未验证 提交 518a87ef 编写于 作者: L liu zhengxi 提交者: GitHub

Update the ops to fluid (#2406)

align the lite nearest, bilinear op to fluid on arm and cuda
上级 f4e06650
......@@ -22,6 +22,28 @@ namespace lite {
namespace arm {
namespace math {
inline std::vector<int> get_new_shape(
std::vector<const lite::Tensor*> list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>();
lite::Tensor cpu_starts_tensor;
vec_new_data =
std::vector<T>(new_data, new_data + new_data_tensor->dims().production());
return vec_new_data;
}
// The following function bilinear_interp is partially base on
// https://github.com/Tencent/ncnn/blob/master/src/layer/arm/interp_arm.cpp
// Tencent is pleased to support the open source community by making ncnn
......@@ -472,33 +494,52 @@ void nearest_interp(const float* src,
void interpolate(lite::Tensor* X,
lite::Tensor* OutSize,
std::vector<const lite::Tensor*> SizeTensor,
lite::Tensor* Scale,
lite::Tensor* Out,
int out_height,
int out_width,
float height_scale,
float width_scale,
float scale,
bool with_align,
std::string interpolate_type) {
int in_h = X->dims()[2];
int in_w = X->dims()[3];
if (SizeTensor.size() > 0) {
auto new_size = get_new_shape(SizeTensor);
out_height = new_size[0];
out_width = new_size[1];
} else {
auto scale_tensor = Scale;
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
}
if (scale > 0) {
out_height = static_cast<int>(in_h * scale);
out_width = static_cast<int>(in_w * scale);
}
auto out_size = OutSize;
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor<float>(out_size);
out_height = static_cast<int>(out_size_data[0]);
out_width = static_cast<int>(out_size_data[1]);
}
}
float height_scale = scale;
float width_scale = scale;
if (out_width > 0 && out_height > 0) {
height_scale = static_cast<float>(out_height / X->dims()[2]);
width_scale = static_cast<float>(out_width / X->dims()[3]);
}
if (OutSize != nullptr) {
auto OutSize_data = OutSize->data<int>();
int h_out = OutSize_data[0]; // HW
int w_out = OutSize_data[1]; // HW
int num_cout = Out->dims()[0];
int c_cout = Out->dims()[1];
Out->Resize({num_cout, c_cout, h_out, w_out});
}
int num_cout = X->dims()[0];
int c_cout = X->dims()[1];
Out->Resize({num_cout, c_cout, out_height, out_width});
float* dout = Out->mutable_data<float>();
const float* din = X->data<float>();
int out_num = Out->dims()[0];
int out_c = Out->dims()[1];
int count = out_num * out_c;
int in_h = X->dims()[2];
int in_w = X->dims()[3];
int out_h = Out->dims()[2];
int out_w = Out->dims()[3];
int spatial_in = in_h * in_w;
......
......@@ -44,11 +44,12 @@ void nearest_interp(const float* src,
void interpolate(lite::Tensor* X,
lite::Tensor* OutSize,
std::vector<const lite::Tensor*> SizeTensor,
lite::Tensor* Scale,
lite::Tensor* Out,
int out_height,
int out_width,
float height_scale,
float width_scale,
float scale,
bool with_align,
std::string interpolate_type);
......
