Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
78f76834
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
78f76834
编写于
11月 16, 2019
作者:
H
hong19860320
提交者:
GitHub
11月 16, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[LITE][X86] Add search_aligned_mat_mul and search_seq_fc op for X86 (#2428)
上级
603b810f
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
899 addition
and
0 deletion
+899
-0
lite/kernels/x86/CMakeLists.txt
lite/kernels/x86/CMakeLists.txt
+4
-0
lite/kernels/x86/search_aligned_mat_mul_compute.cc
lite/kernels/x86/search_aligned_mat_mul_compute.cc
+27
-0
lite/kernels/x86/search_aligned_mat_mul_compute.h
lite/kernels/x86/search_aligned_mat_mul_compute.h
+83
-0
lite/kernels/x86/search_seq_fc_compute.cc
lite/kernels/x86/search_seq_fc_compute.cc
+27
-0
lite/kernels/x86/search_seq_fc_compute.h
lite/kernels/x86/search_seq_fc_compute.h
+73
-0
lite/operators/CMakeLists.txt
lite/operators/CMakeLists.txt
+3
-0
lite/operators/op_params.h
lite/operators/op_params.h
+8
-0
lite/operators/search_aligned_mat_mul_op.cc
lite/operators/search_aligned_mat_mul_op.cc
+101
-0
lite/operators/search_aligned_mat_mul_op.h
lite/operators/search_aligned_mat_mul_op.h
+47
-0
lite/operators/search_seq_fc_op.cc
lite/operators/search_seq_fc_op.cc
+80
-0
lite/operators/search_seq_fc_op.h
lite/operators/search_seq_fc_op.h
+47
-0
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+2
-0
lite/tests/kernels/search_aligned_mat_mul_compute_test.cc
lite/tests/kernels/search_aligned_mat_mul_compute_test.cc
+220
-0
lite/tests/kernels/search_seq_fc_compute_test.cc
lite/tests/kernels/search_seq_fc_compute_test.cc
+177
-0
未找到文件。
lite/kernels/x86/CMakeLists.txt
浏览文件 @
78f76834
...
...
@@ -47,6 +47,10 @@ add_kernel(search_grnn_compute_x86 X86 basic SRCS search_grnn_compute.cc DEPS ${
add_kernel
(
sequence_concat_compute_x86 X86 basic SRCS sequence_concat_compute.cc DEPS
${
lite_kernel_deps
}
)
add_kernel
(
var_conv_2d_compute_x86 X86 basic SRCS var_conv_2d_compute.cc DEPS
${
lite_kernel_deps
}
blas fluid_data_type
)
# for content-dnn specific
add_kernel
(
search_aligned_mat_mul_compute_x86 X86 extra SRCS search_aligned_mat_mul_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
add_kernel
(
search_seq_fc_compute_x86 X86 extra SRCS search_seq_fc_compute.cc DEPS
${
lite_kernel_deps
}
blas
)
if
(
NOT LITE_WITH_X86
)
return
()
endif
()
...
...
lite/kernels/x86/search_aligned_mat_mul_compute.cc
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/search_aligned_mat_mul_compute.h"
REGISTER_LITE_KERNEL
(
search_aligned_mat_mul
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
SearchAlignedMatMulCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"Y"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/search_aligned_mat_mul_compute.h
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/backends/x86/math/blas.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/types.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
SearchAlignedMatMulCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
MatMulParam
;
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
MatMulParam
>
();
auto
x
=
param
.
X
;
auto
y
=
param
.
Y
;
auto
out
=
param
.
