engine.h 30.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
33
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
34 35
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
36
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
38
#include "paddle/fluid/inference/utils/singleton.h"
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/phi/common/data_type.h"
41 42
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/stream.h"
43
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
44

45 46
DECLARE_bool(trt_ibuilder_cache);

Y
Yan Chunwei 已提交
47 48 49 50
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
51 52 53 54
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

55 56 57 58 59 60 61 62 63 64
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
65
    case FluidDT::VarType_Type_INT64:
66
      return TRT_DT::kINT32;
W
wenbin 已提交
67 68
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
69 70 71
#if IS_TRT_VERSION_GE(8400)
    case FluidDT::VarType_Type_BOOL:
      return TRT_DT::kBOOL;
G
gaoziyuan 已提交
72

73
#endif
74
    default:
75
      PADDLE_THROW(platform::errors::InvalidArgument(
G
gaoziyuan 已提交
76 77 78 79
          "unsupported datatype in TRT op converter, type: %s. "
          "Boolean type is supported as TRT input/output "
          "using TensorRT v8.4+.",
          VarType_Type_Name(type)));
80 81 82 83 84 85
  }
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
86 87
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
88
                            bool with_dynamic_shape = false) {
89 90
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
91
                    platform::errors::InvalidArgument(
92
                        "TensorRT's tensor input requires at least 1 "
93
                        "dimensions, but input %s has %d dims.",
94 95
                        input,
                        shape.size()));
W
wenbin 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
110 111
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
112 113 114 115
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
116 117
            input,
            ShapeStr(shape)));
118
      }
119
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
120 121 122 123 124
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
125 126
            input,
            ShapeStr(shape)));
W
wenbin 已提交
127 128
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
129
    } else if (shape.size() == 3UL) {
130 131 132 133
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
134 135
            input,
            ShapeStr(shape)));
136
      }
137
      return nvinfer1::Dims2(shape[1], shape[2]);
138 139 140 141 142
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
143 144
            input,
            ShapeStr(shape)));
145 146 147 148 149
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
150
    }
151
    // static shape doesn't support 1D op so far.
152 153
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
154 155 156
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
157 158
                          input,
                          ShapeStr(shape)));
159 160 161 162 163 164 165

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
166 167
  } else {
    if (shape.size() == 4UL) {
168
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
169 170 171
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
172 173 174 175 176 177
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
178 179
  }
}
180
}  // namespace
181

N
nhzlx 已提交
182
class TRTInt8Calibrator;
W
wanghuancoder 已提交
183

Y
Yan Chunwei 已提交
184 185 186
/*
 * TensorRT Engine.
 *
187
 * There are two alternative ways to use it, one is to build from a paddle
188
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
189
 */
190 191
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
192
  using ShapeMapType = std::map<std::string, std::vector<int>>;
193
  using PredictorID = int;
194

Y
Yan Chunwei 已提交
195 196 197 198
 public:
  // Weight is model parameter.
  class Weight {
   public:
199
    Weight() = default;
200
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
201 202 203 204
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
205
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
206

207 208 209 210 211 212 213 214
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

215 216
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
217 218 219 220
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
221
  TensorRTEngine(
222
      int max_batch,
223
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
224
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
225 226
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
227 228 229
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
230 231 232
      const ShapeMapType min_shape_tensor = {},
      const ShapeMapType max_shape_tensor = {},
      const ShapeMapType optim_shape_tensor = {},
233
      bool disable_trt_plugin_fp16 = false,
234
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
235
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
236 237
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
238
        precision_(precision),
N
nhzlx 已提交
239
        calibrator_(calibrator),
N
nhzlx 已提交
240
        device_id_(device_id),
241 242 243
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
244 245 246
        min_shape_tensor_(min_shape_tensor),
        max_shape_tensor_(max_shape_tensor),
        optim_shape_tensor_(optim_shape_tensor),
247
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
248
        model_precision_(model_precision),
249 250 251 252
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
253 254
          min_input_shape_.size(),
          max_input_shape_.size(),
255 256 257
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
258 259
              min_input_shape_.size(),
              max_input_shape_.size()));
260
      PADDLE_ENFORCE_EQ(
261 262
          min_input_shape_.size(),
          optim_input_shape_.size(),
263 264 265
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
266 267
              min_input_shape_.size(),
              optim_input_shape_.size()));
268 269 270 271 272 273 274
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
275
    dy::initLibNvInferPlugins(&logger, "");
276
  }
Y
Yan Chunwei 已提交
277