......@@ -28,6 +28,8 @@ void BilinearInterpCompute::Run() {
auto& param = Param<operators::InterpolateParam>();
lite::Tensor* X = param.X;
lite::Tensor* OutSize = param.OutSize;
auto SizeTensor = param.SizeTensor;
auto Scale = param.Scale;
lite::Tensor* Out = param.Out;
float scale = param.scale;
int out_w = param.out_w;
......@@ -36,11 +38,12 @@ void BilinearInterpCompute::Run() {
std::string interp_method = "Bilinear";
lite::arm::math::interpolate(X,
OutSize,
SizeTensor,
Scale,
Out,
out_h,
out_w,
scale,
scale,
align_corners,
interp_method);
}
......@@ -49,6 +52,8 @@ void NearestInterpCompute::Run() {
auto& param = Param<operators::InterpolateParam>();
lite::Tensor* X = param.X;
lite::Tensor* OutSize = param.OutSize;
auto SizeTensor = param.SizeTensor;
auto Scale = param.Scale;
lite::Tensor* Out = param.Out;
float scale = param.scale;
int out_w = param.out_w;
......@@ -57,11 +62,12 @@ void NearestInterpCompute::Run() {
std::string interp_method = "Nearest";
lite::arm::math::interpolate(X,
OutSize,
SizeTensor,
Scale,
Out,
out_h,
out_w,
scale,
scale,
align_corners,
interp_method);
}
......@@ -79,6 +85,8 @@ REGISTER_LITE_KERNEL(bilinear_interp,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
.BindInput("OutSize", {LiteType::GetTensorTy(TARGET(kARM))})
.BindInput("SizeTensor", {LiteType::GetTensorTy(TARGET(kARM))})
.BindInput("Scale", {LiteType::GetTensorTy(TARGET(kARM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
.Finalize();
......@@ -90,5 +98,7 @@ REGISTER_LITE_KERNEL(nearest_interp,
def)
.BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
.BindInput("OutSize", {LiteType::GetTensorTy(TARGET(kARM))})
.BindInput("SizeTensor", {LiteType::GetTensorTy(TARGET(kARM))})
.BindInput("Scale", {LiteType::GetTensorTy(TARGET(kARM))})
.BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
.Finalize();
......@@ -11,6 +11,7 @@ limitations under the License. */
#pragma once
#include <vector>
#include "lite/backends/cuda/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/bilinear_interp_compute.h"
......@@ -20,6 +21,43 @@ namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
inline std::vector<int> get_new_shape(
std::vector<const lite::Tensor*> list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
lite::Tensor temp;
auto temp_data = temp.mutable_data<int32_t>();
auto tensor_data = tensor->data<int32_t>(TARGET(kCUDA));
cudaMemcpy(temp_data,
tensor_data,
tensor->dims().production() * sizeof(float),
cudaMemcpyDeviceToHost);
vec_new_shape.push_back(static_cast<int32_t>(*temp_data));
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>(kCUDA);
lite::Tensor cpu_starts_tensor;
auto cpu_starts_tensor_data = cpu_starts_tensor.mutable_data<T>();
cudaMemcpy(cpu_starts_tensor_data,
new_data,
new_data_tensor->dims().production() * sizeof(T),
cudaMemcpyDeviceToHost);
auto new_data_ = cpu_starts_tensor.data<T>();
vec_new_data = std::vector<T>(
new_data_, new_data_ + new_data_tensor->dims().production());
return vec_new_data;
}
template <typename T>
__global__ void BilinearInterp(const T* in,
const size_t in_img_h,
......@@ -103,19 +141,34 @@ void BilinearInterpCompute::Run() {
int out_w = param.out_w;
float scale = param.scale;
bool align_corners = param.align_corners;
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto align_mode = param.align_mode;
auto list_new_shape_tensor = param.SizeTensor;
if (list_new_shape_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape(list_new_shape_tensor);
out_h = new_size[0];
out_w = new_size[1];
} else {
auto scale_tensor = param.Scale;
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
}
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
if (out_size != nullptr) {
Tensor sizes;
float* size_data = sizes.mutable_data<float>();
float* outsize_data = out_size->mutable_data<float>(TARGET(kCUDA));
cudaMemcpy(
size_data, outsize_data, sizeof(float) * 2, cudaMemcpyDeviceToHost);
out_h = static_cast<int>(size_data[0]);
out_w = static_cast<int>(size_data[1]);
if (out_size != nullptr) {
lite::Tensor sizes;
float* size_data = sizes.mutable_data<float>();
float* outsize_data = out_size->mutable_data<float>(TARGET(kCUDA));
cudaMemcpy(
size_data, outsize_data, sizeof(float) * 2, cudaMemcpyDeviceToHost);
out_h = static_cast<int>(size_data[0]);
out_w = static_cast<int>(size_data[1]);
}
}
auto output_data = output->mutable_data<float>(TARGET(kCUDA));
......@@ -188,6 +241,14 @@ REGISTER_LITE_KERNEL(bilinear_interp,
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindInput("SizeTensor",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindInput("Scale",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
......