Out
;
bool
x_transpose
=
param
.
transpose_X
;
bool
y_transpose
=
param
.
transpose_Y
;
float
alpha
=
param
.
alpha
;
const
auto
x_dims
=
x
->
dims
();
const
auto
y_dims
=
y
->
dims
();
const
auto
&
x_lod
=
x
->
lod
();
const
auto
&
y_lod
=
y
->
lod
();
const
auto
&
x_lod_0
=
x_lod
[
0
];
const
auto
&
y_lod_0
=
y_lod
[
0
];
int
seq_num
=
x_lod_0
.
size
()
-
1
;
int
x_inner_size
=
x_dims
[
1
];
int
y_inner_size
=
y_dims
[
1
];
int
x_batch_size
=
x_lod_0
[
1
];
int
y_batch_size
=
y_lod_0
[
1
];
int
M
=
x_transpose
?
x_inner_size
:
x_batch_size
;
int
N
=
y_transpose
?
y_batch_size
:
y_inner_size
;
int
X_K
=
x_transpose
?
x_batch_size
:
x_inner_size
;
int
Y_K
=
y_transpose
?
y_inner_size
:
y_batch_size
;
CHECK_EQ
(
X_K
,
Y_K
)
<<
"K of Input(X) and Input(Y) is not equal"
;
int
K
=
X_K
;
lite
::
x86
::
math
::
MatDescriptor
mat_dim_a
;
mat_dim_a
.
height_
=
M
;
mat_dim_a
.
width_
=
K
;
mat_dim_a
.
stride_
=
x_batch_size
*
x_inner_size
;
mat_dim_a
.
batch_size_
=
seq_num
;
mat_dim_a
.
trans_
=
x_transpose
;
lite
::
x86
::
math
::
MatDescriptor
mat_dim_b
;
mat_dim_b
.
height_
=
K
;
mat_dim_b
.
width_
=
N
;
mat_dim_b
.
stride_
=
y_batch_size
*
y_inner_size
;
mat_dim_b
.
batch_size_
=
seq_num
;
mat_dim_b
.
trans_
=
y_transpose
;
auto
blas
=
lite
::
x86
::
math
::
GetBlas
<
lite
::
TargetType
::
kX86
,
T
>
(
context
);
blas
.
MatMul
(
*
x
,
mat_dim_a
,
*
y
,
mat_dim_b
,
static_cast
<
T
>
(
alpha
),
out
,
T
(
0
));
}
virtual
~
SearchAlignedMatMulCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/kernels/x86/search_seq_fc_compute.cc
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/x86/search_seq_fc_compute.h"
REGISTER_LITE_KERNEL
(
search_seq_fc
,
kX86
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
x86
::
SearchSeqFcCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"W"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"b"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/search_seq_fc_compute.h
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "lite/backends/x86/math/blas.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/types.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
x86
{
template
<
typename
T
>
class
SearchSeqFcCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
SearchSeqFcParam
;
void
Run
()
override
{
auto
&
context
=
ctx_
->
As
<
X86Context
>
();
auto
&
param
=
*
param_
.
get_mutable
<
operators
::
SearchSeqFcParam
>
();
auto
x
=
param
.
x
;
auto
w
=
param
.
w
;
auto
b
=
param
.
b
;
auto
out
=
param
.
out
;
auto
out_size
=
param
.
out_size
;
const
auto
x_dims
=
x
->
dims
();
const
auto
w_dims
=
w
->
dims
();
const
auto
out_dims
=
out
->
dims
();
CHECK_EQ
(
x_dims
.
size
(),
2
)
<<
"The Input(X) should be 2-D tensor."
;
CHECK_EQ
(
w_dims
.
size
(),
2
)
<<
"W should be 2-D tensor."
;
CHECK_EQ
(
out_dims
.
size
(),
2
)
<<
"The Output(Out) should be 2-D tensor."
;
CHECK_EQ
(
x_dims
[
1
],
w_dims
[
1
])
<<
"Wrong shape: x_dims[1] != w_dims[1]"
;
CHECK_EQ
(
w_dims
[
0
],
out_size
)
<<
"Wrong shape: w_dims[0] != out_size"
;
CHECK_EQ
(
out_dims
[
0
],
x_dims
[
0
])
<<
"Wrong shape: out_dims[0] != x_dims[0]"
;
CHECK_EQ
(
out_dims
[
1
],
out_size
)
<<
"Wrong shape: out_dims[1] != out_size"
;
auto
blas
=
lite
::
x86
::
math
::
GetBlas
<
lite
::
TargetType
::
kX86
,
T
>
(
context
);
blas
.