278 279 280 281 282 283 284 285 286
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
287

288
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
289 290 291 292 293
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
294 295
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
296
                     const std::string& name);
L
Luo Tao 已提交
297 298
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
299 300 301
  // Set the itensor_map_[name] as the network's output, and set its name and
  // data type.
  void DeclareOutput(const std::string& name, nvinfer1::DataType dtype);
302
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
303

304
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
305 306
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
307 308 309
  nvinfer1::ITensor* GetITensor(const std::string& name, bool scalar = false);
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name,
                                           bool scalar = false);
310
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
311 312

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
313
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
314 315 316 317

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
318
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
319 320 321 322 323 324 325 326 327 328 329
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

330 331 332 333 334
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
335 336 337
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
338
    cur_profile_num_ = 0;
339
  }
N
nhzlx 已提交
340 341

  nvinfer1::IHostMemory* Serialize() {
342 343 344 345
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
346
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
347
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
348 349 350 351 352 353
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
354 355 356
    return ihost_memory_.get();
  }

357
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
358

359 360
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
361 362 363 364

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
365 366 367
    // below is consistent with setFlag in engine.cc
    bool fall_back_fp16 = WithInt8() && !use_dla_;
    return (enable_fp16 || fall_back_fp16) && support_fp16;
368 369
  }

370 371 372 373 374 375
  bool WithInt8() {
    bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
    bool support_int8 = infer_builder_->platformHasFastInt8();
    return enable_int8 && support_int8;
  }

N
nhzlx 已提交
376
  int GetDeviceId() { return device_id_; }
377

378
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
379 380
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
381 382 383 384 385

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

386 387 388 389
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

390 391 392
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
393

394 395
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
396
                          const phi::DenseTensor& weight_tensor);
397

398 399
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
400
                          const phi::DenseTensor& weight_tensor);
401 402 403

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
404
                      const phi::DenseTensor& weight_tensor);
405

406 407 408 409 410 411 412 413
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
414 415 416 417 418
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
419
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
420
      weight_map;
Y
Yan Chunwei 已提交
421

422 423 424
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
425
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
426 427
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
428
    std::string splitter = "__";
429 430 431 432 433 434 435 436
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
437 438 439
    suffix_counter += 1;
  }

440
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
441 442
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
443
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
444 445 446
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
447 448 449 450 451 452
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
453 454 455 456 457 458
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

459 460 461 462 463 464 465
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
466 467
  void Execute(int batch_size,
               std::vector<void*>* buffers,
468 469
               cudaStream_t stream = nullptr);

470
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
471 472 473 474

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
475 476 477
  ShapeMapType min_shape_tensor() { return min_shape_tensor_; }
  ShapeMapType max_shape_tensor() { return max_shape_tensor_; }
  ShapeMapType optim_shape_tensor() { return optim_shape_tensor_; }
478 479 480 481 482 483 484 485 486

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
487 488
          min_input_shape_.count(name),
          true,
489 490
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
491 492
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
493 494 495 496
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
497 498 499 500
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

532
  bool use_varseqlen() { return use_varseqlen_; }
533
  bool with_ernie() { return with_ernie_; }
534
  bool with_interleaved() { return with_interleaved_; }
535 536 537 538 539 540
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
541
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
542
  bool with_dynamic_shape() { return with_dynamic_shape_; }
543
  AnalysisConfig::Precision precision() { return precision_; }
544

545
#if IS_TRT_VERSION_GE(6000)
546
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
547 548
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
549
      plugin::DynamicPluginTensorRT* plugin) {
550 551 552 553 554
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
575 576
          attrs_.count(attr_name),
          0,
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
595 596
        attrs_.count(attr_name),
        0,
597 598 599 600 601 602 603 604
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
605 606
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
607 608 609
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
610 611
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
628 629
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
630 631 632 633 634
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
635
  void SetProfileNum(int num) { max_profile_num_ = num; }
636 637 638 639