......@@ -16,6 +16,7 @@
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
namespace paddle {
namespace lite {
......@@ -98,6 +99,110 @@ TEST(bilinear_interp, normal) {
}
}
TEST(bilinear_interp, update) {
BilinearInterpCompute bilinear_interp_kernel;
std::unique_ptr<KernelContext> ctx(new KernelContext);
auto& context = ctx->As<CUDAContext>();
operators::InterpolateParam param;
std::vector<Tensor *> size_tensor(2), size_tensor_cpu(2), size_tensor_ref(2);
Tensor x, input_scale, osz, out;
Tensor x_cpu, input_scale_cpu, osz_cpu, out_cpu;
Tensor x_ref, size_tensor_ref, input_scale_ref, osz_ref, out_ref;
int n = 1, c = 1, in_h = 3, in_w = 3;
int out_h = 6, out_w = 6;
float scale = 2.0;
param.out_h = out_h;
param.out_w = out_w;
param.scale = scale;
param.align_corners = false;
param.align_mode = 0;
x.Resize({n, c, in_h, in_w});
size_tensor[0]->Resize({1});
size_tensor[1]->Resize({1});
input_scale.Resize({1});
osz.Resize({2});
out.Resize({n, c, out_h, out_w});
x_cpu.Resize({n, c, in_h, in_w});
size_tensor_cpu[0]->Resize({1});
size_tensor_cpu[1]->Resize({1});
input_scale_cpu.Resize({1});
osz_cpu.Resize({2});
out_cpu.Resize({n, c, out_h, out_w});
x_ref.Resize({n, c, in_h, in_w});
size_tensor_ref[0]->Resize({1});
size_tensor_ref[1]->Resize({1});
input_scale_ref.Resize({1});
osz_ref.Resize({2});
out_ref.Resize({n, c, out_h, out_w});
auto* out_data = out.mutable_data<float>(TARGET(kCUDA));
float* x_cpu_data = x_cpu.mutable_data<float>();
float* size_tensor0_cpu_data = size_tensor_cpu[0]->mutable_data<float>();
float* size_tensor1_cpu_data = size_tensor_cpu[1]->mutable_data<float>();
float* input_scale_cpu_data = input_scale_cpu.mutable_data<float>();
float* osz_cpu_data = osz_cpu.mutable_data<float>();
float* out_cpu_data = out_cpu.mutable_data<float>();
float* x_ref_data = x_ref.mutable_data<float>();
float* size_tensor0_ref_data = size_tensor_ref[0]->mutable_data<float>();
float* size_tensor1_ref_data = size_tensor_ref[1]->mutable_data<float>();
float* input_scale_ref_data = input_scale_ref.mutable_data<float>();
float* osz_ref_data = osz_ref.mutable_data<float>();
for (int i = 0; i < x_cpu.numel(); ++i) {
x_cpu_data[i] = i + 5.0;
x_ref_data[i] = i + 5.0;
}
osz_cpu_data[0] = out_h;
osz_cpu_data[1] = out_w;
size_tensor0_cpu_data[0] = out_h;
size_tensor1_cpu_data[0] = out_w;
input_scale_cpu_data[0] = scale;
osz_ref_data[0] = out_h;
osz_ref_data[1] = out_w;
size_tensor0_ref_data[0] = out_h;
size_tensor1_ref_data[0] = out_w;
input_scale_ref_data[0] = scale;
x.Assign<float, lite::DDim, TARGET(kCUDA)>(x_cpu_data, x_cpu.dims());
size_tensor[0]->Assign<float, lite::DDim, TARGET(kCUDA)>(
size_tensor0_cpu_data, {1});
size_tensor[1]->Assign<float, lite::DDim, TARGET(kCUDA)>(
size_tensor1_cpu_data, {1});
input_scale.Assign<float, lite::DDim, TARGET(kCUDA)>(input_scale_cpu_data,
{1});
osz.Assign<float, lite::DDim, TARGET(kCUDA)>(osz_cpu_data, osz_cpu.dims());
param.X = &x;
param.SizeTensor = size_tensor;
param.Scale = &input_scale;
param.OutSize = &osz;
param.Out = &out;
bilinear_interp_kernel.SetParam(param);
cudaStream_t stream;
cudaStreamCreate(&stream);
context.SetExecStream(stream);
bilinear_interp_kernel.SetContext(std::move(ctx));
bilinear_interp_kernel.Launch();
cudaDeviceSynchronize();
CopySync<TARGET(kCUDA)>(
out_cpu_data, out_data, sizeof(float) * out.numel(), IoDirection::DtoH);
for (int i = 0; i < out.numel(); i++) {
LOG(INFO) << out_cpu_data[i];
}
}
} // namespace cuda
} // namespace kernels
} // namespace lite
......
