op_params.h 52.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
24 25
#include "lite/model_parser/base/apis.h"
#include "lite/model_parser/cpp_desc.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

35 36
struct ParamBase {
 public:
37 38 39 40 41
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
42 43 44 45 46 47

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
48 49 50
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
51
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
52
  std::vector<float> weight_scale{}; \
53
  float output_scale{1.0f};          \
54
  int bit_length{8};
Y
Yan Chunwei 已提交
55 56

/// ----------------------- Functional operators ------------------------------
57
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
58 59 60 61 62
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

63
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
64 65 66 67 68 69
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
70
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
71 72
  const lite::Tensor* x{};
  lite::Tensor* y{};
73
  int process_type{0};
Y
Yan Chunwei 已提交
74 75
};

76
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
77 78
  const lite::Tensor* x{};
  lite::Tensor* y{};
79
  int process_type{0};
Y
Yan Chunwei 已提交
80 81
};

82
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
83 84 85
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
101 102
};

103
struct SubgraphParam : ParamBase {
104 105 106 107
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
108 109 110
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
111 112 113 114
};

/// -------------------------- NN operators ------------------------------------

115
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
116 117 118 119 120
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
H
huzhiqiang 已提交
121 122
  // original dims of input weight
  lite::DDim w_dims;
Y
Yan Chunwei 已提交
123
  int in_num_col_dims{1};
124
  std::string activation_type{""};
125
  bool padding_weights{false};
Y
Yan Chunwei 已提交
126 127
  // for int8
  WITH_INT8_CONFIG
128 129
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
130 131
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
132 133 134 135 136
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
137 138
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
139 140 141 142 143 144 145
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
146 147 148 149 150 151 152
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
153
// For Interpolate Op
154
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
155 156 157
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
158
  std::vector<const lite::Tensor*> SizeTensor;
159
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
160 161 162 163 164

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
165
  int align_mode{1};
Y
Yan Chunwei 已提交
166
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
167
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
168 169 170
};

// For Mul Op
171
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
180 181
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
182 183
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
184 185 186 187 188
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
189 190
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
191 192 193 194
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
195 196
};

197
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
198 199 200 201 202 203 204 205 206 207
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

208
// For ReduceMean Op
209
struct ReduceMeanParam : ParamBase {
210 211 212 213 214 215 216 217
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
218
struct StackParam : ParamBase {
219 220 221 222 223 224
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
225
// For Power Op
226
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

235 236 237 238 239 240 241 242 243 244 245 246 247 248
// For Pow Op
struct PowParam : ParamBase {
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float factor{1.};
};

// For Sign Op
struct SignParam : ParamBase {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

249
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
250 251 252 253 254 255 256
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
257
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
258 259 260 261 262 263 264 265 266 267 268 269
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
270
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
271 272 273 274 275 276
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
277 278 279
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
280 281
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
282 283
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
284 285 286 287 288
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
289 290
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
291 292 293 294
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
295 296 297
};

// For Softmax op
298
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
299 300 301
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
W
Wilber 已提交
302
  bool use_cudnn{true};
303 304
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
305 306
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
307 308 309 310 311
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
312 313
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
314 315 316 317
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
318 319 320
};

// For Reshape and Reshape2 Op
321
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
322
  const lite::Tensor* x{};
323 324 325
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
326 327
  lite::Tensor* output{};

328
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
329
  bool inplace{false};
330 331
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
332 333
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
334 335 336 337 338
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
339 340
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
341 342 343 344
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
345 346 347
};

// For Concat op
348
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
349 350 351
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
352
  lite::Tensor* axis_tensor{};
353
  // get a vector of input tensors
354 355
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
356 357 358 359 360 361 362 363 364
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
365 366
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
367 368 369 370
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
371 372
};

