Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
518a87ef
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
338
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
518a87ef
编写于
11月 13, 2019
作者:
L
liu zhengxi
提交者:
GitHub
11月 13, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update the ops to fluid (#2406)
align the lite nearest, bilinear op to fluid on arm and cuda
上级
f4e06650
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
635 addition
and
88 deletion
+635
-88
lite/backends/arm/math/interpolate.cc
lite/backends/arm/math/interpolate.cc
+53
-12
lite/backends/arm/math/interpolate.h
lite/backends/arm/math/interpolate.h
+3
-2
lite/kernels/arm/interpolate_compute.cc
lite/kernels/arm/interpolate_compute.cc
+12
-2
lite/kernels/cuda/bilinear_interp_compute.cu
lite/kernels/cuda/bilinear_interp_compute.cu
+73
-12
lite/kernels/cuda/bilinear_interp_compute_test.cc
lite/kernels/cuda/bilinear_interp_compute_test.cc
+105
-0
lite/kernels/cuda/nearest_interp_compute.cu
lite/kernels/cuda/nearest_interp_compute.cu
+74
-13
lite/kernels/cuda/nearest_interp_compute_test.cc
lite/kernels/cuda/nearest_interp_compute_test.cc
+105
-0
lite/operators/interpolate_op.cc
lite/operators/interpolate_op.cc
+46
-9
lite/operators/op_params.h
lite/operators/op_params.h
+3
-0
lite/tests/kernels/bilinear_interp_compute_test.cc
lite/tests/kernels/bilinear_interp_compute_test.cc
+79
-21
lite/tests/kernels/nearest_interp_compute_test.cc
lite/tests/kernels/nearest_interp_compute_test.cc
+76
-8
lite/tests/kernels/shuffle_channel_compute_test.cc
lite/tests/kernels/shuffle_channel_compute_test.cc
+6
-9
未找到文件。
lite/backends/arm/math/interpolate.cc
浏览文件 @
518a87ef
...
@@ -22,6 +22,28 @@ namespace lite {
...
@@ -22,6 +22,28 @@ namespace lite {
namespace
arm
{
namespace
arm
{
namespace
math
{
namespace
math
{
inline
std
::
vector
<
int
>
get_new_shape
(
std
::
vector
<
const
lite
::
Tensor
*>
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
();
lite
::
Tensor
cpu_starts_tensor
;
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
// The following function bilinear_interp is partially base on
// The following function bilinear_interp is partially base on
// https://github.com/Tencent/ncnn/blob/master/src/layer/arm/interp_arm.cpp
// https://github.com/Tencent/ncnn/blob/master/src/layer/arm/interp_arm.cpp
// Tencent is pleased to support the open source community by making ncnn
// Tencent is pleased to support the open source community by making ncnn
...
@@ -472,33 +494,52 @@ void nearest_interp(const float* src,
...
@@ -472,33 +494,52 @@ void nearest_interp(const float* src,
void
interpolate
(
lite
::
Tensor
*
X
,
void
interpolate
(
lite
::
Tensor
*
X
,
lite
::
Tensor
*
OutSize
,
lite
::
Tensor
*
OutSize
,
std
::
vector
<
const
lite
::
Tensor
*>
SizeTensor
,
lite
::
Tensor
*
Scale
,
lite
::
Tensor
*
Out
,
lite
::
Tensor
*
Out
,
int
out_height
,
int
out_height
,
int
out_width
,
int
out_width
,
float
height_scale
,
float
scale
,
float
width_scale
,
bool
with_align
,
bool
with_align
,
std
::
string
interpolate_type
)
{
std
::
string
interpolate_type
)
{
int
in_h
=
X
->
dims
()[
2
];
int
in_w
=
X
->
dims
()[
3
];
if
(
SizeTensor
.
size
()
>
0
)
{
auto
new_size
=
get_new_shape
(
SizeTensor
);
out_height
=
new_size
[
0
];
out_width
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
Scale
;
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_height
=
static_cast
<
int
>
(
in_h
*
scale
);
out_width
=
static_cast
<
int
>
(
in_w
*
scale
);
}
auto
out_size
=
OutSize
;
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
get_new_data_from_tensor
<
float
>
(
out_size
);
out_height
=
static_cast
<
int
>
(
out_size_data
[
0
]);
out_width
=
static_cast
<
int
>
(
out_size_data
[
1
]);
}
}
float
height_scale
=
scale
;
float
width_scale
=
scale
;
if
(
out_width
>
0
&&
out_height
>
0
)
{
if
(
out_width
>
0
&&
out_height
>
0
)
{
height_scale
=
static_cast
<
float
>
(
out_height
/
X
->
dims
()[
2
]);
height_scale
=
static_cast
<
float
>
(
out_height
/
X
->
dims
()[
2
]);
width_scale
=
static_cast
<
float
>
(
out_width
/
X
->
dims
()[
3
]);
width_scale
=
static_cast
<
float
>
(
out_width
/
X
->
dims
()[
3
]);
}
}
if
(
OutSize
!=
nullptr
)
{
int
num_cout
=
X
->
dims
()[
0
];
auto
OutSize_data
=
OutSize
->
data
<
int
>
();
int
c_cout
=
X
->
dims
()[
1
];
int
h_out
=
OutSize_data
[
0
];
// HW
Out
->
Resize
({
num_cout
,
c_cout
,
out_height
,
out_width
});
int
w_out
=
OutSize_data
[
1
];
// HW
int
num_cout
=
Out
->
dims
()[
0
];
int
c_cout
=
Out
->
dims
()[
1
];
Out
->
Resize
({
num_cout
,
c_cout
,
h_out
,
w_out
});
}
float
*
dout
=
Out
->
mutable_data
<
float
>
();
float
*
dout
=
Out
->
mutable_data
<
float
>
();
const
float
*
din
=
X
->
data
<
float
>
();
const
float
*
din
=
X
->
data
<
float
>
();
int
out_num
=
Out
->
dims
()[
0
];
int
out_num
=
Out
->
dims
()[
0
];
int
out_c
=
Out
->
dims
()[
1
];
int
out_c
=
Out
->
dims
()[
1
];
int
count
=
out_num
*
out_c
;
int
count
=
out_num
*
out_c
;
int
in_h
=
X
->
dims
()[
2
];
int
in_w
=
X
->
dims
()[
3
];
int
out_h
=
Out
->
dims
()[
2
];
int
out_h
=
Out
->
dims
()[
2
];
int
out_w
=
Out
->
dims
()[
3
];
int
out_w
=
Out
->
dims
()[
3
];
int
spatial_in
=
in_h
*
in_w
;
int
spatial_in
=
in_h
*
in_w
;
...
...
lite/backends/arm/math/interpolate.h
浏览文件 @
518a87ef
...
@@ -44,11 +44,12 @@ void nearest_interp(const float* src,
...