MatMul
(
*
x
,
false
,
*
w
,
true
,
out
);
if
(
b
!=
nullptr
)
{
auto
b_dims
=
b
->
dims
();
CHECK_EQ
(
b_dims
.
size
(),
1
)
<<
"b should be 1-D tensor."
;
CHECK_EQ
(
b_dims
[
0
],
w_dims
[
0
])
<<
"Wrong shape: b_dims[0] != w_dims[0]"
;
int
M
=
x_dims
[
0
];
int
N
=
w_dims
[
0
];
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
blas
.
AXPY
(
N
,
static_cast
<
T
>
(
1
),
b
->
data
<
T
>
(),
out
->
mutable_data
<
T
>
()
+
i
*
N
);
}
}
}
virtual
~
SearchSeqFcCompute
()
=
default
;
};
}
// namespace x86
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
lite/operators/CMakeLists.txt
浏览文件 @
78f76834
...
...
@@ -114,6 +114,9 @@ add_operator(increment_op extra SRCS increment_op.cc DEPS ${op_DEPS})
add_operator
(
layer_norm_op extra SRCS layer_norm_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
sequence_softmax_op extra SRCS sequence_softmax_op.cc DEPS
${
op_DEPS
}
)
# for content-dnn specific
add_operator
(
search_aligned_mat_mul_op extra SRCS search_aligned_mat_mul_op.cc DEPS
${
op_DEPS
}
)
add_operator
(
search_seq_fc_op extra SRCS search_seq_fc_op.cc DEPS
${
op_DEPS
}
)
if
(
NOT LITE_WITH_X86
)
lite_cc_test
(
test_fc_op SRCS fc_op_test.cc
...
...
lite/operators/op_params.h
浏览文件 @
78f76834
...
...
@@ -89,6 +89,14 @@ struct FcParam {
WITH_INT8_CONFIG
};
struct
SearchSeqFcParam
{
lite
::
Tensor
*
x
{
nullptr
};
lite
::
Tensor
*
w
{
nullptr
};
lite
::
Tensor
*
b
{
nullptr
};
lite
::
Tensor
*
out
{
nullptr
};
int
out_size
;
};
// For Interpolate Op
struct
InterpolateParam
{
lite
::
Tensor
*
X
{};
...
...
lite/operators/search_aligned_mat_mul_op.cc
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/search_aligned_mat_mul_op.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
SearchAlignedMatMulOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
X
);
CHECK_OR_FALSE
(
param_
.
Y
);
CHECK_OR_FALSE
(
param_
.
Out
);
return
true
;
}
bool
SearchAlignedMatMulOpLite
::
InferShape
()
const
{
const
auto
x_dims
=
param_
.
X
->
dims
();
const
auto
y_dims
=
param_
.
Y
->
dims
();
const
auto
&
x_lod
=
param_
.
X
->
lod
();
const
auto
&
y_lod
=
param_
.
Y
->
lod
();
bool
x_transpose
=
param_
.
transpose_X
;
bool
y_transpose
=
param_
.
transpose_Y
;
CHECK_EQ
(
x_dims
.
size
(),
2
)
<<
"X should be 2-D tensor"
;
CHECK_EQ
(
y_dims
.
size
(),
2
)
<<
"Y should be 2-D tensor"
;
CHECK
(
!
x_lod
.
empty
())
<<
"The Input(X) must hold lod info."
;
CHECK
(
!
y_lod
.
empty
())
<<
"The Input(Y) must hold lod info."
;
const
auto
&
x_lod_0
=
x_lod
[
0
];
const
auto
&
y_lod_0
=
y_lod
[
0
];
CHECK_GE
(
x_lod_0
.
size
(),
2
)
<<
"The Input(X)'s lod info is corrupted."