373
/// ----------------------- activation operators ----------------------
374
struct ActivationParam : ParamBase {
375
  const lite::Tensor* X{};
376
  lite::Tensor* Out{};
377
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
378
  bool has_active{false};
379 380 381 382 383 384
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
385
  // hard_sigmoid param
386 387
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
388 389 390 391
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
392 393
  // thresholded_relu
  float relu_threshold{1.0f};
H
HappyAngel 已提交
394 395
  // elu
  float Elu_alpha{1.0f};
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
412 413
};

414
struct ActivationGradParam : ParamBase {
415 416 417 418 419 420 421
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
422
// For Convolution op
423
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
424 425 426 427 428 429
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
430
  /* paddings type change
431 432 433 434
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
435
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
436
  int groups{1};
H
HappyAngel 已提交
437
  /* dilations type change
438 439 440 441
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
442
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
443 444 445 446 447 448 449 450 451 452 453 454
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
455 456
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
457 458
  // support var_length or not
  bool var_length{false};
459 460
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
461 462
  // for int8
  WITH_INT8_CONFIG
463 464 465

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
466 467
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
468 469 470 471 472
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
473 474
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
475 476 477 478
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
479 480 481
};

// For BatchNorm op
482
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
498 499
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
500 501
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
502 503 504 505 506
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
507 508
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
509 510 511 512
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
513 514 515
};

// For Pooling op
516
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
517 518 519 520 521 522 523
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
524
  /* paddings type change
525 526 527 528
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
529
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
530 531 532 533 534
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
535 536
  // for int8
  WITH_INT8_CONFIG
537 538
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
539 540
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
541 542 543 544 545
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
546 547
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
548 549 550 551
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
552 553 554
};

// For Dropout op
555
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
556 557 558 559 560 561 562 563 564 565 566
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
567
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
568 569
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
570 571 572
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
573 574 575
  int axis{-1};
  int num{0};
  std::vector<int> sections;
576 577
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
578 579
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
580 581 582 583 584
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
585 586
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
587 588 589 590
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
591 592 593
};

// For Transpose op
594
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
595 596
  const lite::Tensor* x{};
  lite::Tensor* output{};
597 598
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
599 600 601
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
602 603
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
604 605
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
606 607 608 609 610
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
611 612
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
613 614 615 616
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
617 618 619
};

/// ----------------------- element wise operators ----------------------
620
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
621 622 623 624
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
625
  // for int8
Z
Zhaolong Xing 已提交
626
  WITH_INT8_CONFIG
J
juncaipeng 已提交
627 628
  float x_input_scale{1.0};
  float y_input_scale{1.0};
629 630
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
631 632
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
633 634 635 636 637
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
638 639
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
640 641 642 643 644 645 646
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
647
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
648
  const lite::Tensor* Y{};
X
xiaogang 已提交
649 650 651
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
652 653 654 655 656 657 658 659 660 661 662 663
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
664
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
665 666 667 668
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

669
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
670 671 672 673 674 675 676
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
677
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
678 679
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
680
  lite::Tensor* shape_tensor{nullptr};
681 682
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
683 684 685 686 687
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
688

689
struct FillConstantBatchSizeLikeParam : ParamBase {
690 691
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
692

693
  std::vector<int> shape{};
694 695 696 697
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
698 699
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
700 701
};

Y
Yan Chunwei 已提交
702
//
703
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
704 705 706 707 708 709 710 711 712 713
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
714
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
715 716
};

717
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
718 719 720 721 722 723
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

724
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
725 726 727 728 729 730
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

731 732 733 734 735 736 737
struct FakeQuantDequantAbsMaxParam : ParamBase {
  const lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  int bit_length;
};