@@ -44,11 +44,12 @@ void nearest_interp(const float* src,
void
interpolate
(
lite
::
Tensor
*
X
,
void
interpolate
(
lite
::
Tensor
*
X
,
lite
::
Tensor
*
OutSize
,
lite
::
Tensor
*
OutSize
,
std
::
vector
<
const
lite
::
Tensor
*>
SizeTensor
,
lite
::
Tensor
*
Scale
,
lite
::
Tensor
*
Out
,
lite
::
Tensor
*
Out
,
int
out_height
,
int
out_height
,
int
out_width
,
int
out_width
,
float
height_scale
,
float
scale
,
float
width_scale
,
bool
with_align
,
bool
with_align
,
std
::
string
interpolate_type
);
std
::
string
interpolate_type
);
...
...
lite/kernels/arm/interpolate_compute.cc
浏览文件 @
518a87ef
...
@@ -28,6 +28,8 @@ void BilinearInterpCompute::Run() {
...
@@ -28,6 +28,8 @@ void BilinearInterpCompute::Run() {
auto
&
param
=
Param
<
operators
::
InterpolateParam
>
();
auto
&
param
=
Param
<
operators
::
InterpolateParam
>
();
lite
::
Tensor
*
X
=
param
.
X
;
lite
::
Tensor
*
X
=
param
.
X
;
lite
::
Tensor
*
OutSize
=
param
.
OutSize
;
lite
::
Tensor
*
OutSize
=
param
.
OutSize
;
auto
SizeTensor
=
param
.
SizeTensor
;
auto
Scale
=
param
.
Scale
;
lite
::
Tensor
*
Out
=
param
.
Out
;
lite
::
Tensor
*
Out
=
param
.
Out
;
float
scale
=
param
.
scale
;
float
scale
=
param
.
scale
;
int
out_w
=
param
.
out_w
;
int
out_w
=
param
.
out_w
;
...
@@ -36,11 +38,12 @@ void BilinearInterpCompute::Run() {
...
@@ -36,11 +38,12 @@ void BilinearInterpCompute::Run() {
std
::
string
interp_method
=
"Bilinear"
;
std
::
string
interp_method
=
"Bilinear"
;
lite
::
arm
::
math
::
interpolate
(
X
,
lite
::
arm
::
math
::
interpolate
(
X
,
OutSize
,
OutSize
,
SizeTensor
,
Scale
,
Out
,
Out
,
out_h
,
out_h
,
out_w
,
out_w
,
scale
,
scale
,
scale
,
align_corners
,
align_corners
,
interp_method
);
interp_method
);
}
}
...
@@ -49,6 +52,8 @@ void NearestInterpCompute::Run() {
...
@@ -49,6 +52,8 @@ void NearestInterpCompute::Run() {
auto
&
param
=
Param
<
operators
::
InterpolateParam
>
();
auto
&
param
=
Param
<
operators
::
InterpolateParam
>
();
lite
::
Tensor
*
X
=
param
.
X
;
lite
::
Tensor
*
X
=
param
.
X
;
lite
::
Tensor
*
OutSize
=
param
.
OutSize
;
lite
::
Tensor
*
OutSize
=
param
.
OutSize
;
auto
SizeTensor
=
param
.
SizeTensor
;
auto
Scale
=
param
.
Scale
;
lite
::
Tensor
*
Out
=
param
.
Out
;
lite
::
Tensor
*
Out
=
param
.
Out
;
float
scale
=
param
.
scale
;
float
scale
=
param
.
scale
;
int
out_w
=
param
.
out_w
;
int
out_w
=
param
.
out_w
;
...
@@ -57,11 +62,12 @@ void NearestInterpCompute::Run() {
...
@@ -57,11 +62,12 @@ void NearestInterpCompute::Run() {
std
::
string
interp_method
=
"Nearest"
;
std
::
string
interp_method
=
"Nearest"
;
lite
::
arm
::
math
::
interpolate
(
X
,
lite
::
arm
::
math
::
interpolate
(
X
,
OutSize
,
OutSize
,
SizeTensor
,
Scale
,
Out
,
Out
,
out_h
,
out_h
,
out_w
,
out_w
,
scale
,
scale
,
scale
,
align_corners
,
align_corners
,
interp_method
);
interp_method
);
}
}
...
@@ -79,6 +85,8 @@ REGISTER_LITE_KERNEL(bilinear_interp,
...
@@ -79,6 +85,8 @@ REGISTER_LITE_KERNEL(bilinear_interp,
def
)
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"SizeTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
.
Finalize
();
...
@@ -90,5 +98,7 @@ REGISTER_LITE_KERNEL(nearest_interp,
...
@@ -90,5 +98,7 @@ REGISTER_LITE_KERNEL(nearest_interp,
def
)
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"OutSize"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"SizeTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
.
Finalize
();
lite/kernels/cuda/bilinear_interp_compute.cu
浏览文件 @
518a87ef
...
@@ -11,6 +11,7 @@ limitations under the License. */
...
@@ -11,6 +11,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <vector>
#include <vector>
#include "lite/backends/cuda/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/bilinear_interp_compute.h"
#include "lite/kernels/cuda/bilinear_interp_compute.h"
...
@@ -20,6 +21,43 @@ namespace kernels {
...
@@ -20,6 +21,43 @@ namespace kernels {
namespace
cuda
{
namespace
cuda
{
using
Tensor
=
lite
::
Tensor
;
using
Tensor
=
lite
::
Tensor
;
inline
std
::
vector
<
int
>
get_new_shape
(
std
::
vector
<
const
lite
::
Tensor
*>
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
lite
::
Tensor
temp
;
auto
temp_data
=
temp
.
mutable_data
<
int32_t
>
();
auto
tensor_data
=
tensor
->
data
<
int32_t
>
(
TARGET
(
kCUDA
));
cudaMemcpy
(
temp_data
,
tensor_data
,
tensor
->
dims
().
production
()
*
sizeof
(
float
),
cudaMemcpyDeviceToHost
);
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
temp_data
));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
(
kCUDA
);
lite
::
Tensor
cpu_starts_tensor
;
auto
cpu_starts_tensor_data
=
cpu_starts_tensor
.
mutable_data
<
T
>
();
cudaMemcpy
(
cpu_starts_tensor_data
,
new_data
,
new_data_tensor
->
dims
().
production
()
*
sizeof
(
T
),
cudaMemcpyDeviceToHost
);
auto
new_data_
=
cpu_starts_tensor
.
data
<
T
>
();
vec_new_data
=
std
::
vector
<
T
>
(
new_data_
,
new_data_
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
BilinearInterp
(
const
T
*
in
,
__global__
void
BilinearInterp
(
const
T
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_h
,
...
@@ -103,19 +141,34 @@ void BilinearInterpCompute::Run() {
...
@@ -103,19 +141,34 @@ void BilinearInterpCompute::Run() {
int
out_w
=
param
.
out_w
;
int
out_w
=
param
.
out_w
;
float
scale
=
param
.
scale
;
float
scale
=
param
.
scale
;
bool
align_corners
=
param
.
align_corners
;
bool
align_corners
=
param
.
align_corners
;
if
(
scale
>
0
)
{
auto
align_mode
=
param
.
align_mode
;
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
auto
list_new_shape_tensor
=
param
.
SizeTensor
;
}
if
(
list_new_shape_tensor
.
size
()
>
0
)
{
// have size tensor
auto
new_size
=
get_new_shape
(
list_new_shape_tensor
);
out_h
=
new_size
[
0
];
out_w
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
param
.