;
CHECK_GE
(
y_lod_0
.
size
(),
2
)
<<
"The Input(Y)'s lod info is corrupted."
;
CHECK_EQ
(
x_dims
[
0
],
static_cast
<
int64_t
>
(
x_lod_0
.
back
()))
<<
"The Input(X)'s lod info mismatches the actual tensor shape."
;
CHECK_EQ
(
y_dims
[
0
],
static_cast
<
int64_t
>
(
y_lod_0
.
back
()))
<<
"The Input(Y)'s lod info mismatches the actual tensor shape."
;
CHECK_EQ
(
x_lod_0
.
size
(),
y_lod_0
.
size
())
<<
"The Length of X and Y must be equal."
;
int
seq_num
=
x_lod_0
.
size
()
-
1
;
int
x_inner_size
=
x_dims
[
1
];
int
y_inner_size
=
y_dims
[
1
];
int
x_batch_size
=
x_lod_0
[
1
];
int
y_batch_size
=
y_lod_0
[
1
];
int
M
=
x_transpose
?
x_inner_size
:
x_batch_size
;
int
N
=
y_transpose
?
y_batch_size
:
y_inner_size
;
int
X_K
=
x_transpose
?
x_batch_size
:
x_inner_size
;
int
Y_K
=
y_transpose
?
y_inner_size
:
y_batch_size
;
CHECK_EQ
(
X_K
,
Y_K
)
<<
"K of Input(X) and Input(Y) is not equal"
;
LoD
out_lod
;
std
::
vector
<
uint64_t
>
out_lod_0
(
seq_num
+
1
);
out_lod_0
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
seq_num
;
i
++
)
{
out_lod_0
[
i
+
1
]
=
out_lod_0
[
i
]
+
M
;
}
out_lod
.
push_back
(
out_lod_0
);
DDim
out_dims
(
{
static_cast
<
int64_t
>
(
out_lod_0
.
back
()),
static_cast
<
int64_t
>
(
N
)});
param_
.
Out
->
set_lod
(
out_lod
);
param_
.
Out
->
Resize
(
out_dims
);
return
true
;
}
bool
SearchAlignedMatMulOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
CHECK
(
!
op_desc
.
Input
(
"X"
).
empty
());
CHECK
(
!
op_desc
.
Input
(
"Y"
).
empty
());
CHECK
(
!
op_desc
.
Output
(
"Out"
).
empty
());
auto
X
=
op_desc
.
Input
(
"X"
).
front
();
auto
Y
=
op_desc
.
Input
(
"Y"
).
front
();
auto
Out
=
op_desc
.
Output
(
"Out"
).
front
();
param_
.
X
=
GetVar
<
lite
::
Tensor
>
(
scope
,
X
);
param_
.
Y
=
GetVar
<
lite
::
Tensor
>
(
scope
,
Y
);
param_
.
Out
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
Out
);
param_
.
transpose_X
=
op_desc
.
GetAttr
<
bool
>
(
"transpose_X"
);
param_
.
transpose_Y
=
op_desc
.
GetAttr
<
bool
>
(
"transpose_Y"
);
param_
.
alpha
=
op_desc
.
GetAttr
<
float
>
(
"alpha"
);
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
search_aligned_mat_mul
,
paddle
::
lite
::
operators
::
SearchAlignedMatMulOpLite
);
lite/operators/search_aligned_mat_mul_op.h
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
SearchAlignedMatMulOpLite
:
public
OpLite
{
public:
SearchAlignedMatMulOpLite
()
{}
explicit
SearchAlignedMatMulOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
;
std
::
string
DebugString
()
const
override
{
return
"search_aligned_mat_mul"
;
}
private:
mutable
MatMulParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
lite/operators/search_seq_fc_op.cc
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/search_seq_fc_op.h"
#include "lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
SearchSeqFcOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
x
);
CHECK_OR_FALSE
(
param_
.
w
);
CHECK_OR_FALSE
(
param_
.
out
);
return
true
;
}
bool
SearchSeqFcOpLite
::
InferShape
()
const
{
const
auto
x_dims
=
param_
.
x
->
dims
();
const
auto
w_dims
=
param_
.
w
->
dims
();
const
auto
&
x_lod
=
param_
.
x
->
lod
();
auto
out_size
=
param_
.
out_size
;
CHECK_EQ
(
x_dims
.
size
(),
2
)
<<
"The Input(X) should be 2-D tensor."