......@@ -11,6 +11,7 @@ limitations under the License. */
#pragma once
#include <vector>
#include "lite/backends/cuda/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/nearest_interp_compute.h"
......@@ -20,6 +21,43 @@ namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
inline std::vector<int> get_new_shape(
std::vector<const lite::Tensor*> list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
lite::Tensor temp;
auto temp_data = temp.mutable_data<int32_t>();
auto tensor_data = tensor->data<int32_t>(TARGET(kCUDA));
cudaMemcpy(temp_data,
tensor_data,
tensor->dims().production() * sizeof(float),
cudaMemcpyDeviceToHost);
vec_new_shape.push_back(static_cast<int32_t>(*temp_data));
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>(kCUDA);
lite::Tensor cpu_starts_tensor;
auto cpu_starts_tensor_data = cpu_starts_tensor.mutable_data<T>();
cudaMemcpy(cpu_starts_tensor_data,
new_data,
new_data_tensor->dims().production() * sizeof(T),
cudaMemcpyDeviceToHost);
auto new_data_ = cpu_starts_tensor.data<T>();
vec_new_data = std::vector<T>(
new_data_, new_data_ + new_data_tensor->dims().production());
return vec_new_data;
}
__global__ void KeNearestNeighborInterp(const float* in,
const size_t in_img_h,
const size_t in_img_w,
......@@ -79,19 +117,34 @@ void NearestInterpCompute::Run() {
int out_w = param.out_w;
float scale = param.scale;
bool align_corners = param.align_corners;
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
if (out_size != nullptr) {
Tensor sizes;
float* size_data = sizes.mutable_data<float>();
float* outsize_data = out_size->mutable_data<float>(TARGET(kCUDA));
cudaMemcpy(
size_data, outsize_data, sizeof(float) * 2, cudaMemcpyDeviceToHost);
out_h = static_cast<int>(size_data[0]);
out_w = static_cast<int>(size_data[1]);
auto align_mode = param.align_mode;
auto list_new_shape_tensor = param.SizeTensor;
if (list_new_shape_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape(list_new_shape_tensor);
out_h = new_size[0];
out_w = new_size[1];
} else {
auto scale_tensor = param.Scale;
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
}
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
if (out_size != nullptr) {
lite::Tensor sizes;
float* size_data = sizes.mutable_data<float>();
float* outsize_data = out_size->mutable_data<float>(TARGET(kCUDA));
cudaMemcpy(
size_data, outsize_data, sizeof(float) * 2, cudaMemcpyDeviceToHost);
out_h = static_cast<int>(size_data[0]);
out_w = static_cast<int>(size_data[1]);
}
}
auto output_data = output->mutable_data<float>(TARGET(kCUDA));
......@@ -162,6 +215,14 @@ REGISTER_LITE_KERNEL(nearest_interp,
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindInput("SizeTensor",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindInput("Scale",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
DATALAYOUT(kNCHW))})
.BindOutput("Out",
{LiteType::GetTensorTy(TARGET(kCUDA),
PRECISION(kFloat),
......
......@@ -16,6 +16,7 @@
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
namespace paddle {
namespace lite {
......@@ -143,6 +144,110 @@ TEST(nearest_interp, normal) {
}
}
TEST(nearest_interp, update) {
NearestInterpCompute nearest_interp_kernel;
std::unique_ptr<KernelContext> ctx(new KernelContext);