Scale
;
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
if
(
out_size
!=
nullptr
)
{
if
(
out_size
!=
nullptr
)
{
Tensor
sizes
;
lite
::
Tensor
sizes
;
float
*
size_data
=
sizes
.
mutable_data
<
float
>
();
float
*
size_data
=
sizes
.
mutable_data
<
float
>
();
float
*
outsize_data
=
out_size
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
float
*
outsize_data
=
out_size
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
cudaMemcpy
(
cudaMemcpy
(
size_data
,
outsize_data
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
size_data
,
outsize_data
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
out_h
=
static_cast
<
int
>
(
size_data
[
0
]);
out_h
=
static_cast
<
int
>
(
size_data
[
0
]);
out_w
=
static_cast
<
int
>
(
size_data
[
1
]);
out_w
=
static_cast
<
int
>
(
size_data
[
1
]);
}
}
}
auto
output_data
=
output
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
auto
output_data
=
output
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
...
@@ -188,6 +241,14 @@ REGISTER_LITE_KERNEL(bilinear_interp,
...
@@ -188,6 +241,14 @@ REGISTER_LITE_KERNEL(bilinear_interp,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"SizeTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
PRECISION
(
kFloat
),
...
...
lite/kernels/cuda/bilinear_interp_compute_test.cc
浏览文件 @
518a87ef
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <memory>
#include <memory>
#include <utility>
#include <utility>
#include <vector>
namespace
paddle
{
namespace
paddle
{
namespace
lite
{
namespace
lite
{
...
@@ -98,6 +99,110 @@ TEST(bilinear_interp, normal) {
...
@@ -98,6 +99,110 @@ TEST(bilinear_interp, normal) {
}
}
}
}
TEST
(
bilinear_interp
,
update
)
{
BilinearInterpCompute
bilinear_interp_kernel
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
auto
&
context
=
ctx
->
As
<
CUDAContext
>
();
operators
::
InterpolateParam
param
;
std
::
vector
<
Tensor
*>
size_tensor
(
2
),
size_tensor_cpu
(
2
),
size_tensor_ref
(
2
);
Tensor
x
,
input_scale
,
osz
,
out
;
Tensor
x_cpu
,
input_scale_cpu
,
osz_cpu
,
out_cpu
;
Tensor
x_ref
,
size_tensor_ref
,
input_scale_ref
,
osz_ref
,
out_ref
;
int
n
=
1
,
c
=
1
,
in_h
=
3
,
in_w
=
3
;
int
out_h
=
6
,
out_w
=
6
;
float
scale
=
2.0
;
param
.
out_h
=
out_h
;
param
.
out_w
=
out_w
;
param
.
scale
=
scale
;
param
.
align_corners
=
false
;
param
.
align_mode
=
0
;
x
.
Resize
({
n
,
c
,
in_h
,
in_w
});
size_tensor
[
0
]
->
Resize
({
1
});
size_tensor
[
1
]
->
Resize
({
1
});
input_scale
.
Resize
({
1
});
osz
.
Resize
({
2
});
out
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_cpu
.
Resize
({
n
,
c
,
in_h
,
in_w
});
size_tensor_cpu
[
0
]
->
Resize
({
1
});
size_tensor_cpu
[
1
]
->
Resize
({
1
});
input_scale_cpu
.
Resize
({
1
});
osz_cpu
.
Resize
({
2
});
out_cpu
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_ref
.
Resize
({
n
,
c
,
in_h
,
in_w
});
size_tensor_ref
[
0
]
->
Resize
({
1
});
size_tensor_ref
[
1
]
->
Resize
({
1
});
input_scale_ref
.
Resize
({
1
});
osz_ref
.
Resize
({
2
});
out_ref
.
Resize
({
n
,
c
,
out_h
,
out_w
});
auto
*
out_data
=
out
.
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
float
*
x_cpu_data
=
x_cpu
.
mutable_data
<
float
>
();
float
*
size_tensor0_cpu_data
=
size_tensor_cpu
[
0
]
->
mutable_data
<
float
>
();
float
*
size_tensor1_cpu_data
=
size_tensor_cpu
[
1
]
->
mutable_data
<
float
>
();
float
*
input_scale_cpu_data
=
input_scale_cpu
.
mutable_data
<
float
>
();
float
*
osz_cpu_data
=
osz_cpu
.
mutable_data
<
float
>
();
float
*
out_cpu_data
=
out_cpu
.
mutable_data
<
float
>
();
float
*
x_ref_data
=
x_ref
.
mutable_data
<
float
>
();
float
*
size_tensor0_ref_data
=
size_tensor_ref
[
0
]
->
mutable_data
<
float
>
();
float
*
size_tensor1_ref_data
=
size_tensor_ref
[
1
]
->
mutable_data
<
float
>
();
float
*
input_scale_ref_data
=
input_scale_ref
.
mutable_data
<
float
>
();
float
*
osz_ref_data
=
osz_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x_cpu
.
numel
();
++
i
)
{
x_cpu_data
[
i
]
=
i
+
5.0
;
x_ref_data
[
i
]
=
i
+
5.0
;
}
osz_cpu_data
[
0
]
=
out_h
;
osz_cpu_data
[
1
]
=
out_w
;
size_tensor0_cpu_data
[
0
]
=
out_h
;
size_tensor1_cpu_data
[
0
]
=
out_w
;
input_scale_cpu_data
[
0
]
=
scale
;
osz_ref_data
[
0
]
=
out_h
;
osz_ref_data
[
1
]
=
out_w
;
size_tensor0_ref_data
[
0
]
=
out_h
;
size_tensor1_ref_data
[
0
]
=
out_w
;
input_scale_ref_data
[
0
]
=
scale
;
x
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
x_cpu_data
,
x_cpu
.
dims
());
size_tensor
[
0
]
->
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
size_tensor0_cpu_data
,
{
1
});
size_tensor
[
1
]
->
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
size_tensor1_cpu_data
,
{
1
});
input_scale
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
input_scale_cpu_data
,
{
1
});
osz
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
osz_cpu_data
,
osz_cpu
.
dims
());
param
.
X
=
&
x
;
param
.
SizeTensor
=
size_tensor
;
param
.
Scale
=
&
input_scale
;
param
.
OutSize
=
&
osz
;
param
.
Out
=
&
out
;
bilinear_interp_kernel
.
SetParam
(
param
);
cudaStream_t
stream
;
cudaStreamCreate
(
&
stream
);
context
.
SetExecStream
(
stream
);
bilinear_interp_kernel
.
SetContext
(
std
::
move
(
ctx
));
bilinear_interp_kernel
.
Launch
();
cudaDeviceSynchronize
();
CopySync
<
TARGET
(
kCUDA
)
>
(
out_cpu_data
,
out_data
,
sizeof
(
float
)
*
out
.
numel
(),
IoDirection
::
DtoH
);
for
(
int
i
=
0
;
i
<
out
.
numel
();
i
++
)
{
LOG
(
INFO
)
<<
out_cpu_data
[
i
];
}
}
}
// namespace cuda
}
// namespace cuda
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
lite/kernels/cuda/nearest_interp_compute.cu
浏览文件 @
518a87ef
...