Y
Yan Chunwei 已提交
738
/// ----------------------- sgd operators ----------------------
739
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
740 741 742 743 744 745 746 747 748
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
749
struct UniformRandomParam : ParamBase {
750
  const lite::Tensor* X{nullptr};
Y
Yan Chunwei 已提交
751 752 753 754 755 756 757 758
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
759
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
760 761 762 763
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
764
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
765 766 767 768 769 770 771 772 773
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
774
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
775 776 777 778 779 780 781
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
782
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
783 784 785 786 787 788
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
789
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
790 791 792 793 794 795
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
796
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
812
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
813 814
  const lite::Tensor* X{};
  lite::Tensor* Out{};
815
  int n{5};
816 817 818
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
819 820 821 822
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
823
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
839
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
840 841 842 843 844
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
845 846 847 848
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(
          {prior_box, prior_box_var, target_box}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(
          new std::vector<lite::Tensor*>({proposals}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
866 867 868
};

/// ----------------------- multiclass_nms operators ----------------------
869
struct MulticlassNmsParam : ParamBase {
870 871 872
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
873
  lite::Tensor* index{};
874 875 876
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
877 878
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
879
  int keep_top_k;
880
  bool normalized{true};
Y
Yan Chunwei 已提交
881 882 883
};

/// ----------------------- priorbox operators ----------------------
884
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
904
  bool min_max_aspect_ratios_order{false};
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(
          new std::vector<const Tensor*>({input, image}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(
          new std::vector<lite::Tensor*>({boxes, variances}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
922 923 924 925 926
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
927
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
928 929
};
/// ----------------------- GRU operators ----------------------f
930
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
947
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
948 949 950 951 952 953 954 955 956
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
957
struct LookupTableParam : ParamBase {
958 959
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
960 961 962 963
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

964
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
965 966 967 968 969 970
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

971
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
972 973 974 975 976 977 978 979 980
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

981
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
982 983
  const lite::Tensor* X{};
  lite::Tensor* Out{};
984 985
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
986 987
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
988 989 990 991 992
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
993 994
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
995 996 997 998
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
999 1000
};

1001
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
1002 1003
  const lite::Tensor* X{};
  lite::Tensor* Out{};
1004
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
1005
  int axis{1};
1006
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
1007
};
1008
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
1009 1010 1011 1012 1013 1014 1015
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
1016
  float epsilon{1e-5f};
T
TianXiaogang 已提交
1017
};
Y
Yan Chunwei 已提交
1018

1019
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
1020 1021 1022 1023 1024
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

1025
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
1026 1027 1028 1029 1030 1031 1032
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

1033
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
1034
  Tensor* cond{};
1035 1036 1037
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
1038 1039
};

1040
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
1041 1042 1043 1044 1045 1046
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

1047
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
1048 1049 1050 1051 1052
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

1053
struct WriteToArrayParam : ParamBase {
1054 1055 1056
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
1057 1058
};

1059
struct ReadFromArrayParam : ParamBase {
1060 1061 1062
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
1063 1064
};

1065
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

1079
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
1080 1081
  const lite::Tensor* X{};
  lite::Tensor* Out{};
1082
  lite::Tensor* MaxIndex{};
1083 1084 1085 1086
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
Y
Yan Chunwei 已提交
1087 1088
};

1089
struct SequenceConvParam : ParamBase {
1090 1091 1092 1093 1094 1095 1096 1097
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1098
struct SequencePoolConcatParam : ParamBase {
1099 1100 1101 1102 1103
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
struct SequencePoolGradParam : ParamBase {
  const lite::Tensor* X{};
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
  // for backward
  const lite::Tensor* Out_Grad{};
  const lite::Tensor* MaxIndex_Grad{};
  lite::Tensor* X_Grad{};
};

1116
struct SearchGroupPaddingParam : ParamBase {
1117 1118 1119 1120 1121 1122 1123
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1124
struct SequenceReshapeParam : ParamBase {
1125 1126 1127 1128 1129
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1130
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1131 1132 1133 1134 1135 1136
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1137 1138 1139 1140 1141 1142 1143 1144
struct SequencePadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* PadValue{};
  lite::Tensor* Out{};
  lite::Tensor* Length{};
  int padded_length{-1};
};