auto& context = ctx->As<CUDAContext>();
operators::InterpolateParam param;
std::vector<Tensor *> size_tensor(2), size_tensor_cpu(2), size_tensor_ref(2);
Tensor x, input_scale, osz, out;
Tensor x_cpu, input_scale_cpu, osz_cpu, out_cpu;
Tensor x_ref, size_tensor_ref, input_scale_ref, osz_ref, out_ref;
int n = 1, c = 3, in_h = 40, in_w = 40;
int out_h = 80, out_w = 80;
float scale = 2.0;
param.out_h = out_h;
param.out_w = out_w;
param.scale = scale;
param.align_corners = false;
param.align_mode = 0;
x.Resize({n, c, in_h, in_w});
size_tensor[0]->Resize({1});
size_tensor[1]->Resize({1});
input_scale.Resize({1});
osz.Resize({2});
out.Resize({n, c, out_h, out_w});
x_cpu.Resize({n, c, in_h, in_w});
size_tensor_cpu[0]->Resize({1});
size_tensor_cpu[1]->Resize({1});
input_scale_cpu.Resize({1});
osz_cpu.Resize({2});
out_cpu.Resize({n, c, out_h, out_w});
x_ref.Resize({n, c, in_h, in_w});
size_tensor_ref[0]->Resize({1});
size_tensor_ref[1]->Resize({1});
input_scale_ref.Resize({1});
osz_ref.Resize({2});
out_ref.Resize({n, c, out_h, out_w});
auto* out_data = out.mutable_data<float>(TARGET(kCUDA));
float* x_cpu_data = x_cpu.mutable_data<float>();
float* size_tensor0_cpu_data = size_tensor_cpu[0]->mutable_data<float>();
float* size_tensor1_cpu_data = size_tensor_cpu[1]->mutable_data<float>();
float* input_scale_cpu_data = input_scale_cpu.mutable_data<float>();
float* osz_cpu_data = osz_cpu.mutable_data<float>();
float* out_cpu_data = out_cpu.mutable_data<float>();
float* x_ref_data = x_ref.mutable_data<float>();
float* size_tensor0_ref_data = size_tensor_ref[0]->mutable_data<float>();
float* size_tensor1_ref_data = size_tensor_ref[1]->mutable_data<float>();
float* input_scale_ref_data = input_scale_ref.mutable_data<float>();
float* osz_ref_data = osz_ref.mutable_data<float>();
for (int i = 0; i < x_cpu.numel(); ++i) {
x_cpu_data[i] = i + 5.0;
x_ref_data[i] = i + 5.0;
}
osz_cpu_data[0] = out_h;
osz_cpu_data[1] = out_w;
size_tensor0_cpu_data[0] = out_h;
size_tensor1_cpu_data[0] = out_w;
input_scale_cpu_data[0] = scale;
osz_ref_data[0] = out_h;
osz_ref_data[1] = out_w;
size_tensor0_ref_data[0] = out_h;
size_tensor1_ref_data[0] = out_w;
input_scale_ref_data[0] = scale;
x.Assign<float, lite::DDim, TARGET(kCUDA)>(x_cpu_data, x_cpu.dims());
size_tensor[0]->Assign<float, lite::DDim, TARGET(kCUDA)>(
size_tensor0_cpu_data, {1});
size_tensor[1]->Assign<float, lite::DDim, TARGET(kCUDA)>(
size_tensor1_cpu_data, {1});
input_scale.Assign<float, lite::DDim, TARGET(kCUDA)>(input_scale_cpu_data,
{1});
osz.Assign<float, lite::DDim, TARGET(kCUDA)>(osz_cpu_data, osz_cpu.dims());
param.X = &x;
param.SizeTensor = size_tensor;
param.Scale = &input_scale;
param.OutSize = &osz;
param.Out = &out;
nearest_interp_kernel.SetParam(param);
cudaStream_t stream;
cudaStreamCreate(&stream);
context.SetExecStream(stream);
nearest_interp_kernel.SetContext(std::move(ctx));
nearest_interp_kernel.Launch();
cudaDeviceSynchronize();
CopySync<TARGET(kCUDA)>(
out_cpu_data, out_data, sizeof(float) * out.numel(), IoDirection::DtoH);
for (int i = 0; i < out.numel(); i++) {
LOG(INFO) << out_cpu_data[i];
}
}
} // namespace cuda
} // namespace kernels
} // namespace lite
......