@@ -11,6 +11,7 @@ limitations under the License. */
...
@@ -11,6 +11,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <vector>
#include <vector>
#include "lite/backends/cuda/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/nearest_interp_compute.h"
#include "lite/kernels/cuda/nearest_interp_compute.h"
...
@@ -20,6 +21,43 @@ namespace kernels {
...
@@ -20,6 +21,43 @@ namespace kernels {
namespace
cuda
{
namespace
cuda
{
using
Tensor
=
lite
::
Tensor
;
using
Tensor
=
lite
::
Tensor
;
inline
std
::
vector
<
int
>
get_new_shape
(
std
::
vector
<
const
lite
::
Tensor
*>
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
lite
::
Tensor
temp
;
auto
temp_data
=
temp
.
mutable_data
<
int32_t
>
();
auto
tensor_data
=
tensor
->
data
<
int32_t
>
(
TARGET
(
kCUDA
));
cudaMemcpy
(
temp_data
,
tensor_data
,
tensor
->
dims
().
production
()
*
sizeof
(
float
),
cudaMemcpyDeviceToHost
);
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
temp_data
));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
(
kCUDA
);
lite
::
Tensor
cpu_starts_tensor
;
auto
cpu_starts_tensor_data
=
cpu_starts_tensor
.
mutable_data
<
T
>
();
cudaMemcpy
(
cpu_starts_tensor_data
,
new_data
,
new_data_tensor
->
dims
().
production
()
*
sizeof
(
T
),
cudaMemcpyDeviceToHost
);
auto
new_data_
=
cpu_starts_tensor
.
data
<
T
>
();
vec_new_data
=
std
::
vector
<
T
>
(
new_data_
,
new_data_
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
__global__
void
KeNearestNeighborInterp
(
const
float
*
in
,
__global__
void
KeNearestNeighborInterp
(
const
float
*
in
,
const
size_t
in_img_h
,
const
size_t
in_img_h
,
const
size_t
in_img_w
,
const
size_t
in_img_w
,
...
@@ -79,19 +117,34 @@ void NearestInterpCompute::Run() {
...
@@ -79,19 +117,34 @@ void NearestInterpCompute::Run() {
int
out_w
=
param
.
out_w
;
int
out_w
=
param
.
out_w
;
float
scale
=
param
.
scale
;
float
scale
=
param
.
scale
;
bool
align_corners
=
param
.
align_corners
;
bool
align_corners
=
param
.
align_corners
;
if
(
scale
>
0
)
{
auto
align_mode
=
param
.
align_mode
;
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
auto
list_new_shape_tensor
=
param
.
SizeTensor
;
}
if
(
list_new_shape_tensor
.
size
()
>
0
)
{
// have size tensor
if
(
out_size
!=
nullptr
)
{
auto
new_size
=
get_new_shape
(
list_new_shape_tensor
);
Tensor
sizes
;
out_h
=
new_size
[
0
];
float
*
size_data
=
sizes
.
mutable_data
<
float
>
();
out_w
=
new_size
[
1
];
float
*
outsize_data
=
out_size
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
}
else
{
cudaMemcpy
(
auto
scale_tensor
=
param
.
Scale
;
size_data
,
outsize_data
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
if
(
scale_tensor
!=
nullptr
)
{
out_h
=
static_cast
<
int
>
(
size_data
[
0
]);
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
out_w
=
static_cast
<
int
>
(
size_data
[
1
]);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_h
=
static_cast
<
int
>
(
in_h
*
scale
);
out_w
=
static_cast
<
int
>
(
in_w
*
scale
);
}
if
(
out_size
!=
nullptr
)
{
lite
::
Tensor
sizes
;
float
*
size_data
=
sizes
.
mutable_data
<
float
>
();
float
*
outsize_data
=
out_size
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
cudaMemcpy
(
size_data
,
outsize_data
,
sizeof
(
float
)
*
2
,
cudaMemcpyDeviceToHost
);
out_h
=
static_cast
<
int
>
(
size_data
[
0
]);
out_w
=
static_cast
<
int
>
(
size_data
[
1
]);
}
}
}
auto
output_data
=
output
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
auto
output_data
=
output
->
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
...
@@ -162,6 +215,14 @@ REGISTER_LITE_KERNEL(nearest_interp,
...
@@ -162,6 +215,14 @@ REGISTER_LITE_KERNEL(nearest_interp,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"SizeTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindInput
(
"Scale"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
DATALAYOUT
(
kNCHW
))})
.
BindOutput
(
"Out"
,
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kFloat
),
PRECISION
(
kFloat
),
...
...
lite/kernels/cuda/nearest_interp_compute_test.cc
浏览文件 @
518a87ef
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <memory>
#include <memory>
#include <utility>
#include <utility>
#include <vector>
namespace
paddle
{
namespace
paddle
{
namespace
lite
{
namespace
lite
{
...
@@ -143,6 +144,110 @@ TEST(nearest_interp, normal) {
...
@@ -143,6 +144,110 @@ TEST(nearest_interp, normal) {
}
}
}
}
TEST
(
nearest_interp
,
update
)
{
NearestInterpCompute
nearest_interp_kernel
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
auto
&
context
=
ctx
->
As
<
CUDAContext
>
();
operators
::
InterpolateParam
param
;
std
::
vector
<
Tensor
*>
size_tensor
(
2
),
size_tensor_cpu
(
2
),
size_tensor_ref
(
2
);
Tensor
x
,
input_scale
,
osz
,
out
;
Tensor
x_cpu
,
input_scale_cpu
,
osz_cpu
,
out_cpu
;
Tensor
x_ref
,
size_tensor_ref
,
input_scale_ref
,
osz_ref
,
out_ref
;
int
n
=
1
,
c
=
3
,
in_h
=
40
,
in_w
=
40
;
int
out_h
=
80
,
out_w
=
80
;
float
scale
=
2.0
;
param
.
out_h
=
out_h
;
param
.
out_w
=
out_w
;
param
.
scale
=
scale
;
param
.
align_corners
=
false
;
param
.
align_mode
=
0
;
x
.
Resize
({
n
,
c
,
in_h
,
in_w
});
size_tensor
[
0
]
->
Resize
({
1
});
size_tensor
[
1
]
->
Resize
({
1
});
input_scale
.
Resize
({
1
});
osz
.
Resize
({
2
});
out
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_cpu
.
Resize
({
n
,
c
,
in_h
,
in_w
});
size_tensor_cpu
[
0
]
->
Resize
({
1
});
size_tensor_cpu
[
1
]
->
Resize
({
1
});
input_scale_cpu
.
Resize
({
1
});
osz_cpu
.
Resize
({
2
});
out_cpu
.
Resize
({
n
,
c
,
out_h
,
out_w
});
x_ref
.
Resize
({
n
,
c
,
in_h
,
in_w
});
size_tensor_ref
[
0
]
->
Resize
({
1
});
size_tensor_ref
[
1
]
->
Resize
({
1
});
input_scale_ref
.
