op_params.h 52.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
24 25
#include "lite/model_parser/base/apis.h"
#include "lite/model_parser/cpp_desc.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

35 36
struct ParamBase {
 public:
37 38 39 40 41
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
42 43 44 45 46 47

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
48 49 50
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
51
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
52
  std::vector<float> weight_scale{}; \
53
  float output_scale{1.0f};          \
54
  int bit_length{8};
Y
Yan Chunwei 已提交
55 56

/// ----------------------- Functional operators ------------------------------
57
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
58 59 60 61 62
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

63
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
64 65 66 67 68 69
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
70
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
71 72
  const lite::Tensor* x{};
  lite::Tensor* y{};
73
  int process_type{0};
Y
Yan Chunwei 已提交
74 75
};

76
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
77 78
  const lite::Tensor* x{};
  lite::Tensor* y{};
79
  int process_type{0};
Y
Yan Chunwei 已提交
80 81
};

82
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
83 84 85
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
101 102
};

103
struct SubgraphParam : ParamBase {
104 105 106 107
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
108 109 110
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
111 112 113 114
};

/// -------------------------- NN operators ------------------------------------

115
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
116 117 118 119 120
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
H
huzhiqiang 已提交
121 122
  // original dims of input weight
  lite::DDim w_dims;
Y
Yan Chunwei 已提交
123
  int in_num_col_dims{1};
124
  std::string activation_type{""};
125
  bool padding_weights{false};
Y
Yan Chunwei 已提交
126 127
  // for int8
  WITH_INT8_CONFIG
128 129
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
130 131
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
132 133 134 135 136
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
137 138
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
139 140 141 142 143 144 145
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
146 147 148 149 150 151 152
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
153
// For Interpolate Op
154
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
155 156 157
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
158
  std::vector<const lite::Tensor*> SizeTensor;
159
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
160 161 162 163 164

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
165
  int align_mode{1};
Y
Yan Chunwei 已提交
166
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
167
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
168 169 170
};

// For Mul Op
171
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
180 181
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
182 183
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
184 185 186 187 188
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
189 190
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
191 192 193 194
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
195 196
};

197
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
198 199 200 201 202 203 204 205 206 207
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

208
// For ReduceMean Op
209
struct ReduceMeanParam : ParamBase {
210 211 212 213 214 215 216 217
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
218
struct StackParam : ParamBase {
219 220 221 222 223 224
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
225
// For Power Op
226
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

235
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
236 237 238 239 240 241 242
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
243
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
244 245 246 247 248 249 250 251 252 253 254 255
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
256
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
257 258 259 260 261 262
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
263 264 265
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
266 267
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
268 269
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
270 271 272 273 274
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
275 276
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
277 278 279 280
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
281 282 283
};

// For Softmax op
284
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
285 286 287
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
W
Wilber 已提交
288
  bool use_cudnn{true};
289 290
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
291 292
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
293 294 295 296 297
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
298 299
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
300 301 302 303
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
304 305 306
};

// For Reshape and Reshape2 Op
307
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
308
  const lite::Tensor* x{};
309 310 311
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
312 313
  lite::Tensor* output{};

314
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
315
  bool inplace{false};
316 317
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
318 319
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
320 321 322 323 324
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
325 326
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
327 328 329 330
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
331 332 333
};

// For Concat op
334
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
335 336 337
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
338
  lite::Tensor* axis_tensor{};
339
  // get a vector of input tensors
340 341
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
342 343 344 345 346 347 348 349 350
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
351 352
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
353 354 355 356
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
357 358
};

359
/// ----------------------- activation operators ----------------------
360
struct ActivationParam : ParamBase {
361
  const lite::Tensor* X{};
362
  lite::Tensor* Out{};
363
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
364
  bool has_active{false};
365 366 367 368 369 370
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
371
  // hard_sigmoid param
372 373
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
374 375 376 377
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
378 379
  // thresholded_relu
  float relu_threshold{1.0f};
H
HappyAngel 已提交
380 381
  // elu
  float Elu_alpha{1.0f};
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
398 399
};

400
struct ActivationGradParam : ParamBase {
401 402 403 404 405 406 407
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
408
// For Convolution op
409
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
410 411 412 413 414 415
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
416
  /* paddings type change
417 418 419 420
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
421
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
422
  int groups{1};
H
HappyAngel 已提交
423
  /* dilations type change
424 425 426 427
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
428
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
429 430 431 432 433 434 435 436 437 438 439 440
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
441 442
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
443 444
  // support var_length or not
  bool var_length{false};
445 446
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
447 448
  // for int8
  WITH_INT8_CONFIG
449 450 451