1145 1146 1147 1148 1149 1150
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1151 1152 1153 1154 1155 1156 1157 1158
struct SequenceMaskParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* MaxLenTensor{nullptr};
  lite::Tensor* Y{};
  int maxlen{-1};
  int out_dtype;
};

1159
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1160 1161 1162 1163 1164
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1165
struct SequenceReverseParam : ParamBase {
1166 1167 1168 1169
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1170
struct SequenceConcatParam : ParamBase {
1171 1172 1173 1174
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1175
struct AttentionPaddingMaskParam : ParamBase {
1176 1177 1178 1179 1180 1181 1182 1183
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1184
struct SequenceArithmeticParam : ParamBase {
1185 1186 1187 1188 1189 1190
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1191
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1192 1193 1194 1195 1196 1197
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1198
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1199 1200 1201 1202 1203 1204 1205
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1206
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1207 1208 1209
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1210

1211
struct ReduceParam : ParamBase {
1212 1213 1214 1215 1216 1217 1218
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1219
struct VarConv2DParam : ParamBase {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1233 1234

  bool fuse_relu{false};
1235 1236 1237 1238 1239

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1240 1241
};

Y
Yan Chunwei 已提交
1242
/// ----------------------- shape operators ----------------------
1243
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1244 1245 1246 1247
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1248
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1249 1250 1251 1252 1253 1254
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1255
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1256 1257 1258 1259 1260 1261
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1262 1263 1264 1265 1266
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1267 1268
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1269 1270
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1271 1272 1273 1274 1275
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1276 1277
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1278 1279 1280 1281
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1282
};
Y
Yan Chunwei 已提交
1283

1284
struct AffineChannelParam : ParamBase {
1285 1286 1287 1288 1289 1290 1291
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1292 1293 1294 1295 1296 1297 1298
struct AffineGridParam : ParamBase {
  const lite::Tensor* X{};  // Theta:shape {?, 2, 3}
  std::vector<int> output_shape;
  const lite::Tensor* OutputShape;
  lite::Tensor* Out{};
};

1299
struct AnchorGeneratorParam : ParamBase {
1300 1301 1302 1303
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1304 1305
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1306 1307 1308 1309 1310

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1311
struct GenerateProposalsParam : ParamBase {
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1322 1323 1324
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1325 1326 1327 1328 1329

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1330
/// ----------------------- squeeze operators ----------------------
1331
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1332 1333 1334 1335
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1336 1337
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1338 1339
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1340 1341 1342 1343 1344
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1345 1346
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1347 1348 1349 1350
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1351 1352
};

1353
struct UnsqueezeParam : ParamBase {
1354 1355 1356 1357
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1358
  const lite::Tensor* axes_tensor{};
1359
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1360 1361
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1362 1363
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1364 1365 1366 1367 1368
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1369 1370
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1371 1372 1373 1374
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1375 1376
};

Y
Yan Chunwei 已提交
1377
/// ----------------------- expand operators ----------------------
1378
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1379 1380 1381 1382 1383
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

1384 1385 1386 1387 1388 1389 1390
/// ----------------------- expand as operators ----------------------
struct ExpandAsParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Target{};
  lite::Tensor* Out{};
};

Y
Yan Chunwei 已提交
1391
/// ----------------------- matmul operators ----------------------
1392
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1393 1394 1395 1396 1397 1398
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1399 1400
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1401 1402
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1403 1404 1405 1406 1407
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1408 1409
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1410 1411 1412 1413
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1414
};
1415

1416
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1417 1418 1419 1420 1421
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1422
/// ----------------------- assign operators -----------------------
1423
struct AssignParam : ParamBase {
1424 1425 1426 1427 1428 1429 1430
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1431
};
1432