Resize
({
1
});
osz_ref
.
Resize
({
2
});
out_ref
.
Resize
({
n
,
c
,
out_h
,
out_w
});
auto
*
out_data
=
out
.
mutable_data
<
float
>
(
TARGET
(
kCUDA
));
float
*
x_cpu_data
=
x_cpu
.
mutable_data
<
float
>
();
float
*
size_tensor0_cpu_data
=
size_tensor_cpu
[
0
]
->
mutable_data
<
float
>
();
float
*
size_tensor1_cpu_data
=
size_tensor_cpu
[
1
]
->
mutable_data
<
float
>
();
float
*
input_scale_cpu_data
=
input_scale_cpu
.
mutable_data
<
float
>
();
float
*
osz_cpu_data
=
osz_cpu
.
mutable_data
<
float
>
();
float
*
out_cpu_data
=
out_cpu
.
mutable_data
<
float
>
();
float
*
x_ref_data
=
x_ref
.
mutable_data
<
float
>
();
float
*
size_tensor0_ref_data
=
size_tensor_ref
[
0
]
->
mutable_data
<
float
>
();
float
*
size_tensor1_ref_data
=
size_tensor_ref
[
1
]
->
mutable_data
<
float
>
();
float
*
input_scale_ref_data
=
input_scale_ref
.
mutable_data
<
float
>
();
float
*
osz_ref_data
=
osz_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x_cpu
.
numel
();
++
i
)
{
x_cpu_data
[
i
]
=
i
+
5.0
;
x_ref_data
[
i
]
=
i
+
5.0
;
}
osz_cpu_data
[
0
]
=
out_h
;
osz_cpu_data
[
1
]
=
out_w
;
size_tensor0_cpu_data
[
0
]
=
out_h
;
size_tensor1_cpu_data
[
0
]
=
out_w
;
input_scale_cpu_data
[
0
]
=
scale
;
osz_ref_data
[
0
]
=
out_h
;
osz_ref_data
[
1
]
=
out_w
;
size_tensor0_ref_data
[
0
]
=
out_h
;
size_tensor1_ref_data
[
0
]
=
out_w
;
input_scale_ref_data
[
0
]
=
scale
;
x
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
x_cpu_data
,
x_cpu
.
dims
());
size_tensor
[
0
]
->
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
size_tensor0_cpu_data
,
{
1
});
size_tensor
[
1
]
->
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
size_tensor1_cpu_data
,
{
1
});
input_scale
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
input_scale_cpu_data
,
{
1
});
osz
.
Assign
<
float
,
lite
::
DDim
,
TARGET
(
kCUDA
)
>
(
osz_cpu_data
,
osz_cpu
.
dims
());
param
.
X
=
&
x
;
param
.
SizeTensor
=
size_tensor
;
param
.
Scale
=
&
input_scale
;
param
.
OutSize
=
&
osz
;
param
.
Out
=
&
out
;
nearest_interp_kernel
.
SetParam
(
param
);
cudaStream_t
stream
;
cudaStreamCreate
(
&
stream
);
context
.
SetExecStream
(
stream
);
nearest_interp_kernel
.
SetContext
(
std
::
move
(
ctx
));
nearest_interp_kernel
.
Launch
();
cudaDeviceSynchronize
();
CopySync
<
TARGET
(
kCUDA
)
>
(
out_cpu_data
,
out_data
,
sizeof
(
float
)
*
out
.
numel
(),
IoDirection
::
DtoH
);
for
(
int
i
=
0
;
i
<
out
.
numel
();
i
++
)
{
LOG
(
INFO
)
<<
out_cpu_data
[
i
];
}
}
}
// namespace cuda
}
// namespace cuda
}
// namespace kernels
}
// namespace kernels
}
// namespace lite
}
// namespace lite
...
...
lite/operators/interpolate_op.cc
浏览文件 @
518a87ef
...
@@ -45,23 +45,42 @@ bool InterpolateOp::InferShape() const {
...
@@ -45,23 +45,42 @@ bool InterpolateOp::InferShape() const {
int
out_h
;
int
out_h
;
int
out_w
;
int
out_w
;
if
(
OutSize
!=
nullptr
)
{
auto
SizeTensor
=
param_
.
SizeTensor
;
auto
outsize_data
=
OutSize
->
data
<
int
>
();
if
(
!
SizeTensor
.
empty
())
{
int
h_out
=
outsize_data
[
0
];
// HW
CHECK
(
SizeTensor
.
size
()
==
2
)
int
w_out
=
outsize_data
[
1
];
// HW
<<
"Input(SizeTensor)'size of Op(interpolate) must be 2. "
param_
.
Out
->
Resize
({
n
,
c
,
h_out
,
w_out
});
"Attr(out_shape)'s length must be 2 for 4-D input tensor."
;
out_h
=
param_
.
out_h
;
out_w
=
param_
.
out_w
;
param_
.
Out
->
Resize
({
n
,
c
,
out_h
,
out_w
});
return
true
;
}
auto
Scale
=
param_
.
Scale
;
if
(
Scale
)
{
auto
scale_dims
=
Scale
->
dims
();
CHECK
(
scale_dims
.
size
()
==
1
)
<<
"Scale's dimension size must be 1."
;
out_h
=
-
1
;
out_w
=
-
1
;
}
else
{
}
else
{
if
(
0
>=
param_
.
out_h
&&
0
>=
param_
.
out_w
)
{
auto
scale
=
param_
.
scale
;
out_h
=
h
*
param_
.
scale
;
if
(
scale
>
0
)
{
out_w
=
w
*
param_
.
scale
;
out_h
=
static_cast
<
int
>
(
h
*
scale
);
out_w
=
static_cast
<
int
>
(
w
*
scale
);
out_h
=
out_h
>
0
?
out_h
:
-
1
;
out_h
=
out_h
>
0
?
out_h
:
-
1
;
out_w
=
out_w
>
0
?
out_w
:
-
1
;
out_w
=
out_w
>
0
?
out_w
:
-
1
;
}
else
{
}
else
{
out_h
=
param_
.
out_h
;
out_h
=
param_
.
out_h
;
out_w
=
param_
.
out_w
;
out_w
=
param_
.
out_w
;
}
}
param_
.
Out
->
Resize
({
n
,
c
,
out_h
,
out_w
});
}
}
if
(
OutSize
!=
nullptr
)
{
auto
out_lod
=
param_
.
Out
->
mutable_lod
();
*
out_lod
=
param_
.
X
->
lod
();
}
param_
.
Out
->
Resize
({
n
,
c
,
out_h
,
out_w
});
return
true
;
return
true
;
}
}
...
@@ -76,6 +95,24 @@ bool InterpolateOp::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
...
@@ -76,6 +95,24 @@ bool InterpolateOp::AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) {
}
else
{
}
else
{
param_
.
OutSize
=
nullptr
;
param_
.
OutSize
=
nullptr
;
}
}
if
(
op_desc
.
HasInput
(
"SizeTensor"
))
{
auto
size_tensor
=
op_desc
.
Input
(
"SizeTensor"
);
for
(
auto
var
:
size_tensor
)
{
param_
.