;
CHECK
(
!
x_lod
.
empty
())
<<
"The Input(X) must hold lod info."
;
const
auto
&
x_lod_0
=
x_lod
[
0
];
CHECK_GE
(
x_lod_0
.
size
(),
2
)
<<
"The Input(X)'s lod info is corrupted."
;
CHECK_EQ
(
x_dims
[
0
],
static_cast
<
int64_t
>
(
x_lod_0
.
back
()))
<<
"The Input(X)'s lod info mismatches the actual tensor shape."
;
CHECK_EQ
(
w_dims
.
size
(),
2
)
<<
"W should be 2-D tensor."
;
CHECK_EQ
(
x_dims
[
1
],
w_dims
[
1
])
<<
"Wrong shape: x_dims[1] != w_dims[1]"
;
CHECK_EQ
(
w_dims
[
0
],
out_size
)
<<
"Wrong shape: w_dims[0] != out_size"
;
if
(
param_
.
b
!=
nullptr
)
{
const
auto
b_dims
=
param_
.
b
->
dims
();
CHECK_EQ
(
b_dims
.
size
(),
1
)
<<
"b should be 1-D tensor."
;
CHECK_EQ
(
b_dims
[
0
],
w_dims
[
0
])
<<
"Wrong shape: b_dims[0] != w_dims[0]"
;
}
param_
.
out
->
set_lod
(
x_lod
);
param_
.
out
->
Resize
({
x_dims
[
0
],
w_dims
[
0
]});
return
true
;
}
bool
SearchSeqFcOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
{
CHECK
(
!
op_desc
.
Input
(
"X"
).
empty
());
CHECK
(
!
op_desc
.
Input
(
"W"
).
empty
());
CHECK
(
!
op_desc
.
Output
(
"Out"
).
empty
());
auto
x
=
op_desc
.
Input
(
"X"
).
front
();
auto
w
=
op_desc
.
Input
(
"W"
).
front
();
auto
out
=
op_desc
.
Output
(
"Out"
).
front
();
param_
.
x
=
scope
->
FindVar
(
x
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
w
=
scope
->
FindVar
(
w
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
out
=
scope
->
FindVar
(
out
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
out_size
=
op_desc
.
GetAttr
<
int
>
(
"out_size"
);
bool
has_bias
=
op_desc
.
GetAttr
<
bool
>
(
"has_bias"
);
if
(
has_bias
)
{
CHECK
(
!
op_desc
.
Input
(
"b"
).
empty
());
auto
b
=
op_desc
.
Input
(
"b"
).
front
();
param_
.
b
=
scope
->
FindVar
(
b
)
->
GetMutable
<
lite
::
Tensor
>
();
}
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
search_seq_fc
,
paddle
::
lite
::
operators
::
SearchSeqFcOpLite
);
lite/operators/search_seq_fc_op.h
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
class
SearchSeqFcOpLite
:
public
OpLite
{
public:
SearchSeqFcOpLite
()
{}
explicit
SearchSeqFcOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
bool
AttachImpl
(
const
cpp
::
OpDesc
&
op_desc
,
lite
::
Scope
*
scope
)
override
;
std
::
string
DebugString
()
const
override
{
return
"search_seq_fc"
;
}
private:
mutable
SearchSeqFcParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/CMakeLists.txt
浏览文件 @
78f76834
...
...
