.VarType.RAW)
self._helper.create_variable(
name="kCUDNNBwdFilterAlgoCache",
persistable=True,
type=core.VarDesc.VarType.RAW)
self._pre_bias = self._helper.create_variable_for_type_inference(
dtype=self._dtype)
def forward(self, input):
self._helper.append_op(
type=self._l_type,
inputs={
'Input': input,
'Filter': self._filter_param,
},
outputs={"Output": self._pre_bias},
attrs={
'strides': self._stride,
'paddings': self._padding,
'dilations': self._dilation,
'groups': self._groups,
'use_cudnn': self._use_cudnn,
'use_mkldnn': False,
})
self._pre_act = self._helper.append_bias_op(
self._pre_bias, dim_start=1, dim_end=2)
out = self._helper.append_activation(self._pre_act)
return out
class Pool2D(layers.PyLayer):
def __init__(self,
pool_size=-1,
pool_type="max",
pool_stride=1,
pool_padding=0,
global_pooling=False,
use_cudnn=True,
ceil_mode=False,
exclusive=True,
name=None,
dtype=core.VarDesc.VarType.FP32):
if pool_type not in ["max", "avg"]:
raise ValueError(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
str(pool_type))
if global_pooling is False and pool_size == -1:
raise ValueError(
"When the global_pooling is False, pool_size must be passed "
"and be a valid value. Received pool_size: " + str(pool_size))
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
super(Pool2D, self).__init__(name=name, dtype=dtype)
self._pool_type = pool_type
self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
self._pool_padding = utils.convert_to_list(pool_padding, 2,
'pool_padding')
self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
self._global_pooling = global_pooling
self._use_cudnn = use_cudnn
self._ceil_mode = ceil_mode
self._exclusive = exclusive
self._l_type = 'pool2d'
self._pool_out = self._helper.create_variable_for_type_inference(
self._dtype)
def forward(self, input):
self._helper.append_op(
type=self._l_type,
inputs={"X": input},
outputs={"Out": self._pool_out},
attrs={
"pooling_type": self._pool_type,
"ksize": self._pool_size,
"global_pooling": self._global_pooling,
"strides": self._pool_stride,
"paddings": self._pool_padding,
"use_cudnn": self._use_cudnn,
"ceil_mode": self._ceil_mode,
"use_mkldnn": False,
"exclusive": self._exclusive,
})
return self._pool_out
class FC(layers.PyLayer):
def __init__(self,
size_in,
size_out,
num_flatten_dims=1,
param_attr=None,
dtype=core.VarDesc.VarType.FP32):
super(FC, self).__init__(param_attr=param_attr, dtype=dtype)
self._size_in = size_in
self._size_out = size_out
self._num_flatten_dims = num_flatten_dims
self._dtype = dtype
if self._size_in != -1:
self._w = self._helper.create_parameter(
attr=self._helper.param_attr,
shape=[size_in, size_out],
dtype=self._dtype,
is_bias=False)
self._tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._out = self._helper.create_variable_for_type_inference(self._dtype)
def _build_once(self, input):
if self._size_in != -1:
return
input_shape = input.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
] + [self._size_out]
self._w = self._helper.create_parameter(
attr=self._helper.param_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=False)
def forward(self, input):
self._helper.append_op(
type="mul",
inputs={"X": input,
"Y": self._w},
outputs={"Out": self._tmp},
attrs={
"x_num_col_dims": self._num_flatten_dims,
"y_num_col_dims": 1
})
self._helper.append_op(
type="sum",
inputs={"X": [self._tmp]},
outputs={"Out": self._out},
attrs={"use_mkldnn": False})
return self._out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册