1433
/// ----------------------- roi_align operators -----------------------
1434
struct RoiAlignParam : ParamBase {
1435 1436 1437 1438 1439 1440 1441 1442 1443
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1444
/// ----------------------- box_clip operators -----------------------
1445
struct BoxClipParam : ParamBase {
1446 1447 1448 1449 1450
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1451
struct RangeParam : ParamBase {
1452 1453 1454 1455 1456 1457
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1458
/// ----------------------- assign_value operators -----------------------
1459
struct AssignValueParam : ParamBase {
1460 1461 1462 1463
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
1464 1465
  std::vector<int64_t> int64_values{};
  std::vector<int> bool_values{};
1466 1467 1468
  lite::Tensor* Out{};
};

1469
/// --------------- sequence_topk_avg_pooling operators ------------------
1470
struct SequenceTopkAvgPoolingParam : ParamBase {
1471 1472 1473 1474 1475 1476 1477 1478 1479
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

1480 1481 1482 1483 1484 1485 1486 1487 1488
/// --------------- topk_pooling operators ------------------
struct TopkPoolingParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int top_k{1};
  int feat_map_num{1};
};

1489
/// --------------- search_fc operators ------------------
1490
struct SearchFcParam : ParamBase {
1491 1492 1493 1494 1495
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
1496 1497 1498 1499 1500 1501 1502

  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1503
};
J
juncaipeng 已提交
1504
/// --------------------- match_matrix_tensor operators --------------------
1505
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1506 1507 1508 1509 1510 1511 1512
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
1513 1514 1515 1516 1517 1518
  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is w already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in w
#endif
J
juncaipeng 已提交
1519 1520 1521
};

/// --------------------- search_seq_depadding operators --------------------
1522
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1523 1524 1525 1526 1527 1528
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1529
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
1540 1541 1542 1543 1544 1545

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};   // Is wi/wh already converted to int16/int8
  std::vector<float> __xpu__wi_max;  // Abs max in wi
  std::vector<float> __xpu__wh_max;  // Abs max in wh
#endif
J
juncaipeng 已提交
1546 1547
};

1548
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1549 1550 1551 1552 1553 1554 1555
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1556
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1557 1558 1559 1560 1561 1562 1563 1564
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1565
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1566
  const lite::Tensor* cond{};
1567
  std::vector<lite::Tensor*> inputs{};
J
juncaipeng 已提交
1568
  std::vector<lite::Tensor*> outs{};
1569 1570 1571
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
J
juncaipeng 已提交
1572 1573 1574
  bool is_scalar_condition{};
};

1575
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1576 1577 1578 1579 1580 1581
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1582
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1592
/// --------------------- instance_norm operators --------------------
1593
struct InstanceNormParam : ParamBase {
1594 1595 1596 1597 1598 1599 1600 1601
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
H
HappyAngel 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/// --------------------- group_norm operators --------------------
struct GroupNormParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
  int groups;
  int channels;
};

1615
/// --------------------- grid sampler operators --------------------
1616
struct GridSamplerParam : ParamBase {
1617 1618 1619 1620
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1621
struct LstmParam : ParamBase {
X
xiaogang 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1637

1638
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1639 1640 1641 1642 1643 1644 1645
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1678
  std::string precision{};
1679
  bool enable_qkv_fusion{false};
1680 1681
};

C
Cwndmiao 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
struct XPUResNetCbamParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};

  float pool_p{1.0f};
};

struct XPUMmdnnSearchAttentionParam : ParamBase {
  lite::Tensor* X{};
  lite::Tensor* W{};
  lite::Tensor* b{};
  lite::Tensor* Out{};

  float W_max{0.0f};
  int pad_id{0};
  float alpha0{1.0f};
  float alpha1{1.0f};
  float mask{1.0f};
};

struct XPUMmdnnBidEmbGrnnAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
};

struct XPUMmdnnBidEmbGrnnAttParam2 : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

  lite::Tensor* emb0_out{};
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
};

struct XPUMmdnnBidEmbAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  float att_fc_w_max{0.0f};