......@@ -45,23 +45,42 @@ bool InterpolateOp::InferShape() const {
int out_h;
int out_w;
if (OutSize != nullptr) {
auto outsize_data = OutSize->data<int>();
int h_out = outsize_data[0]; // HW
int w_out = outsize_data[1]; // HW
param_.Out->Resize({n, c, h_out, w_out});
auto SizeTensor = param_.SizeTensor;
if (!SizeTensor.empty()) {
CHECK(SizeTensor.size() == 2)
<< "Input(SizeTensor)'size of Op(interpolate) must be 2. "
"Attr(out_shape)'s length must be 2 for 4-D input tensor.";
out_h = param_.out_h;
out_w = param_.out_w;
param_.Out->Resize({n, c, out_h, out_w});
return true;
}
auto Scale = param_.Scale;
if (Scale) {
auto scale_dims = Scale->dims();
CHECK(scale_dims.size() == 1) << "Scale's dimension size must be 1.";
out_h = -1;
out_w = -1;
} else {
if (0 >= param_.out_h && 0 >= param_.out_w) {
out_h = h * param_.scale;
out_w = w * param_.scale;
auto scale = param_.scale;
if (scale > 0) {
out_h = static_cast<int>(h * scale);
out_w = static_cast<int>(w * scale);
out_h = out_h > 0 ? out_h : -1;
out_w = out_w > 0 ? out_w : -1;
} else {
out_h = param_.out_h;
out_w = param_.out_w;
}
param_.Out->Resize({n, c, out_h, out_w});
}
if (OutSize != nullptr) {
auto out_lod = param_.Out->mutable_lod();
*out_lod = param_.X->lod();
}
param_.Out->Resize({n, c, out_h, out_w});
return true;
}
......@@ -76,6 +95,24 @@ bool InterpolateOp::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
} else {
param_.OutSize = nullptr;
}
if (op_desc.HasInput("SizeTensor")) {
auto size_tensor = op_desc.Input("SizeTensor");
for (auto var : size_tensor) {
param_.SizeTensor.push_back(
scope->FindVar(var)->GetMutable<lite::Tensor>());
}
}
if (op_desc.HasInput("Scale")) {
auto scale_var_names = op_desc.Input("Scale");
if (scale_var_names.size() > 0) {
param_.Scale =
scope->FindVar(scale_var_names.front())->GetMutable<lite::Tensor>();
}
} else {
param_.Scale = nullptr;
}
auto Out = op_desc.Output("Out").front();
param_.X = scope->FindVar(X)->GetMutable<lite::Tensor>();
param_.Out = scope->FindVar(Out)->GetMutable<lite::Tensor>();
......
......@@ -94,6 +94,8 @@ struct InterpolateParam {
lite::Tensor* X{};
lite::Tensor* OutSize{};
lite::Tensor* Out{};
std::vector<const lite::Tensor*> SizeTensor;
lite::Tensor* Scale;
float scale{0.f};
int out_h{-1};
......@@ -101,6 +103,7 @@ struct InterpolateParam {
bool align_corners{true};
int align_mode{1};
std::string interp_method{"Nearest"};
DataLayoutType data_layout{DATALAYOUT(kNCHW)};
};
// For Mul Op
......
......@@ -22,6 +22,27 @@
namespace paddle {
namespace lite {
inline std::vector<int> get_new_shape(
std::vector<const lite::Tensor*> list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
vec_new_shape.push_back(static_cast<int32_t>(*(tensor->data<int32_t>())));
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>();
lite::Tensor cpu_starts_tensor;
vec_new_data =
std::vector<T>(new_data, new_data + new_data_tensor->dims().production());
return vec_new_data;
}
template <typename dtype>
void resize_bilinear_align(std::vector<const lite::Tensor*> inputs,
lite::Tensor* output) {
......@@ -149,6 +170,9 @@ class BilinearInterpComputeTester : public arena::TestCase {
protected:
// common attributes for this op.
std::string input0_ = "X";
std::string sizetensor0_ = "SizeTensor0";
std::string sizetensor1_ = "SizeTensor1";
std::string input_scale_ = "Scale";
std::string input1_ = "OutSize";
std::string output_ = "Out";
......@@ -162,6 +186,8 @@ class BilinearInterpComputeTester : public arena::TestCase {
std::string interp_method_ = "Bilinear";
DDim _dims0_{{1, 1, 16, 16}};
DDim _dims1_{{2}};
DDim sizetensor_dims_{{1}};
DDim scale_dims_{{1}};
public:
BilinearInterpComputeTester(const Place& place,
......@@ -190,33 +216,48 @@ class BilinearInterpComputeTester : public arena::TestCase {