SizeTensor
.
push_back
(
scope
->
FindVar
(
var
)
->
GetMutable
<
lite
::
Tensor
>
());
}
}
if
(
op_desc
.
HasInput
(
"Scale"
))
{
auto
scale_var_names
=
op_desc
.
Input
(
"Scale"
);
if
(
scale_var_names
.
size
()
>
0
)
{
param_
.
Scale
=
scope
->
FindVar
(
scale_var_names
.
front
())
->
GetMutable
<
lite
::
Tensor
>
();
}
}
else
{
param_
.
Scale
=
nullptr
;
}
auto
Out
=
op_desc
.
Output
(
"Out"
).
front
();
auto
Out
=
op_desc
.
Output
(
"Out"
).
front
();
param_
.
X
=
scope
->
FindVar
(
X
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
X
=
scope
->
FindVar
(
X
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
Out
=
scope
->
FindVar
(
Out
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
Out
=
scope
->
FindVar
(
Out
)
->
GetMutable
<
lite
::
Tensor
>
();
...
...
lite/operators/op_params.h
浏览文件 @
518a87ef
...
@@ -94,6 +94,8 @@ struct InterpolateParam {
...
@@ -94,6 +94,8 @@ struct InterpolateParam {
lite
::
Tensor
*
X
{};
lite
::
Tensor
*
X
{};
lite
::
Tensor
*
OutSize
{};
lite
::
Tensor
*
OutSize
{};
lite
::
Tensor
*
Out
{};
lite
::
Tensor
*
Out
{};
std
::
vector
<
const
lite
::
Tensor
*>
SizeTensor
;
lite
::
Tensor
*
Scale
;
float
scale
{
0.
f
};
float
scale
{
0.
f
};
int
out_h
{
-
1
};
int
out_h
{
-
1
};
...
@@ -101,6 +103,7 @@ struct InterpolateParam {
...
@@ -101,6 +103,7 @@ struct InterpolateParam {
bool
align_corners
{
true
};
bool
align_corners
{
true
};
int
align_mode
{
1
};
int
align_mode
{
1
};
std
::
string
interp_method
{
"Nearest"
};
std
::
string
interp_method
{
"Nearest"
};
DataLayoutType
data_layout
{
DATALAYOUT
(
kNCHW
)};
};
};
// For Mul Op
// For Mul Op
...
...
lite/tests/kernels/bilinear_interp_compute_test.cc
浏览文件 @
518a87ef
...
@@ -22,6 +22,27 @@
...
@@ -22,6 +22,27 @@
namespace
paddle
{
namespace
paddle
{
namespace
lite
{
namespace
lite
{
inline
std
::
vector
<
int
>
get_new_shape
(
std
::
vector
<
const
lite
::
Tensor
*>
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
(
tensor
->
data
<
int32_t
>
())));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
();
lite
::
Tensor
cpu_starts_tensor
;
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
template
<
typename
dtype
>
template
<
typename
dtype
>
void
resize_bilinear_align
(
std
::
vector
<
const
lite
::
Tensor
*>
inputs
,
void
resize_bilinear_align
(
std
::
vector
<
const
lite
::
Tensor
*>
inputs
,
lite
::
Tensor
*
output
)
{
lite
::
Tensor
*
output
)
{
...
@@ -149,6 +170,9 @@ class BilinearInterpComputeTester : public arena::TestCase {
...
@@ -149,6 +170,9 @@ class BilinearInterpComputeTester : public arena::TestCase {
protected:
protected:
// common attributes for this op.
// common attributes for this op.
std
::
string
input0_
=
"X"
;
std
::
string
input0_
=
"X"
;
std
::
string
sizetensor0_
=
"SizeTensor0"
;
std
::
string
sizetensor1_
=
"SizeTensor1"
;
std
::
string
input_scale_
=
"Scale"
;
std
::
string
input1_
=
"OutSize"
;
std
::
string
input1_
=
"OutSize"
;
std
::
string
output_
=
"Out"
;
std
::
string
output_
=
"Out"
;
...
@@ -162,6 +186,8 @@ class BilinearInterpComputeTester : public arena::TestCase {
...
@@ -162,6 +186,8 @@ class BilinearInterpComputeTester : public arena::TestCase {
std
::
string
interp_method_
=
"Bilinear"
;
std
::
string
interp_method_
=
"Bilinear"
;
DDim
_dims0_
{{
1
,
1
,
16
,
16
}};
DDim
_dims0_
{{
1
,
1
,
16
,
16
}};
DDim
_dims1_
{{
2
}};
DDim
_dims1_
{{
2
}};
DDim
sizetensor_dims_
{{
1
}};
DDim
scale_dims_
{{
1
}};
public:
public:
BilinearInterpComputeTester
(
const
Place
&
place
,
BilinearInterpComputeTester
(
const
Place
&
place
,
...
@@ -190,33 +216,48 @@ class BilinearInterpComputeTester : public arena::TestCase {
...
@@ -190,33 +216,48 @@ class BilinearInterpComputeTester : public arena::TestCase {
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
inputs
.
emplace_back
(
scope
->
FindTensor
(
input1_
));
inputs
.
emplace_back
(
scope
->
FindTensor
(
input1_
));
}
}
std
::
vector
<
const
lite
::
Tensor
*>
SizeTensor
;
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
SizeTensor
.
emplace_back
(
scope
->
FindTensor
(
sizetensor0_
));
SizeTensor
.
emplace_back
(
scope
->
FindTensor
(
sizetensor1_
));
}
const
lite
::
Tensor
*
input_scale
=
scope
->
FindTensor
(
input_scale_
);
float
scale
=
height_scale_
;
int
in_h
=
inputs
[
0
]
->
dims
()[
2
];
int
in_w
=
inputs
[
0
]
->
dims
()[
3
];
if
(
SizeTensor
.
size
()
>
0
)
{
auto
new_size
=
get_new_shape
(
SizeTensor
);
out_height_
=
new_size
[
0
];
out_width_
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
input_scale
;
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_height_
=
static_cast
<
int
>
(
in_h
*
scale
);
out_width_
=
static_cast
<
int
>
(
in_w
*
scale
);
}
if
(
inputs
.
size
()
>
1
)
{
auto
out_size
=
inputs
[
1
];
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_height_
=
out_size_data
[
0
];
out_width_
=
out_size_data
[
1
];
}
}
height_scale_
=
scale
;
width_scale_
=
scale
;
if
(
out_width_
!=
-
1
&&
out_height_
!=
-
1
)
{
if
(
out_width_
!=
-
1
&&
out_height_
!=
-
1
)
{
height_scale_
=
static_cast
<
float
>
(
out_height_
/
inputs
[
0
]
->
dims
()[
2
]);
height_scale_
=
static_cast
<
float
>
(
out_height_
/
inputs
[
0
]
->
dims
()[
2
]);
width_scale_
=
static_cast
<
float
>
(
out_width_
/
inputs
[
0
]
->
dims
()[
3
]);
width_scale_
=
static_cast
<
float
>
(
out_width_
/
inputs
[
0
]
->
dims
()[
3
]);
}
}
auto
*
outputs
=
scope
->
NewTensor
(
output_
);
auto
*
outputs
=
scope
->
NewTensor
(
output_
);
CHECK
(
outputs
);
CHECK
(
outputs
);
if
(
inputs
.