@@ -39,6 +39,8 @@ if(LITE_BUILD_EXTRA)
lite_cc_test
(
test_kernel_anchor_generator_compute SRCS anchor_generator_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
#lite_cc_test(test_kernel_generate_proposals_compute SRCS generate_proposals_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_roi_align_compute SRCS roi_align_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_kernel_search_aligned_mat_mul_compute SRCS search_aligned_mat_mul_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_search_seq_fc_compute SRCS search_seq_fc_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
endif
()
lite_cc_test
(
test_kernel_pad2d_compute SRCS pad2d_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
lite_cc_test
(
test_kernel_prior_box_compute SRCS prior_box_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/search_aligned_mat_mul_compute_test.cc
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
namespace
paddle
{
namespace
lite
{
class
SearchAlignedMatMulComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
x_
=
"X"
;
std
::
string
y_
=
"Y"
;
bool
x_transpose_
;
bool
y_transpose_
;
float
alpha_
;
std
::
string
out_
=
"Out"
;
DDim
x_dims_
;
DDim
y_dims_
;
LoD
x_lod_
;
LoD
y_lod_
;
public:
SearchAlignedMatMulComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
bool
x_transpose
,
bool
y_transpose
,
float
alpha
,
const
DDim
&
x_dims
,
const
DDim
&
y_dims
,
const
LoD
&
x_lod
,
const
LoD
&
y_lod
)
:
TestCase
(
place
,
alias
),
x_transpose_
(
x_transpose
),
y_transpose_
(
y_transpose
),
alpha_
(
alpha
),
x_dims_
(
x_dims
),
y_dims_
(
y_dims
),
x_lod_
(
x_lod
),
y_lod_
(
y_lod
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
x
=
scope
->
FindTensor
(
x_
);
auto
y
=
scope
->
FindTensor
(
y_
);
CHECK
(
x
);
CHECK
(
y
);
const
auto
x_data
=
x
->
data
<
float
>
();
const
auto
y_data
=
y
->
data
<
float
>
();
auto
out
=
scope
->
NewTensor
(
out_
);
CHECK
(
out
);
const
auto
x_dims
=
x
->
dims
();
const
auto
y_dims
=
y
->
dims
();
const
auto
&
x_lod
=
x
->
lod
();
const
auto
&
y_lod
=
y
->
lod
();
const
auto
&
x_lod_0
=
x_lod
[
0
];
const
auto
&
y_lod_0
=
y_lod
[
0
];
int
seq_num
=
x_lod_0
.
size
()
-
1
;
int
x_inner_size
=
x_dims
[
1
];
int
y_inner_size
=
y_dims
[
1
];
int
x_batch_size
=
x_lod_0
[
1
];
int
y_batch_size
=
y_lod_0
[
1
];
int
M
=
x_transpose_
?
x_inner_size
:
x_batch_size
;
int
N
=
y_transpose_
?
y_batch_size
:
y_inner_size
;
int
X_K
=
x_transpose_
?
x_batch_size
:
x_inner_size
;
int
Y_K
=
y_transpose_
?
y_inner_size
:
y_batch_size
;
CHECK_EQ
(
X_K
,
Y_K
)
<<
"K of Input(X) and Input(Y) is not equal"
;
int
K
=
X_K
;
int
x_stride
=
x_batch_size
*
x_inner_size
;
int
y_stride
=
y_batch_size
*
y_inner_size
;
int
out_stride
=
M
*
N
;
int
lda
=
x_transpose_
?
M
:
K
;
int
ldb
=
y_transpose_
?
K
:
N
;
int
ldc
=
N
;
LoD
out_lod
;
std
::
vector
<
uint64_t
>
out_lod_0
(
seq_num
+
1
);
out_lod_0
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
seq_num
;
i
++
)
{
out_lod_0
[
i
+
1
]
=
out_lod_0
[
i
]
+
M
;
}
out_lod
.
push_back
(
out_lod_0
);
DDim
out_dims
(
{
static_cast
<
int64_t
>
(
out_lod_0
.