if (outsize_height_ > 0 && outsize_width_ > 0) {
inputs.emplace_back(scope->FindTensor(input1_));
}
std::vector<const lite::Tensor*> SizeTensor;
if (outsize_height_ > 0 && outsize_width_ > 0) {
SizeTensor.emplace_back(scope->FindTensor(sizetensor0_));
SizeTensor.emplace_back(scope->FindTensor(sizetensor1_));
}
const lite::Tensor* input_scale = scope->FindTensor(input_scale_);
float scale = height_scale_;
int in_h = inputs[0]->dims()[2];
int in_w = inputs[0]->dims()[3];
if (SizeTensor.size() > 0) {
auto new_size = get_new_shape(SizeTensor);
out_height_ = new_size[0];
out_width_ = new_size[1];
} else {
auto scale_tensor = input_scale;
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
}
if (scale > 0) {
out_height_ = static_cast<int>(in_h * scale);
out_width_ = static_cast<int>(in_w * scale);
}
if (inputs.size() > 1) {
auto out_size = inputs[1];
auto out_size_data = get_new_data_from_tensor<int>(out_size);
out_height_ = out_size_data[0];
out_width_ = out_size_data[1];
}
}
height_scale_ = scale;
width_scale_ = scale;
if (out_width_ != -1 && out_height_ != -1) {
height_scale_ = static_cast<float>(out_height_ / inputs[0]->dims()[2]);
width_scale_ = static_cast<float>(out_width_ / inputs[0]->dims()[3]);
}
auto* outputs = scope->NewTensor(output_);
CHECK(outputs);
if (inputs.size() > 1) {
auto outsize_data = inputs[1]->data<int>();
int h_out = outsize_data[0]; // HW
int w_out = outsize_data[1]; // HW
int num_cout = inputs[0]->dims()[0];
int c_cout = inputs[0]->dims()[1];
outputs->Resize({num_cout, c_cout, h_out, w_out});
} else {
int out_h;
int out_w;
if (-1 == out_height_ && -1 == out_width_) {
out_h = inputs[0]->dims()[2] * height_scale_;
out_w = inputs[0]->dims()[3] * width_scale_;
} else {
out_h = out_height_;
out_w = out_width_;
}
outputs->Resize(
{inputs[0]->dims()[0], inputs[0]->dims()[1], out_h, out_w});
}
int num_cout = inputs[0]->dims()[0];
int c_cout = inputs[0]->dims()[1];
outputs->Resize({num_cout, c_cout, out_height_, out_width_});
if (align_corners_) {
resize_bilinear_align<float>(inputs, outputs);
} else {
......@@ -229,6 +270,10 @@ class BilinearInterpComputeTester : public arena::TestCase {
op_desc->SetInput("X", {input0_});
if (outsize_height_ > 0 && outsize_width_ > 0) {
op_desc->SetInput("OutSize", {input1_});
op_desc->SetInput("SizeTensor", {sizetensor0_, sizetensor1_});
}
if (height_scale_ > 0) {
op_desc->SetInput("Scale", {input_scale_});
}
op_desc->SetOutput("Out", {output_});
op_desc->SetAttr("scale", height_scale_);
......@@ -250,6 +295,19 @@ class BilinearInterpComputeTester : public arena::TestCase {
data1[0] = outsize_height_;
data1[1] = outsize_width_;
SetCommonTensor(input1_, _dims1_, data1.data());
std::vector<int> sizetensor_data(1);
sizetensor_data[0] = outsize_height_;
SetCommonTensor(sizetensor0_, sizetensor_dims_, sizetensor_data.data());
sizetensor_data[0] = outsize_width_;
SetCommonTensor(sizetensor1_, sizetensor_dims_, sizetensor_data.data());
}
if (height_scale_ > 0) {
std::vector<float> scale_data(1);
scale_data[0] = height_scale_;
SetCommonTensor(input_scale_, scale_dims_, scale_data.data());
}
}
};
......
......@@ -22,6 +22,28 @@
namespace paddle {
namespace lite {
inline std::vector<int> get_new_shape(
const std::vector<const lite::Tensor*>& list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>();
lite::Tensor cpu_starts_tensor;
vec_new_data =
std::vector<T>(new_data, new_data + new_data_tensor->dims().production());
return vec_new_data;
}
template <typename dtype>
void resize_nearest_align(std::vector<const lite::Tensor*> inputs,
lite::Tensor* output,
......@@ -73,6 +95,9 @@ class NearestInterpComputeTester : public arena::TestCase {
protected:
// common attributes for this op.