size
()
>
1
)
{
int
num_cout
=
inputs
[
0
]
->
dims
()[
0
];
auto
outsize_data
=
inputs
[
1
]
->
data
<
int
>
();
int
c_cout
=
inputs
[
0
]
->
dims
()[
1
];
int
h_out
=
outsize_data
[
0
];
// HW
outputs
->
Resize
({
num_cout
,
c_cout
,
out_height_
,
out_width_
});
int
w_out
=
outsize_data
[
1
];
// HW
int
num_cout
=
inputs
[
0
]
->
dims
()[
0
];
int
c_cout
=
inputs
[
0
]
->
dims
()[
1
];
outputs
->
Resize
({
num_cout
,
c_cout
,
h_out
,
w_out
});
}
else
{
int
out_h
;
int
out_w
;
if
(
-
1
==
out_height_
&&
-
1
==
out_width_
)
{
out_h
=
inputs
[
0
]
->
dims
()[
2
]
*
height_scale_
;
out_w
=
inputs
[
0
]
->
dims
()[
3
]
*
width_scale_
;
}
else
{
out_h
=
out_height_
;
out_w
=
out_width_
;
}
outputs
->
Resize
(
{
inputs
[
0
]
->
dims
()[
0
],
inputs
[
0
]
->
dims
()[
1
],
out_h
,
out_w
});
}
if
(
align_corners_
)
{
if
(
align_corners_
)
{
resize_bilinear_align
<
float
>
(
inputs
,
outputs
);
resize_bilinear_align
<
float
>
(
inputs
,
outputs
);
}
else
{
}
else
{
...
@@ -229,6 +270,10 @@ class BilinearInterpComputeTester : public arena::TestCase {
...
@@ -229,6 +270,10 @@ class BilinearInterpComputeTester : public arena::TestCase {
op_desc
->
SetInput
(
"X"
,
{
input0_
});
op_desc
->
SetInput
(
"X"
,
{
input0_
});
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
if
(
outsize_height_
>
0
&&
outsize_width_
>
0
)
{
op_desc
->
SetInput
(
"OutSize"
,
{
input1_
});
op_desc
->
SetInput
(
"OutSize"
,
{
input1_
});
op_desc
->
SetInput
(
"SizeTensor"
,
{
sizetensor0_
,
sizetensor1_
});
}
if
(
height_scale_
>
0
)
{
op_desc
->
SetInput
(
"Scale"
,
{
input_scale_
});
}
}
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetAttr
(
"scale"
,
height_scale_
);
op_desc
->
SetAttr
(
"scale"
,
height_scale_
);
...
@@ -250,6 +295,19 @@ class BilinearInterpComputeTester : public arena::TestCase {
...
@@ -250,6 +295,19 @@ class BilinearInterpComputeTester : public arena::TestCase {
data1
[
0
]
=
outsize_height_
;
data1
[
0
]
=
outsize_height_
;
data1
[
1
]
=
outsize_width_
;
data1
[
1
]
=
outsize_width_
;
SetCommonTensor
(
input1_
,
_dims1_
,
data1
.
data
());
SetCommonTensor
(
input1_
,
_dims1_
,
data1
.
data
());
std
::
vector
<
int
>
sizetensor_data
(
1
);
sizetensor_data
[
0
]
=
outsize_height_
;
SetCommonTensor
(
sizetensor0_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
sizetensor_data
[
0
]
=
outsize_width_
;
SetCommonTensor
(
sizetensor1_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
}
if
(
height_scale_
>
0
)
{
std
::
vector
<
float
>
scale_data
(
1
);
scale_data
[
0
]
=
height_scale_
;
SetCommonTensor
(
input_scale_
,
scale_dims_
,
scale_data
.
data
());
}
}
}
}
};
};
...
...
lite/tests/kernels/nearest_interp_compute_test.cc
浏览文件 @
518a87ef
...
@@ -22,6 +22,28 @@
...
@@ -22,6 +22,28 @@
namespace
paddle
{
namespace
paddle
{
namespace
lite
{
namespace
lite
{
inline
std
::
vector
<
int
>
get_new_shape
(
const
std
::
vector
<
const
lite
::
Tensor
*>&
list_new_shape_tensor
)
{
// get tensor from
std
::
vector
<
int
>
vec_new_shape
;
for
(
size_t
i
=
0
;
i
<
list_new_shape_tensor
.
size
();
++
i
)
{
auto
tensor
=
list_new_shape_tensor
[
i
];
vec_new_shape
.
push_back
(
static_cast
<
int32_t
>
(
*
tensor
->
data
<
int32_t
>
()));
}
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
auto
*
new_data
=
new_data_tensor
->
data
<
T
>
();
lite
::
Tensor
cpu_starts_tensor
;
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
dims
().
production
());
return
vec_new_data
;
}
template
<
typename
dtype
>
template
<
typename
dtype
>
void
resize_nearest_align
(
std
::
vector
<
const
lite
::
Tensor
*>
inputs
,
void
resize_nearest_align
(
std
::
vector
<
const
lite
::
Tensor
*>
inputs
,
lite
::
Tensor
*
output
,
lite
::
Tensor
*
output
,
...
@@ -73,6 +95,9 @@ class NearestInterpComputeTester : public arena::TestCase {
...
@@ -73,6 +95,9 @@ class NearestInterpComputeTester : public arena::TestCase {
protected:
protected:
// common attributes for this op.
// common attributes for this op.
std
::
string
input0_
=
"X"
;
std
::
string
input0_
=
"X"
;
std
::
string
sizetensor0_
=
"SizeTensor0"
;
std
::
string
sizetensor1_
=
"SizeTensor1"
;
std
::
string
input_scale_
=
"Scale"
;
std
::
string
input1_
=
"OutSize"
;
std
::
string
input1_
=
"OutSize"
;
std
::
string
output_
=
"Out"
;
std
::
string
output_
=
"Out"
;
...
@@ -85,6 +110,8 @@ class NearestInterpComputeTester : public arena::TestCase {
...
@@ -85,6 +110,8 @@ class NearestInterpComputeTester : public arena::TestCase {
DDim
dims_
{{
2
,
3
}};
DDim
dims_
{{
2
,
3
}};
DDim
_dims0_
{{
2
,
3
,
3
,
2
}};
DDim
_dims0_
{{
2
,
3
,
3
,
2
}};
DDim
_dims1_
{{
2
}};
DDim
_dims1_
{{
2
}};
DDim
sizetensor_dims_
{{
1
}};
DDim
scale_dims_
{{
1
}};
public:
public:
NearestInterpComputeTester
(
const
Place
&
place
,
NearestInterpComputeTester
(
const
Place
&
place
,
...
@@ -112,24 +139,54 @@ class NearestInterpComputeTester : public arena::TestCase {
...