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
452 453
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
454 455 456 457 458
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
459 460
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
461 462 463 464
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
465 466 467
};

// For BatchNorm op
468
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
484 485
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
486 487
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
488 489 490 491 492
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
493 494
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
495 496 497 498
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
499 500 501
};

// For Pooling op
502
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
503 504 505 506 507 508 509
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
510
  /* paddings type change
511 512 513 514
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
515
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
516 517 518 519 520
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
521 522
  // for int8
  WITH_INT8_CONFIG
523 524
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
525 526
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
527 528 529 530 531
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
532 533
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
534 535 536 537
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
538 539 540
};

// For Dropout op
541
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
542 543 544 545 546 547 548 549 550 551 552
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
553
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
554 555
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
556 557 558
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
559 560 561
  int axis{-1};
  int num{0};
  std::vector<int> sections;
562 563
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
564 565
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
566 567 568 569 570
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
571 572
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
573 574 575 576
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
577 578 579
};

// For Transpose op
580
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
581 582
  const lite::Tensor* x{};
  lite::Tensor* output{};
583 584
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
585 586 587
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
588 589
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
590 591
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
592 593 594 595 596
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
597 598
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
599 600 601 602
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
603 604 605
};

/// ----------------------- element wise operators ----------------------
606
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
607 608 609 610
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
611
  // for int8
Z
Zhaolong Xing 已提交
612
  WITH_INT8_CONFIG
J
juncaipeng 已提交
613 614
  float x_input_scale{1.0};
  float y_input_scale{1.0};
615 616
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
617 618
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
619 620 621 622 623
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
624 625
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
626 627 628 629 630 631 632
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
633
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
634
  const lite::Tensor* Y{};
X
xiaogang 已提交
635 636 637
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
638 639 640 641 642 643 644 645 646 647 648 649
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
650
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
651 652 653 654
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

655
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
656 657 658 659 660 661 662
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
663
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
664 665
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
666
  lite::Tensor* shape_tensor{nullptr};
667 668
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
669 670 671 672 673
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
674

675
struct FillConstantBatchSizeLikeParam : ParamBase {
676 677
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
678

679
  std::vector<int> shape{};
680 681 682 683
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
684 685
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
686 687
};

Y
Yan Chunwei 已提交
688
//
689
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
690 691 692 693 694 695 696 697 698 699
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
700
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
701 702
};

703
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
704 705 706 707 708 709
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

710
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
711 712 713 714 715 716
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

717 718 719 720 721 722 723
struct FakeQuantDequantAbsMaxParam : ParamBase {
  const lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  int bit_length;
};

Y
Yan Chunwei 已提交
724
/// ----------------------- sgd operators ----------------------
725
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
726 727 728 729 730 731 732 733 734
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
735
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
736 737 738 739 740 741 742 743
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
744
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
745 746 747 748
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
749
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
750 751 752 753 754 755 756 757 758
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
759
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
760 761 762 763 764 765 766
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
767
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
768 769 770 771 772 773
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
774
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
775 776 777 778 779 780
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
781
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
797
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
798 799
  const lite::Tensor* X{};
  lite::Tensor* Out{};
800
  int n{5};
801 802 803
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
804 805 806 807
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
808
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
824
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
825 826 827 828 829
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
830 831 832 833
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(
          {prior_box, prior_box_var, target_box}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(
          new std::vector<lite::Tensor*>({proposals}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
851 852 853
};

/// ----------------------- multiclass_nms operators ----------------------
854
struct MulticlassNmsParam : ParamBase {
855 856 857
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
858
  lite::Tensor* index{};
859 860 861
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
862 863
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
864
  int keep_top_k;
865
  bool normalized{true};
Y
Yan Chunwei 已提交
866 867 868
};

/// ----------------------- priorbox operators ----------------------
869
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
889
  bool min_max_aspect_ratios_order{false};
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(
          new std::vector<const Tensor*>({input, image}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(
          new std::vector<lite::Tensor*>({boxes, variances}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
907 908 909 910 911
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
912
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
913 914
};
/// ----------------------- GRU operators ----------------------f
915
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
932
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
933 934 935 936 937 938 939 940 941
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
942
struct LookupTableParam : ParamBase {
943 944
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
945 946 947 948
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

949
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
950 951 952 953 954 955
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