std::string input0_ = "X";
std::string sizetensor0_ = "SizeTensor0";
std::string sizetensor1_ = "SizeTensor1";
std::string input_scale_ = "Scale";
std::string input1_ = "OutSize";
std::string output_ = "Out";
......@@ -85,6 +110,8 @@ class NearestInterpComputeTester : public arena::TestCase {
DDim dims_{{2, 3}};
DDim _dims0_{{2, 3, 3, 2}};
DDim _dims1_{{2}};
DDim sizetensor_dims_{{1}};
DDim scale_dims_{{1}};
public:
NearestInterpComputeTester(const Place& place,
......@@ -112,24 +139,54 @@ class NearestInterpComputeTester : public arena::TestCase {
inputs.emplace_back(scope->FindTensor(input0_));
inputs.emplace_back(scope->FindTensor(input1_));
auto outsize_data = inputs[1]->data<int>();
std::vector<const lite::Tensor*> SizeTensor(2);
SizeTensor[0] = scope->FindTensor(sizetensor0_);
SizeTensor[1] = scope->FindTensor(sizetensor1_);
const lite::Tensor* input_scale = scope->FindTensor(input_scale_);
float scale = height_scale_;
int in_h = inputs[0]->dims()[2];
int in_w = inputs[0]->dims()[3];
if (SizeTensor.size() > 0) {
auto new_size = get_new_shape(SizeTensor);
out_height_ = new_size[0];
out_width_ = new_size[1];
} else {
auto scale_tensor = input_scale;
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
scale = scale_data[0];
}
if (scale > 0) {
out_height_ = static_cast<int>(in_h * scale);
out_width_ = static_cast<int>(in_w * scale);
}
auto out_size = inputs[1];
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor<int>(out_size);
out_height_ = out_size_data[0];
out_width_ = out_size_data[1];
}
}
height_scale_ = scale;
width_scale_ = scale;
if (out_width_ != -1 && out_height_ != -1) {
height_scale_ = static_cast<float>(out_height_ / inputs[0]->dims()[2]);
width_scale_ = static_cast<float>(out_width_ / inputs[0]->dims()[3]);
}
if (inputs.size() > 1) {
int h_out = outsize_data[0]; // HW
int w_out = outsize_data[1]; // HW
int num_cout = outputs->dims()[0];
int c_cout = outputs->dims()[1];
outputs->Resize({num_cout, c_cout, h_out, w_out});
}
int num_cout = inputs[0]->dims()[0];
int c_cout = inputs[0]->dims()[1];
outputs->Resize({num_cout, c_cout, out_height_, out_width_});
resize_nearest_align<float>(inputs, outputs, align_corners_);
}
void PrepareOpDesc(cpp::OpDesc* op_desc) {
op_desc->SetType("nearest_interp");
op_desc->SetInput("X", {input0_});
op_desc->SetInput("SizeTensor", {sizetensor0_, sizetensor1_});
op_desc->SetInput("Scale", {input_scale_});
op_desc->SetInput("OutSize", {input1_});
op_desc->SetOutput("Out", {output_});
op_desc->SetAttr("scale", height_scale_);
......@@ -152,6 +209,17 @@ class NearestInterpComputeTester : public arena::TestCase {
SetCommonTensor(input0_, _dims0_, data0.data());
SetCommonTensor(input1_, _dims1_, data1.data());
std::vector<int> sizetensor_data(1);
sizetensor_data[0] = out_height_;
SetCommonTensor(sizetensor0_, sizetensor_dims_, sizetensor_data.data());
sizetensor_data[0] = out_width_;
SetCommonTensor(sizetensor1_, sizetensor_dims_, sizetensor_data.data());
std::vector<float> scale_data(1);
scale_data[0] = height_scale_;
SetCommonTensor(input_scale_, scale_dims_, scale_data.data());
}
};
......
......@@ -12,12 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
// TODO(zhengxi)
// shuffle_channel_test can pass on local compilation
// while on ci compilation, the test will be killed immediately.
/*
#include <gtest/gtest.h>
// TODO(FrostML): shaffle_channel cannot pass on CI, but ok in local machine.
// Open this.
/*#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
......@@ -30,8 +27,8 @@ class ShuffleChannelComputeTester : public arena::TestCase {
// common attributes for this op.
std::string input_ = "X";
std::string output_ = "Out";
int group_ = 1;
DDim dims_{{1, 2}};
int group_ = 4;
DDim dims_{{10, 16, 4, 4}};
public:
ShuffleChannelComputeTester(const Place& place,
......@@ -87,7 +84,7 @@ class ShuffleChannelComputeTester : public arena::TestCase {
};
void test_shuffle_channel(Place place) {
for (int group : {1, 2, 3}) {
for (int group : {4}) {
std::unique_ptr<arena::TestCase> tester(
new ShuffleChannelComputeTester(place, "def", group));
arena::Arena arena(std::move(tester), place, 2e-5);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册