@@ -112,24 +139,54 @@ class NearestInterpComputeTester : public arena::TestCase {
inputs
.
emplace_back
(
scope
->
FindTensor
(
input0_
));
inputs
.
emplace_back
(
scope
->
FindTensor
(
input0_
));
inputs
.
emplace_back
(
scope
->
FindTensor
(
input1_
));
inputs
.
emplace_back
(
scope
->
FindTensor
(
input1_
));
auto
outsize_data
=
inputs
[
1
]
->
data
<
int
>
();
std
::
vector
<
const
lite
::
Tensor
*>
SizeTensor
(
2
);
SizeTensor
[
0
]
=
scope
->
FindTensor
(
sizetensor0_
);
SizeTensor
[
1
]
=
scope
->
FindTensor
(
sizetensor1_
);
const
lite
::
Tensor
*
input_scale
=
scope
->
FindTensor
(
input_scale_
);
float
scale
=
height_scale_
;
int
in_h
=
inputs
[
0
]
->
dims
()[
2
];
int
in_w
=
inputs
[
0
]
->
dims
()[
3
];
if
(
SizeTensor
.
size
()
>
0
)
{
auto
new_size
=
get_new_shape
(
SizeTensor
);
out_height_
=
new_size
[
0
];
out_width_
=
new_size
[
1
];
}
else
{
auto
scale_tensor
=
input_scale
;
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
scale
=
scale_data
[
0
];
}
if
(
scale
>
0
)
{
out_height_
=
static_cast
<
int
>
(
in_h
*
scale
);
out_width_
=
static_cast
<
int
>
(
in_w
*
scale
);
}
auto
out_size
=
inputs
[
1
];
if
(
out_size
!=
nullptr
)
{
auto
out_size_data
=
get_new_data_from_tensor
<
int
>
(
out_size
);
out_height_
=
out_size_data
[
0
];
out_width_
=
out_size_data
[
1
];
}
}
height_scale_
=
scale
;
width_scale_
=
scale
;
if
(
out_width_
!=
-
1
&&
out_height_
!=
-
1
)
{
if
(
out_width_
!=
-
1
&&
out_height_
!=
-
1
)
{
height_scale_
=
static_cast
<
float
>
(
out_height_
/
inputs
[
0
]
->
dims
()[
2
]);
height_scale_
=
static_cast
<
float
>
(
out_height_
/
inputs
[
0
]
->
dims
()[
2
]);
width_scale_
=
static_cast
<
float
>
(
out_width_
/
inputs
[
0
]
->
dims
()[
3
]);
width_scale_
=
static_cast
<
float
>
(
out_width_
/
inputs
[
0
]
->
dims
()[
3
]);
}
}
if
(
inputs
.
size
()
>
1
)
{
int
num_cout
=
inputs
[
0
]
->
dims
()[
0
];
int
h_out
=
outsize_data
[
0
];
// HW
int
c_cout
=
inputs
[
0
]
->
dims
()[
1
];
int
w_out
=
outsize_data
[
1
];
// HW
outputs
->
Resize
({
num_cout
,
c_cout
,
out_height_
,
out_width_
});
int
num_cout
=
outputs
->
dims
()[
0
];
int
c_cout
=
outputs
->
dims
()[
1
];
outputs
->
Resize
({
num_cout
,
c_cout
,
h_out
,
w_out
});
}
resize_nearest_align
<
float
>
(
inputs
,
outputs
,
align_corners_
);
resize_nearest_align
<
float
>
(
inputs
,
outputs
,
align_corners_
);
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"nearest_interp"
);
op_desc
->
SetType
(
"nearest_interp"
);
op_desc
->
SetInput
(
"X"
,
{
input0_
});
op_desc
->
SetInput
(
"X"
,
{
input0_
});
op_desc
->
SetInput
(
"SizeTensor"
,
{
sizetensor0_
,
sizetensor1_
});
op_desc
->
SetInput
(
"Scale"
,
{
input_scale_
});
op_desc
->
SetInput
(
"OutSize"
,
{
input1_
});
op_desc
->
SetInput
(
"OutSize"
,
{
input1_
});
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetOutput
(
"Out"
,
{
output_
});
op_desc
->
SetAttr
(
"scale"
,
height_scale_
);
op_desc
->
SetAttr
(
"scale"
,
height_scale_
);
...
@@ -152,6 +209,17 @@ class NearestInterpComputeTester : public arena::TestCase {
...
@@ -152,6 +209,17 @@ class NearestInterpComputeTester : public arena::TestCase {
SetCommonTensor
(
input0_
,
_dims0_
,
data0
.
data
());
SetCommonTensor
(
input0_
,
_dims0_
,
data0
.
data
());
SetCommonTensor
(
input1_
,
_dims1_
,
data1
.
data
());
SetCommonTensor
(
input1_
,
_dims1_
,
data1
.
data
());
std
::
vector
<
int
>
sizetensor_data
(
1
);
sizetensor_data
[
0
]
=
out_height_
;
SetCommonTensor
(
sizetensor0_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
sizetensor_data
[
0
]
=
out_width_
;
SetCommonTensor
(
sizetensor1_
,
sizetensor_dims_
,
sizetensor_data
.
data
());
std
::
vector
<
float
>
scale_data
(
1
);
scale_data
[
0
]
=
height_scale_
;
SetCommonTensor
(
input_scale_
,
scale_dims_
,
scale_data
.
data
());
}
}
};
};
...
...
lite/tests/kernels/shuffle_channel_compute_test.cc
浏览文件 @
518a87ef
...
@@ -12,12 +12,9 @@
...
@@ -12,12 +12,9 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
// TODO(zhengxi)
// TODO(FrostML): shaffle_channel cannot pass on CI, but ok in local machine.
// shuffle_channel_test can pass on local compilation
// Open this.
// while on ci compilation, the test will be killed immediately.
/*#include <gtest/gtest.h>
/*
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/core/arena/framework.h"
...
@@ -30,8 +27,8 @@ class ShuffleChannelComputeTester : public arena::TestCase {
...
@@ -30,8 +27,8 @@ class ShuffleChannelComputeTester : public arena::TestCase {
// common attributes for this op.
// common attributes for this op.
std::string input_ = "X";
std::string input_ = "X";
std::string output_ = "Out";
std::string output_ = "Out";
int group_ =
1
;
int group_ =
4
;
DDim dims_{{1
, 2
}};
DDim dims_{{1
0, 16, 4, 4
}};
public:
public:
ShuffleChannelComputeTester(const Place& place,
ShuffleChannelComputeTester(const Place& place,
...
@@ -87,7 +84,7 @@ class ShuffleChannelComputeTester : public arena::TestCase {
...
@@ -87,7 +84,7 @@ class ShuffleChannelComputeTester : public arena::TestCase {
};
};
void test_shuffle_channel(Place place) {
void test_shuffle_channel(Place place) {
for (int group : {
1, 2, 3
}) {
for (int group : {
4
}) {
std::unique_ptr<arena::TestCase> tester(
std::unique_ptr<arena::TestCase> tester(
new ShuffleChannelComputeTester(place, "def", group));
new ShuffleChannelComputeTester(place, "def", group));
arena::Arena arena(std::move(tester), place, 2e-5);
arena::Arena arena(std::move(tester), place, 2e-5);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录