956
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
957 958 959 960 961 962 963 964 965
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

966
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
967 968
  const lite::Tensor* X{};
  lite::Tensor* Out{};
969 970
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
971 972
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
973 974 975 976 977
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
978 979
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
980 981 982 983
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
984 985
};

986
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
987 988
  const lite::Tensor* X{};
  lite::Tensor* Out{};
989
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
990
  int axis{1};
991
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
992
};
993
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
994 995 996 997 998 999 1000
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
1001
  float epsilon{1e-5f};
T
TianXiaogang 已提交
1002
};
Y
Yan Chunwei 已提交
1003

1004
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
1005 1006 1007 1008 1009
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

1010
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
1011 1012 1013 1014 1015 1016 1017
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

1018
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
1019
  Tensor* cond{};
1020 1021 1022
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
1023 1024
};

1025
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
1026 1027 1028 1029 1030 1031
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

1032
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
1033 1034 1035 1036 1037
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

1038
struct WriteToArrayParam : ParamBase {
1039 1040 1041
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
1042 1043
};

1044
struct ReadFromArrayParam : ParamBase {
1045 1046 1047
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
1048 1049
};

1050
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

1064
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
1065 1066
  const lite::Tensor* X{};
  lite::Tensor* Out{};
1067
  lite::Tensor* MaxIndex{};
1068 1069 1070 1071
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
Y
Yan Chunwei 已提交
1072 1073
};

1074
struct SequenceConvParam : ParamBase {
1075 1076 1077 1078 1079 1080 1081 1082
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1083
struct SequencePoolConcatParam : ParamBase {
1084 1085 1086 1087 1088
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
struct SequencePoolGradParam : ParamBase {
  const lite::Tensor* X{};
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
  // for backward
  const lite::Tensor* Out_Grad{};
  const lite::Tensor* MaxIndex_Grad{};
  lite::Tensor* X_Grad{};
};

1101
struct SearchGroupPaddingParam : ParamBase {
1102 1103 1104 1105 1106 1107 1108
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1109
struct SequenceReshapeParam : ParamBase {
1110 1111 1112 1113 1114
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1115
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1116 1117 1118 1119 1120 1121
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1122 1123 1124 1125 1126 1127 1128 1129
struct SequencePadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* PadValue{};
  lite::Tensor* Out{};
  lite::Tensor* Length{};
  int padded_length{-1};
};

1130 1131 1132 1133 1134 1135
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1136 1137 1138 1139 1140 1141 1142 1143
struct SequenceMaskParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* MaxLenTensor{nullptr};
  lite::Tensor* Y{};
  int maxlen{-1};
  int out_dtype;
};

1144
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1145 1146 1147 1148 1149
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1150
struct SequenceReverseParam : ParamBase {
1151 1152 1153 1154
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1155
struct SequenceConcatParam : ParamBase {
1156 1157 1158 1159
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1160
struct AttentionPaddingMaskParam : ParamBase {
1161 1162 1163 1164 1165 1166 1167 1168
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1169
struct SequenceArithmeticParam : ParamBase {
1170 1171 1172 1173 1174 1175
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1176
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1177 1178 1179 1180 1181 1182
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1183
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1184 1185 1186 1187 1188 1189 1190
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1191
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1192 1193 1194
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1195

1196
struct ReduceParam : ParamBase {
1197 1198 1199 1200 1201 1202 1203
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1204
struct VarConv2DParam : ParamBase {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1218 1219

  bool fuse_relu{false};
1220 1221 1222 1223 1224

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1225 1226
};

Y
Yan Chunwei 已提交
1227
/// ----------------------- shape operators ----------------------
1228
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1229 1230 1231 1232
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1233
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1234 1235 1236 1237 1238 1239
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1240
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1241 1242 1243 1244 1245 1246
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1247 1248 1249 1250 1251
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1252 1253
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1254 1255
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1256 1257 1258 1259 1260
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1261 1262
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1263 1264 1265 1266
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1267
};
Y
Yan Chunwei 已提交
1268

1269
struct AffineChannelParam : ParamBase {
1270 1271 1272 1273 1274 1275 1276
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1277 1278 1279 1280 1281 1282 1283
struct AffineGridParam : ParamBase {
  const lite::Tensor* X{};  // Theta:shape {?, 2, 3}
  std::vector<int> output_shape;
  const lite::Tensor* OutputShape;
  lite::Tensor* Out{};
};

1284
struct AnchorGeneratorParam : ParamBase {
1285 1286 1287 1288
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1289 1290
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1291 1292 1293 1294 1295

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1296
struct GenerateProposalsParam : ParamBase {
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1307 1308 1309
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1310 1311 1312 1313 1314

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1315
/// ----------------------- squeeze operators ----------------------
1316
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1317 1318 1319 1320
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1321 1322
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1323 1324
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1325 1326 1327 1328 1329
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1330 1331
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1332 1333 1334 1335
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1336 1337
};

1338
struct UnsqueezeParam : ParamBase {
1339 1340 1341 1342
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1343
  const lite::Tensor* axes_tensor{};
1344
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1345 1346
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1347 1348
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1349 1350 1351 1352 1353
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1354 1355
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1356 1357 1358 1359
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1360 1361
};

Y
Yan Chunwei 已提交
1362
/// ----------------------- expand operators ----------------------
1363
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1364 1365 1366 1367 1368
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

1369 1370 1371 1372 1373 1374 1375
/// ----------------------- expand as operators ----------------------
struct ExpandAsParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Target{};
  lite::Tensor* Out{};
};

Y
Yan Chunwei 已提交
1376
/// ----------------------- matmul operators ----------------------
1377
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1378 1379 1380 1381 1382 1383
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1384 1385
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1386 1387
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1388 1389 1390 1391 1392
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1393 1394
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1395 1396 1397 1398
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1399
};
1400

1401
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1402 1403 1404 1405 1406
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1407
/// ----------------------- assign operators -----------------------
1408
struct AssignParam : ParamBase {
1409 1410 1411 1412 1413 1414 1415
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1416
};
1417

1418
/// ----------------------- roi_align operators -----------------------
1419
struct RoiAlignParam : ParamBase {
1420 1421 1422 1423 1424 1425 1426 1427 1428
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1429
/// ----------------------- box_clip operators -----------------------
1430
struct BoxClipParam : ParamBase {
1431 1432 1433 1434 1435
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1436
struct RangeParam : ParamBase {
1437 1438 1439 1440 1441 1442
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1443
/// ----------------------- assign_value operators -----------------------
1444
struct AssignValueParam : ParamBase {
1445 1446 1447 1448
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
1449 1450
  std::vector<int64_t> int64_values{};
  std::vector<int> bool_values{};
1451 1452 1453
  lite::Tensor* Out{};
};

1454
/// --------------- sequence_topk_avg_pooling operators ------------------
1455
struct SequenceTopkAvgPoolingParam : ParamBase {
1456 1457 1458 1459 1460 1461 1462 1463 1464
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

1465 1466 1467 1468 1469 1470 1471 1472 1473
/// --------------- topk_pooling operators ------------------
struct TopkPoolingParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int top_k{1};
  int feat_map_num{1};
};

1474
/// --------------- search_fc operators ------------------
1475
struct SearchFcParam : ParamBase {
1476 1477 1478 1479 1480
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
1481 1482 1483 1484 1485 1486 1487

  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1488
};
J
juncaipeng 已提交
1489
/// --------------------- match_matrix_tensor operators --------------------
1490
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1491 1492 1493 1494 1495 1496 1497
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
1498 1499 1500 1501 1502 1503
  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is w already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in w
#endif
J
juncaipeng 已提交
1504 1505 1506
};

/// --------------------- search_seq_depadding operators --------------------
1507
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1508 1509 1510 1511 1512 1513
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1514
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
1525 1526 1527 1528 1529 1530

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};   // Is wi/wh already converted to int16/int8
  std::vector<float> __xpu__wi_max;  // Abs max in wi
  std::vector<float> __xpu__wh_max;  // Abs max in wh
#endif
J
juncaipeng 已提交
1531 1532
};

1533
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1534 1535 1536 1537 1538 1539 1540
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1541
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1542 1543 1544 1545 1546 1547 1548 1549
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1550
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1551
  const lite::Tensor* cond{};
1552
  std::vector<lite::Tensor*> inputs{};
J
juncaipeng 已提交
1553
  std::vector<lite::Tensor*> outs{};
1554 1555 1556
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
J
juncaipeng 已提交
1557 1558 1559
  bool is_scalar_condition{};
};

1560
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1561 1562 1563 1564 1565 1566
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1567
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1577
/// --------------------- instance_norm operators --------------------
1578
struct InstanceNormParam : ParamBase {
1579 1580 1581 1582 1583 1584 1585 1586
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
H
HappyAngel 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
/// --------------------- group_norm operators --------------------
struct GroupNormParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
  int groups;
  int channels;
};