1783 1784
  lite::Tensor* att_pool_out{};
  lite::Tensor* emb_fw_out{};
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
};

struct XPUMmdnnMatchConvTopkParam : ParamBase {
  lite::Tensor* input_x{};
  lite::Tensor* input_y{};
  lite::Tensor* input_w{};
  lite::Tensor* conv_w{};

  float input_w_max{0.0f};
  float conv_w_max{0.0f};
  std::vector<int> topks;
1796
  int output_channel{0};
1797 1798 1799 1800 1801 1802 1803 1804
  int channel_num{0};
  int dim_t{0};

  lite::Tensor* topk_out{};
};

struct XPUMmdnnMergeAllParam : ParamBase {
  std::vector<lite::Tensor*> concat_7in1_x;
1805
  std::vector<lite::Tensor*> concat_topk_x;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* fc0_w{};
  lite::Tensor* fc0_b{};
  lite::Tensor* fc1_w{};
  lite::Tensor* fc1_b{};
  lite::Tensor* fc2_w{};
  lite::Tensor* fc2_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float fc0_w_max{0.0f};
  float fc1_w_max{0.0f};
  float fc2_w_max{0.0f};

  lite::Tensor* out{};
};

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
struct XPUConv2dParam : ParamBase {
  lite::Tensor* Input{nullptr};
  lite::Tensor* Filter{nullptr};
  lite::Tensor* InputMax{nullptr};
  lite::Tensor* FilterMax{nullptr};
  lite::Tensor* Bias{nullptr};
  lite::Tensor* Branch{nullptr};
  lite::Tensor* Output{nullptr};
  lite::Tensor* OutputMax{nullptr};

  int groups{1};
  int act_type{-1};
  std::string filter_type{""};
  std::vector<int> strides;
  std::shared_ptr<std::vector<int>> paddings;
  std::shared_ptr<std::vector<int>> dilations;
};

struct XPUSfaHeadParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};

  std::string op_type{""};
};

H
HappyAngel 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
// For DeformableConvolution op
struct DeformableConvParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* offset{};
  lite::Tensor* mask{};
  lite::Tensor* output{};
  int deformable_groups{1};
  int im2col_step{1};
  bool modulated{true};  // True-v2 False-v1
  std::string data_format{"Anylayout"};
  // convolution parameter
  ConvParam conv_param;
  // support var_length or not
  bool var_length{false};
  // only used in conv_transpose.
  std::vector<int> output_size;
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

1886 1887 1888 1889 1890
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

struct RetinanetDetectionOutputParam : ParamBase {
  std::vector<Tensor*> bboxes{};
  std::vector<Tensor*> scores{};
  std::vector<Tensor*> anchors{};
  Tensor* im_info{};
  Tensor* out{};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{};
  float nms_eta{};
  int keep_top_k{};
};

Y
yiicy 已提交
1905 1906 1907 1908 1909
struct WhereIndexParam : ParamBase {
  const lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};
};

C
cc 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918
struct ClipParam : ParamBase {
  Tensor* x{};
  Tensor* min_tensor{};
  Tensor* max_tensor{};
  Tensor* out{};
  float min{};
  float max{};
};

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
struct PrintParam : ParamBase {
  const lite::Tensor* in{};
  lite::Tensor* out{};
  std::string name;
  int first_n{-1};
  std::string message;
  int summarize{20};
  bool print_tensor_name{true};
  bool print_tensor_type{true};
  bool print_tensor_shape{true};
  bool print_tensor_lod{true};
  bool print_tensor_layout{true};
  std::string print_phase;
  bool is_forward{true};
};

1935 1936 1937 1938 1939 1940 1941 1942 1943
struct OneHotParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* depth_tensor{nullptr};
  lite::Tensor* Out{};
  int depth;
  int dtype;
  bool allow_out_of_range;
};

Y
Yan Chunwei 已提交
1944 1945 1946
}  // namespace operators
}  // namespace lite
}  // namespace paddle