op_params.h 43.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
Y
Yan Chunwei 已提交
24 25 26
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/desc_apis.h"
#include "lite/utils/all.h"
27
#include "lite/utils/variant.h"
Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

36 37
struct ParamBase {
 public:
38 39 40 41 42
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
43 44 45 46 47 48

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
49 50 51
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
52
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
53
  std::vector<float> weight_scale{}; \
54
  float output_scale{1.0f};          \
55
  int bit_length{8};
Y
Yan Chunwei 已提交
56 57

/// ----------------------- Functional operators ------------------------------
58
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
59 60 61 62 63
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

64
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
65 66 67 68 69 70
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
71
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
72 73
  const lite::Tensor* x{};
  lite::Tensor* y{};
74
  int process_type{0};
Y
Yan Chunwei 已提交
75 76
};

77
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
78 79
  const lite::Tensor* x{};
  lite::Tensor* y{};
80
  int process_type{0};
Y
Yan Chunwei 已提交
81 82
};

83
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
84 85 86 87 88
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

89
struct SubgraphParam : ParamBase {
90 91 92 93 94 95 96
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
  int sub_block_idx{-1};
  cpp::BlockDesc* sub_block_desc{nullptr};
  Scope* scope{nullptr};
Y
Yan Chunwei 已提交
97 98 99 100
};

/// -------------------------- NN operators ------------------------------------

101
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
102 103 104 105 106 107
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
108
  std::string activation_type{""};
109
  bool padding_weights{false};
Y
Yan Chunwei 已提交
110 111
  // for int8
  WITH_INT8_CONFIG
112 113
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
114 115
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
116 117 118 119 120
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
121 122
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
123 124 125 126 127 128 129
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
130 131 132 133 134 135 136
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
137
// For Interpolate Op
138
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
139 140 141
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
142
  std::vector<const lite::Tensor*> SizeTensor;
143
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
144 145 146 147 148

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
149
  int align_mode{1};
Y
Yan Chunwei 已提交
150
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
151
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
152 153 154
};

// For Mul Op
155
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
164 165
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
166 167
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
168 169 170 171 172
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
173 174
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
175 176 177 178
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
179 180
};

181
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

192
// For ReduceMean Op
193
struct ReduceMeanParam : ParamBase {
194 195 196 197 198 199 200 201
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
202
struct StackParam : ParamBase {
203 204 205 206 207 208
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
209
// For Power Op
210
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

219
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
220 221 222 223 224 225 226
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
227
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236 237 238 239
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
240
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
241 242 243 244 245 246
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
247 248 249
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
250 251
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
252 253
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
254 255 256 257 258
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
259 260
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
261 262 263 264
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
265 266 267
};

// For Softmax op
268
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
269 270 271
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
272 273
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
274 275
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
276 277 278 279 280
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
281 282
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
283 284 285 286
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
287 288 289
};

// For Reshape and Reshape2 Op
290
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
291
  const lite::Tensor* x{};
292 293 294
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
295 296
  lite::Tensor* output{};

297
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
298
  bool inplace{false};
299 300
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
301 302
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
303 304 305 306 307
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
308 309
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
310 311 312 313
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
314 315 316
};

// For Concat op
317
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
318 319 320
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
321
  lite::Tensor* axis_tensor{};
322
  // get a vector of input tensors
323 324
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
325 326 327 328 329 330 331 332 333
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
334 335
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
336 337 338 339
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
340 341
};

342
/// ----------------------- activation operators ----------------------
343
struct ActivationParam : ParamBase {
344
  const lite::Tensor* X{};
345
  lite::Tensor* Out{};
346
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
347
  bool has_active{false};
348 349 350 351 352 353
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
354
  // hard_sigmoid param
355 356
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
357 358 359 360
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
361 362
  // thresholded_relu
  float relu_threshold{1.0f};
363 364
};

365
struct ActivationGradParam : ParamBase {
366 367 368 369 370 371 372
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
373
// For Convolution op
374
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
375 376 377 378 379 380
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
381
  /* paddings type change
382 383 384 385
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
386
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
387
  int groups{1};
H
HappyAngel 已提交
388
  /* dilations type change
389 390 391 392
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
393
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
394 395 396 397 398 399 400 401 402 403 404 405
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
406 407
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
408 409
  // support var_length or not
  bool var_length{false};
410 411
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
412 413
  // for int8
  WITH_INT8_CONFIG
414 415 416

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
417 418
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
419 420 421 422 423
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
424 425
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
426 427 428 429
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
430 431 432
};

// For BatchNorm op
433
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
449 450
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
451 452
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
453 454 455 456 457
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
458 459
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
460 461 462 463
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
464 465 466
};

// For Pooling op
467
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
468 469 470 471 472 473 474
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
475
  /* paddings type change
476 477 478 479
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
480
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
481 482 483 484 485
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
486 487
  // for int8
  WITH_INT8_CONFIG
488 489
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
490 491
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
492 493 494 495 496
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
497 498
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
499 500 501 502
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
503 504 505
};

// For Dropout op
506
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
507 508 509 510 511 512 513 514 515 516 517
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
518
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
519 520
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
521 522 523
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
524 525 526
  int axis{-1};
  int num{0};
  std::vector<int> sections;
527 528
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
529 530
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
531 532 533 534 535
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
536 537
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
538 539 540 541
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
542 543 544
};

// For Transpose op
545
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
546 547
  const lite::Tensor* x{};
  lite::Tensor* output{};
548 549
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
550 551 552
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
553 554
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
555 556
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
557 558 559 560 561
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
562 563
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
564 565 566 567
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
568 569 570
};

/// ----------------------- element wise operators ----------------------
571
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
572 573 574 575
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
576
  // for int8
Z
Zhaolong Xing 已提交
577
  WITH_INT8_CONFIG
J
juncaipeng 已提交
578 579
  float x_input_scale{1.0};
  float y_input_scale{1.0};
580 581
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
582 583
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
584 585 586 587 588
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
589 590
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
591 592 593 594 595 596 597
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
598
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
599
  const lite::Tensor* Y{};
X
xiaogang 已提交
600 601 602
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
603 604 605 606 607 608 609 610 611 612 613 614
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
615
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
616 617 618 619
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

620
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
621 622 623 624 625 626 627
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
628
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
629 630
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
631
  lite::Tensor* shape_tensor{nullptr};
632 633
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
634 635 636 637 638
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
639

640
struct FillConstantBatchSizeLikeParam : ParamBase {
641 642
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
643

644
  std::vector<int> shape{};
645 646 647 648
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
649 650
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
651 652
};

Y
Yan Chunwei 已提交
653
//
654
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
655 656 657 658 659 660 661 662 663 664
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
665
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
666 667
};

668
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
669 670 671 672 673 674
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

675
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
676 677 678 679 680 681
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

Y
Yan Chunwei 已提交
682
/// ----------------------- sgd operators ----------------------
683
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
684 685 686 687 688 689 690 691 692
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
693
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
694 695 696 697 698 699 700 701
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
702
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
703 704 705 706
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
707
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
708 709 710 711 712 713 714 715 716
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
717
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
718 719 720 721 722 723 724
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
725
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
726 727 728 729 730 731
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
732
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
733 734 735 736 737 738
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
739
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
755
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
756 757
  const lite::Tensor* X{};
  lite::Tensor* Out{};
758
  int n{5};
759 760 761
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
762 763 764 765
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
766
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
782
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
783 784 785 786 787
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
788 789 790 791
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
792 793 794
};

/// ----------------------- multiclass_nms operators ----------------------
795
struct MulticlassNmsParam : ParamBase {
796 797 798
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
799
  lite::Tensor* index{};
800 801 802
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
803 804
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
805
  int keep_top_k;
806
  bool normalized{true};
Y
Yan Chunwei 已提交
807 808 809
};

/// ----------------------- priorbox operators ----------------------
810
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
830
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
831 832 833 834 835
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
836
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
837 838
};
/// ----------------------- GRU operators ----------------------f
839
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
856
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
857 858 859 860 861 862 863 864 865
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
866
struct LookupTableParam : ParamBase {
867 868
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
869 870 871 872
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

873
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
874 875 876 877 878 879
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

880
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
881 882 883 884 885 886 887 888 889
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

890
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
891 892
  const lite::Tensor* X{};
  lite::Tensor* Out{};
893 894
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
895 896
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
897 898 899 900 901
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
902 903
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
904 905 906 907
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
908 909
};

910
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
911 912
  const lite::Tensor* X{};
  lite::Tensor* Out{};
913
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
914
  int axis{1};
915
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
916
};
917
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
918 919 920 921 922 923 924
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
925
  float epsilon{1e-5f};
T
TianXiaogang 已提交
926
};
Y
Yan Chunwei 已提交
927

928
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
929 930 931 932 933
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

934
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
935 936 937 938 939 940 941
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

942
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
943 944 945 946 947 948 949
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

950
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
951 952 953 954 955 956
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

957
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
958 959 960 961 962
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

963
struct WriteToArrayParam : ParamBase {
964 965 966
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
967 968
};

969
struct ReadFromArrayParam : ParamBase {
970 971 972
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
973 974
};

975
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

989
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
990 991
  const lite::Tensor* X{};
  lite::Tensor* Out{};
992 993 994
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
995
  lite::Tensor* MaxIndex{};
996
#endif
Y
Yan Chunwei 已提交
997 998
};

999
struct SequenceConvParam : ParamBase {
1000 1001 1002 1003 1004 1005 1006 1007
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1008
struct SequencePoolConcatParam : ParamBase {
1009 1010 1011 1012 1013
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1014
struct SearchGroupPaddingParam : ParamBase {
1015 1016 1017 1018 1019 1020 1021
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1022
struct SequenceReshapeParam : ParamBase {
1023 1024 1025 1026 1027
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1028
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1029 1030 1031 1032 1033 1034
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1035 1036 1037 1038 1039 1040
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1041
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1042 1043 1044 1045 1046
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1047
struct SequenceReverseParam : ParamBase {
1048 1049 1050 1051
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1052
struct SequenceConcatParam : ParamBase {
1053 1054 1055 1056
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1057
struct AttentionPaddingMaskParam : ParamBase {
1058 1059 1060 1061 1062 1063 1064 1065
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1066
struct SequenceArithmeticParam : ParamBase {
1067 1068 1069 1070 1071 1072
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1073
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1074 1075 1076 1077 1078 1079
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1080
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1081 1082 1083 1084 1085 1086 1087
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1088
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1089 1090 1091
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1092

1093
struct ReduceParam : ParamBase {
1094 1095 1096 1097 1098 1099 1100
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1101
struct VarConv2DParam : ParamBase {
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1115 1116

  bool fuse_relu{false};
1117 1118
};

Y
Yan Chunwei 已提交
1119
/// ----------------------- shape operators ----------------------
1120
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1121 1122 1123 1124
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1125
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1126 1127 1128 1129 1130 1131
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1132
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1133 1134 1135 1136 1137 1138
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1139 1140 1141 1142 1143
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1144 1145
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1146 1147
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1148 1149 1150 1151 1152
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1153 1154
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1155 1156 1157 1158
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1159
};
Y
Yan Chunwei 已提交
1160

1161
struct AffineChannelParam : ParamBase {
1162 1163 1164 1165 1166 1167 1168
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1169
struct AnchorGeneratorParam : ParamBase {
1170 1171 1172 1173
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1174 1175
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1176 1177 1178 1179 1180

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1181
struct GenerateProposalsParam : ParamBase {
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1192 1193 1194
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1195 1196 1197 1198 1199

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1200
/// ----------------------- squeeze operators ----------------------
1201
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1202 1203 1204 1205
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1206 1207
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1208 1209
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1210 1211 1212 1213 1214
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1215 1216
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1217 1218 1219 1220
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1221 1222
};

1223
struct UnsqueezeParam : ParamBase {
1224 1225 1226 1227
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1228
  const lite::Tensor* axes_tensor{};
1229
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1230 1231
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1232 1233
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1234 1235 1236 1237 1238
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1239 1240
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1241 1242 1243 1244
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1245 1246
};

Y
Yan Chunwei 已提交
1247
/// ----------------------- expand operators ----------------------
1248
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1249 1250 1251 1252 1253 1254
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
1255
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1256 1257 1258 1259 1260 1261
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1262 1263
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1264 1265
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1266 1267 1268 1269 1270
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1271 1272
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1273 1274 1275 1276
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1277
};
1278

1279
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1280 1281 1282 1283 1284
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1285
/// ----------------------- assign operators -----------------------
1286
struct AssignParam : ParamBase {
1287 1288 1289 1290 1291 1292 1293
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1294
};
1295

1296
/// ----------------------- roi_align operators -----------------------
1297
struct RoiAlignParam : ParamBase {
1298 1299 1300 1301 1302 1303 1304 1305 1306
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1307
/// ----------------------- box_clip operators -----------------------
1308
struct BoxClipParam : ParamBase {
1309 1310 1311 1312 1313
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1314
struct RangeParam : ParamBase {
1315 1316 1317 1318 1319 1320
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1321
/// ----------------------- assign_value operators -----------------------
1322
struct AssignValueParam : ParamBase {
1323 1324 1325 1326 1327 1328 1329
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
  lite::Tensor* Out{};
};

1330
/// --------------- sequence_topk_avg_pooling operators ------------------
1331
struct SequenceTopkAvgPoolingParam : ParamBase {
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

/// --------------- search_fc operators ------------------
1342
struct SearchFcParam : ParamBase {
1343 1344 1345 1346 1347 1348
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
};
J
juncaipeng 已提交
1349
/// --------------------- match_matrix_tensor operators --------------------
1350
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
};

/// --------------------- search_seq_depadding operators --------------------
1361
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1362 1363 1364 1365 1366 1367
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1368
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
};

1381
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1382 1383 1384 1385 1386 1387 1388
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1389
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1390 1391 1392 1393 1394 1395 1396 1397
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1398
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1399 1400 1401 1402 1403 1404 1405 1406
  const lite::Tensor* cond{};
  std::vector<lite::Tensor*> x{};
  std::vector<lite::Tensor*> outs{};
  cpp::BlockDesc* sub_block{};
  Scope* scope{};
  bool is_scalar_condition{};
};

1407
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1408 1409 1410 1411 1412 1413
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1414
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1424
/// --------------------- instance_norm operators --------------------
1425
struct InstanceNormParam : ParamBase {
1426 1427 1428 1429 1430 1431 1432 1433
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
H
HappyAngel 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
/// --------------------- group_norm operators --------------------
struct GroupNormParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
  int groups;
  int channels;
};

1447
/// --------------------- grid sampler operators --------------------
1448
struct GridSamplerParam : ParamBase {
1449 1450 1451 1452
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1453
struct LstmParam : ParamBase {
X
xiaogang 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1469

1470
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1471 1472 1473 1474 1475 1476 1477
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1510
  std::string precision{};
1511 1512
};

C
Cwndmiao 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

H
HappyAngel 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
// For DeformableConvolution op
struct DeformableConvParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* offset{};
  lite::Tensor* mask{};
  lite::Tensor* output{};
  int deformable_groups{1};
  int im2col_step{1};
  bool modulated{true};  // True-v2 False-v1
  std::string data_format{"Anylayout"};
  // convolution parameter
  ConvParam conv_param;
  // support var_length or not
  bool var_length{false};
  // only used in conv_transpose.
  std::vector<int> output_size;
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

1566 1567 1568 1569 1570
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
Y
yiicy 已提交
1571 1572 1573 1574 1575
struct WhereIndexParam : ParamBase {
  const lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};
};

Y
Yan Chunwei 已提交
1576 1577 1578
}  // namespace operators
}  // namespace lite
}  // namespace paddle