1600
/// --------------------- grid sampler operators --------------------
1601
struct GridSamplerParam : ParamBase {
1602 1603 1604 1605
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1606
struct LstmParam : ParamBase {
X
xiaogang 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1622

1623
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1624 1625 1626 1627 1628 1629 1630
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1663
  std::string precision{};
1664
  bool enable_qkv_fusion{false};
1665 1666
};

C
Cwndmiao 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
struct XPUResNetCbamParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};

  float pool_p{1.0f};
};

struct XPUMmdnnSearchAttentionParam : ParamBase {
  lite::Tensor* X{};
  lite::Tensor* W{};
  lite::Tensor* b{};
  lite::Tensor* Out{};

  float W_max{0.0f};
  int pad_id{0};
  float alpha0{1.0f};
  float alpha1{1.0f};
  float mask{1.0f};
};

struct XPUMmdnnBidEmbGrnnAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
};

struct XPUMmdnnBidEmbGrnnAttParam2 : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

  lite::Tensor* emb0_out{};
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
};

struct XPUMmdnnBidEmbAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  float att_fc_w_max{0.0f};

1768 1769
  lite::Tensor* att_pool_out{};
  lite::Tensor* emb_fw_out{};
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
};

struct XPUMmdnnMatchConvTopkParam : ParamBase {
  lite::Tensor* input_x{};
  lite::Tensor* input_y{};
  lite::Tensor* input_w{};
  lite::Tensor* conv_w{};

  float input_w_max{0.0f};
  float conv_w_max{0.0f};
  std::vector<int> topks;
1781
  int output_channel{0};
1782 1783 1784 1785 1786 1787 1788 1789
  int channel_num{0};
  int dim_t{0};

  lite::Tensor* topk_out{};
};

struct XPUMmdnnMergeAllParam : ParamBase {
  std::vector<lite::Tensor*> concat_7in1_x;
1790
  std::vector<lite::Tensor*> concat_topk_x;
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* fc0_w{};
  lite::Tensor* fc0_b{};
  lite::Tensor* fc1_w{};
  lite::Tensor* fc1_b{};
  lite::Tensor* fc2_w{};
  lite::Tensor* fc2_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float fc0_w_max{0.0f};
  float fc1_w_max{0.0f};
  float fc2_w_max{0.0f};

  lite::Tensor* out{};
};

H
HappyAngel 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
// For DeformableConvolution op
struct DeformableConvParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* offset{};
  lite::Tensor* mask{};
  lite::Tensor* output{};
  int deformable_groups{1};
  int im2col_step{1};
  bool modulated{true};  // True-v2 False-v1
  std::string data_format{"Anylayout"};
  // convolution parameter
  ConvParam conv_param;
  // support var_length or not
  bool var_length{false};
  // only used in conv_transpose.
  std::vector<int> output_size;
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

1846 1847 1848 1849 1850
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

struct RetinanetDetectionOutputParam : ParamBase {
  std::vector<Tensor*> bboxes{};
  std::vector<Tensor*> scores{};
  std::vector<Tensor*> anchors{};
  Tensor* im_info{};
  Tensor* out{};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{};
  float nms_eta{};
  int keep_top_k{};
};

Y
yiicy 已提交
1865 1866 1867 1868 1869
struct WhereIndexParam : ParamBase {
  const lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};
};

C
cc 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878
struct ClipParam : ParamBase {
  Tensor* x{};
  Tensor* min_tensor{};
  Tensor* max_tensor{};
  Tensor* out{};
  float min{};
  float max{};
};

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
struct PrintParam : ParamBase {
  const lite::Tensor* in{};
  lite::Tensor* out{};
  std::string name;
  int first_n{-1};
  std::string message;
  int summarize{20};
  bool print_tensor_name{true};
  bool print_tensor_type{true};
  bool print_tensor_shape{true};
  bool print_tensor_lod{true};
  bool print_tensor_layout{true};
  std::string print_phase;
  bool is_forward{true};
};

1895 1896 1897 1898 1899 1900 1901 1902 1903
struct OneHotParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* depth_tensor{nullptr};
  lite::Tensor* Out{};
  int depth;
  int dtype;
  bool allow_out_of_range;
};

Y
Yan Chunwei 已提交
1904 1905 1906
}  // namespace operators
}  // namespace lite
}  // namespace paddle