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
640
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
641

642 643 644 645
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

Y
Yan Chunwei 已提交
646
 private:
N
nhzlx 已提交
647 648 649 650
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
651 652
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
653

Y
Yan Chunwei 已提交
654 655
  // the max batch size
  int max_batch_;
656 657
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
658
  // the max memory size the engine uses
659
  int64_t max_workspace_;
660

Z
Zhaolong Xing 已提交
661
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
662 663 664
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
665

666 667 668
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

N
nhzlx 已提交
669
  int device_id_;
W
wenbin 已提交
670 671
  int max_profile_num_{1};
  int cur_profile_num_{0};
672
  std::unordered_map<PredictorID, int> profile_index_;
673 674 675
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
676 677 678
  ShapeMapType min_shape_tensor_;
  ShapeMapType max_shape_tensor_;
  ShapeMapType optim_shape_tensor_;
679
  bool disable_trt_plugin_fp16_{false};
680
  phi::DataType model_precision_{phi::DataType::FLOAT32};
681
  bool use_varseqlen_{false};
682 683
  bool use_dla_{false};
  int dla_core_{0};
684
  bool with_ernie_{false};
685
  bool with_interleaved_{false};
686 687
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
688 689 690
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
691 692
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
693

694
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
695
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
696
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
697 698 699 700 701

  // TensorRT related internal members
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
702
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
703
      infer_context_;
N
nhzlx 已提交
704
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
705
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
706

707
  std::unordered_map<std::string, paddle::any> attrs_;
708 709
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

710 711 712
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
713
  int binding_num_;
714
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
715
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
716
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
717
#endif
718
  std::mutex mutex_;
719
  bool use_inspector_;
720 721 722

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
723 724
};  // class TensorRTEngine

725
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
726 727 728 729 730 731 732 733 734
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
735
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
736
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
737

738
class TRTEngineManager {
739 740 741
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

742
 public:
743 744 745 746 747 748 749 750 751
  TRTEngineManager() {
    // createInferBuilder loads trt kernels and take a few second
    // But as long as one IBuilder lives, trt kernel will not be unloaded
    // Hence, a persistent IBuilder to avoid TensorRT unload/reload kernels
    if (FLAGS_trt_ibuilder_cache) {
      holder_.reset(createInferBuilder(&NaiveLogger::Global()));
    }
  }

752 753 754 755 756
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

757
  bool Has(const std::string& name) const {
758
    std::lock_guard<std::mutex> lock(mutex_);
759 760 761 762 763
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
764
    std::lock_guard<std::mutex> lock(mutex_);
765 766 767
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
768
  TensorRTEngine* Create(
769 770
      std::string name,
      int max_batch,
771
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
772
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
773 774
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
775 776 777
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
778 779 780
      const std::map<std::string, std::vector<int>> min_shape_tensor = {},
      const std::map<std::string, std::vector<int>> max_shape_tensor = {},
      const std::map<std::string, std::vector<int>> optim_shape_tensor = {},
781
      bool disable_trt_plugin_fp16 = false,
782
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
783
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
784 785 786 787 788 789 790 791
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
792 793 794
                                 min_shape_tensor,
                                 max_shape_tensor,
                                 optim_shape_tensor,
795
                                 disable_trt_plugin_fp16,
796
                                 model_precision,
797
                                 logger);
798
    std::lock_guard<std::mutex> lock(mutex_);
799 800 801 802 803
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
804
    std::lock_guard<std::mutex> lock(mutex_);
805 806 807
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
808
    engines_.clear();
809 810
  }

W
Wilber 已提交
811
  void DeleteKey(const std::string& key) {
812
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
813 814 815 816 817 818 819
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

820
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
Y
Yuanle Liu 已提交
821 822 823
    VLOG(3) << "TensorRT engine context memory size is "
            << mem_size / 1024.0 / 1024.0 << "MiB in predictor id "
            << predictor_id;
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

860
 private:
861 862 863 864 865 866 867 868 869 870 871 872
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
873
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
874
  infer_ptr<nvinfer1::IBuilder> holder_;
875 876
};

Y
Yan Chunwei 已提交
877 878 879
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle