op_params.h 40.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
Y
Yan Chunwei 已提交
24 25 26
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/desc_apis.h"
#include "lite/utils/all.h"
27
#include "lite/utils/variant.h"
Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

36 37 38 39 40 41 42 43 44 45
struct ParamBase {
 public:
  const std::vector<Tensor*>* input_tensor_ptrs() const { return nullptr; }
  std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
46 47 48
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
49
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
50
  std::vector<float> weight_scale{}; \
51
  float output_scale{1.0f};          \
52
  int bit_length{8};
Y
Yan Chunwei 已提交
53 54

/// ----------------------- Functional operators ------------------------------
55
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
56 57 58 59 60
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

61
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
62 63 64 65 66 67
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
68
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
69 70
  const lite::Tensor* x{};
  lite::Tensor* y{};
71
  int process_type{0};
Y
Yan Chunwei 已提交
72 73
};

74
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
75 76
  const lite::Tensor* x{};
  lite::Tensor* y{};
77
  int process_type{0};
Y
Yan Chunwei 已提交
78 79
};

80
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
81 82 83 84 85
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

86
struct SubgraphParam : ParamBase {
87 88 89 90 91 92 93
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
  int sub_block_idx{-1};
  cpp::BlockDesc* sub_block_desc{nullptr};
  Scope* scope{nullptr};
Y
Yan Chunwei 已提交
94 95 96 97
};

/// -------------------------- NN operators ------------------------------------

98
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
99 100 101 102 103 104
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
105
  std::string activation_type{""};
106
  bool padding_weights{false};
Y
Yan Chunwei 已提交
107 108
  // for int8
  WITH_INT8_CONFIG
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
127 128 129 130 131 132 133
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
134
// For Interpolate Op
135
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
136 137 138
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
139
  std::vector<const lite::Tensor*> SizeTensor;
140
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
141 142 143 144 145

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
146
  int align_mode{1};
Y
Yan Chunwei 已提交
147
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
148
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
149 150 151
};

// For Mul Op
152
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
153 154 155 156 157 158 159 160
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
176 177
};

178
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
179 180 181 182 183 184 185 186 187 188
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

189
// For ReduceMean Op
190
struct ReduceMeanParam : ParamBase {
191 192 193 194 195 196 197 198
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
199
struct StackParam : ParamBase {
200 201 202 203 204 205
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
206
// For Power Op
207
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
208 209 210 211 212 213 214 215
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

216
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
217 218 219 220 221 222 223
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
224
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
225 226 227 228 229 230 231 232 233 234 235 236
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
237
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
238 239 240 241 242 243
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
259 260 261
};

// For Softmax op
262
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
263 264 265
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
281 282 283
};

// For Reshape and Reshape2 Op
284
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
285
  const lite::Tensor* x{};
286 287 288
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
289 290
  lite::Tensor* output{};

291
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
292
  bool inplace{false};
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
308 309 310
};

// For Concat op
311
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
312 313 314
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
315
  lite::Tensor* axis_tensor{};
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
334 335
};

336
/// ----------------------- activation operators ----------------------
337
struct ActivationParam : ParamBase {
338
  const lite::Tensor* X{};
339 340 341
  lite::Tensor* Out{};
  lite_api::ActivationType active_type;
  bool has_active{false};
342 343 344 345 346 347
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
348
  // hard_sigmoid param
349 350
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
351 352 353 354
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
355 356
};

357
struct ActivationGradParam : ParamBase {
358 359 360 361 362 363 364
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
365
// For Convolution op
366
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
367 368 369 370 371 372
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
373 374 375 376 377 378
  /* paddings type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
379
  int groups{1};
H
HappyAngel 已提交
380 381 382 383 384 385
  /* dilations type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
386 387 388 389 390 391 392 393 394 395 396 397
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
398 399
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
400 401
  // support var_length or not
  bool var_length{false};
402 403
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
404 405
  // for int8
  WITH_INT8_CONFIG
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
422 423 424
};

// For BatchNorm op
425
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
456 457 458
};

// For Pooling op
459
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
460 461 462 463 464 465 466
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
467 468 469 470 471 472
  /* paddings type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
473 474 475 476 477
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
478 479
  // for int8
  WITH_INT8_CONFIG
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
495 496 497
};

// For Dropout op
498
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
499 500 501 502 503 504 505 506 507 508 509
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
510
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
511 512
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
513 514 515
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
516 517 518
  int axis{-1};
  int num{0};
  std::vector<int> sections;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
534 535 536
};

// For Transpose op
537
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
538 539
  const lite::Tensor* x{};
  lite::Tensor* output{};
540 541
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
542 543 544
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
560 561 562
};

/// ----------------------- element wise operators ----------------------
563
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
564 565 566 567
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
568
  // for int8
Z
Zhaolong Xing 已提交
569
  WITH_INT8_CONFIG
J
juncaipeng 已提交
570 571
  float x_input_scale{1.0};
  float y_input_scale{1.0};
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
590
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
591
  const lite::Tensor* Y{};
X
xiaogang 已提交
592 593 594
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
595 596 597 598 599 600 601 602 603 604 605 606
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
607
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
608 609 610 611
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

612
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
613 614 615 616 617 618 619
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
620
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
621 622
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
623
  lite::Tensor* shape_tensor{nullptr};
624 625
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
626 627 628 629 630
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
631

632
struct FillConstantBatchSizeLikeParam : ParamBase {
633 634
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
635

636
  std::vector<int> shape{};
637 638 639 640
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
641 642
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
643 644
};

Y
Yan Chunwei 已提交
645
//
646
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
647 648 649 650 651 652 653 654 655 656
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
657
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
658 659
};

660
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
661 662 663 664 665 666
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

667
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
668 669 670 671 672 673
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

Y
Yan Chunwei 已提交
674
/// ----------------------- sgd operators ----------------------
675
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
676 677 678 679 680 681 682 683 684
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
685
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
686 687 688 689 690 691 692 693
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
694
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
695 696 697 698
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
699
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
700 701 702 703 704 705 706 707 708
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
709
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
710 711 712 713 714 715 716
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
717
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
718 719 720 721 722 723
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
724
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
725 726 727 728 729 730
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
731
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
747
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
748 749
  const lite::Tensor* X{};
  lite::Tensor* Out{};
750
  int n{5};
751 752 753
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
754 755 756 757
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
758
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
774
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
775 776 777 778 779
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
780 781 782 783
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
784 785 786
};

/// ----------------------- multiclass_nms operators ----------------------
787
struct MulticlassNmsParam : ParamBase {
788 789 790
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
791
  lite::Tensor* index{};
792 793 794
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
795 796
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
797
  int keep_top_k;
798
  bool normalized{true};
Y
Yan Chunwei 已提交
799 800 801
};

/// ----------------------- priorbox operators ----------------------
802
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
822
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
823 824 825 826 827
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
828
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
829 830
};
/// ----------------------- GRU operators ----------------------f
831
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
848
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
849 850 851 852 853 854 855 856 857
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
858
struct LookupTableParam : ParamBase {
859 860
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
861 862 863 864
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

865
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
866 867 868 869 870 871
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

872
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
873 874 875 876 877 878 879 880 881
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

882
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
883 884
  const lite::Tensor* X{};
  lite::Tensor* Out{};
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
900 901
};

902
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
903 904
  const lite::Tensor* X{};
  lite::Tensor* Out{};
905
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
906
  int axis{1};
907
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
908
};
909
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
910 911 912 913 914 915 916
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
917
  float epsilon{1e-5f};
T
TianXiaogang 已提交
918
};
Y
Yan Chunwei 已提交
919

920
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
921 922 923 924 925
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

926
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
927 928 929 930 931 932 933
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

934
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
935 936 937 938 939 940 941
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

942
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
943 944 945 946 947 948
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

949
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
950 951 952 953 954
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

955
struct WriteToArrayParam : ParamBase {
956 957 958
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
959 960
};

961
struct ReadFromArrayParam : ParamBase {
962 963 964
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
965 966
};

967
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

981
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
982 983
  const lite::Tensor* X{};
  lite::Tensor* Out{};
984 985 986
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
987
  lite::Tensor* MaxIndex{};
988
#endif
Y
Yan Chunwei 已提交
989 990
};

991
struct SequenceConvParam : ParamBase {
992 993 994 995 996 997 998 999
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1000
struct SequencePoolConcatParam : ParamBase {
1001 1002 1003 1004 1005
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1006
struct SearchGroupPaddingParam : ParamBase {
1007 1008 1009 1010 1011 1012 1013
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1014
struct SequenceReshapeParam : ParamBase {
1015 1016 1017 1018 1019
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1020
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1021 1022 1023 1024 1025 1026
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1027 1028 1029 1030 1031 1032
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1033
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1034 1035 1036 1037 1038
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1039
struct SequenceReverseParam : ParamBase {
1040 1041 1042 1043
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1044
struct SequenceConcatParam : ParamBase {
1045 1046 1047 1048
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1049
struct AttentionPaddingMaskParam : ParamBase {
1050 1051 1052 1053 1054 1055 1056 1057
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1058
struct SequenceArithmeticParam : ParamBase {
1059 1060 1061 1062 1063 1064
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1065
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1066 1067 1068 1069 1070 1071
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1072
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1073 1074 1075 1076 1077 1078 1079
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1080
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1081 1082 1083
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1084

1085
struct ReduceParam : ParamBase {
1086 1087 1088 1089 1090 1091 1092
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1093
struct VarConv2DParam : ParamBase {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1107 1108

  bool fuse_relu{false};
1109 1110
};

Y
Yan Chunwei 已提交
1111
/// ----------------------- shape operators ----------------------
1112
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1113 1114 1115 1116
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1117
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1118 1119 1120 1121 1122 1123
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1124
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1125 1126 1127 1128 1129 1130
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1131 1132 1133 1134 1135
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1151
};
Y
Yan Chunwei 已提交
1152

1153
struct AffineChannelParam : ParamBase {
1154 1155 1156 1157 1158 1159 1160
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1161
struct AnchorGeneratorParam : ParamBase {
1162 1163 1164 1165
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1166 1167
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1168 1169 1170 1171 1172

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1173
struct GenerateProposalsParam : ParamBase {
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1184 1185 1186
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1187 1188 1189 1190 1191

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1192
/// ----------------------- squeeze operators ----------------------
1193
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1194 1195 1196 1197
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1213 1214
};

1215
struct UnsqueezeParam : ParamBase {
1216 1217 1218 1219
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1220
  const lite::Tensor* axes_tensor{};
1221
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1237 1238
};

Y
Yan Chunwei 已提交
1239
/// ----------------------- expand operators ----------------------
1240
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1241 1242 1243 1244 1245 1246
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
1247
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1248 1249 1250 1251 1252 1253
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() {
    if (UNLIKELY(input_tensor_ptrs_cache_)) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  const std::vector<Tensor*>* output_tensor_ptrs() {
    if (UNLIKELY(output_tensor_ptrs_cache_)) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1269
};
1270

1271
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1272 1273 1274 1275 1276
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1277
/// ----------------------- assign operators -----------------------
1278
struct AssignParam : ParamBase {
1279 1280 1281
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1282

1283
/// ----------------------- roi_align operators -----------------------
1284
struct RoiAlignParam : ParamBase {
1285 1286 1287 1288 1289 1290 1291 1292 1293
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1294
/// ----------------------- box_clip operators -----------------------
1295
struct BoxClipParam : ParamBase {
1296 1297 1298 1299 1300
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1301
struct RangeParam : ParamBase {
1302 1303 1304 1305 1306 1307
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1308
/// ----------------------- assign_value operators -----------------------
1309
struct AssignValueParam : ParamBase {
1310 1311 1312 1313 1314 1315 1316
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
  lite::Tensor* Out{};
};

1317
/// --------------- sequence_topk_avg_pooling operators ------------------
1318
struct SequenceTopkAvgPoolingParam : ParamBase {
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

/// --------------- search_fc operators ------------------
1329
struct SearchFcParam : ParamBase {
1330 1331 1332 1333 1334 1335
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
};
J
juncaipeng 已提交
1336
/// --------------------- match_matrix_tensor operators --------------------
1337
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
};

/// --------------------- search_seq_depadding operators --------------------
1348
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1349 1350 1351 1352 1353 1354
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1355
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
};

1368
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1369 1370 1371 1372 1373 1374 1375
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1376
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1377 1378 1379 1380 1381 1382 1383 1384
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1385
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1386 1387 1388 1389 1390 1391 1392 1393
  const lite::Tensor* cond{};
  std::vector<lite::Tensor*> x{};
  std::vector<lite::Tensor*> outs{};
  cpp::BlockDesc* sub_block{};
  Scope* scope{};
  bool is_scalar_condition{};
};

1394
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1395 1396 1397 1398 1399 1400
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1401
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1411
/// --------------------- instance_norm operators --------------------
1412
struct InstanceNormParam : ParamBase {
1413 1414 1415 1416 1417 1418 1419 1420
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
1421
/// --------------------- grid sampler operators --------------------
1422
struct GridSamplerParam : ParamBase {
1423 1424 1425 1426
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1427
struct LstmParam : ParamBase {
X
xiaogang 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1443

1444
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1445 1446 1447 1448 1449 1450 1451
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
};

Y
Yan Chunwei 已提交
1486 1487 1488
}  // namespace operators
}  // namespace lite
}  // namespace paddle