back
()),
static_cast
<
int64_t
>
(
N
)});
out
->
set_lod
(
out_lod
);
out
->
Resize
(
out_dims
);
auto
out_data
=
out
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
seq_num
;
i
++
)
{
basic_gemm
<
float
,
float
>
(
x_transpose_
,
y_transpose_
,
M
,
N
,
K
,
alpha_
,
x_data
+
i
*
x_stride
,
lda
,
y_data
+
i
*
y_stride
,
ldb
,
0
,
out_data
+
i
*
out_stride
,
ldc
,
nullptr
,
false
,
false
);
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"search_aligned_mat_mul"
);
op_desc
->
SetInput
(
"X"
,
{
x_
});
op_desc
->
SetInput
(
"Y"
,
{
y_
});
op_desc
->
SetOutput
(
"Out"
,
{
out_
});
op_desc
->
SetAttr
(
"transpose_X"
,
x_transpose_
);
op_desc
->
SetAttr
(
"transpose_Y"
,
y_transpose_
);
op_desc
->
SetAttr
(
"alpha"
,
alpha_
);
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
x_data
(
x_dims_
.
production
());
std
::
vector
<
float
>
y_data
(
y_dims_
.
production
());
fill_data_rand
(
x_data
.
data
(),
-
1.
f
,
1.
f
,
x_dims_
.
production
());
fill_data_rand
(
y_data
.
data
(),
-
1.
f
,
1.
f
,
y_dims_
.
production
());
SetCommonTensor
(
x_
,
x_dims_
,
x_data
.
data
(),
x_lod_
);
SetCommonTensor
(
y_
,
y_dims_
,
y_data
.
data
(),
y_lod_
);
}
};
void
test_search_aligned_mat_mul
(
Place
place
)
{
for
(
int
seq_num
:
{
1
,
2
})
{
for
(
int
x_batch_size
:
{
1
,
3
})
{
for
(
int
x_inner_size
:
{
1
,
5
})
{
for
(
int
out_inner_size
:
{
1
,
4
})
{
for
(
bool
x_transpose
:
{
true
,
false
})
{
for
(
bool
y_transpose
:
{
true
,
false
})
{
for
(
float
alpha
:
{
1.
,
2.
})
{
// infer x_dims and y_dims
int
y_batch_size
;
int
y_inner_size
;
if
(
x_transpose
)
{
if
(
y_transpose
)
{
y_batch_size
=
out_inner_size
;
y_inner_size
=
x_batch_size
;
}
else
{
y_batch_size
=
x_batch_size
;
y_inner_size
=
out_inner_size
;
}
}
else
{
if
(
y_transpose
)
{
y_batch_size
=
out_inner_size
;
y_inner_size
=
x_inner_size
;
}
else
{
y_batch_size
=
x_inner_size
;
y_inner_size
=
out_inner_size
;
}
}
std
::
vector
<
uint64_t
>
x_lod_0
(
seq_num
+
1
);
std
::
vector
<
uint64_t
>
y_lod_0
(
seq_num
+
1
);
x_lod_0
[
0
]
=
0
;
y_lod_0
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
seq_num
;
i
++
)
{
x_lod_0
[
i
+
1
]
=
x_lod_0
[
i
]
+
x_batch_size
;
y_lod_0
[
i
+
1
]
=
y_lod_0
[
i
]
+
y_batch_size
;
}
LoD
x_lod
;
LoD
y_lod
;
x_lod
.
push_back
(
x_lod_0
);
y_lod
.
push_back
(
y_lod_0
);
DDim
x_dims
({
static_cast
<
int64_t
>
(
x_lod_0
.
back
()),
static_cast
<
int64_t
>
(
x_inner_size
)});
DDim
y_dims
({
static_cast
<
int64_t
>
(
y_lod_0
.
back
()),
static_cast
<
int64_t
>
(
y_inner_size
)});
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
SearchAlignedMatMulComputeTester
(
place
,
"def"
,
x_transpose
,
y_transpose
,
alpha
,
x_dims
,
y_dims
,
x_lod
,
y_lod
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
5e-4
);
arena
.
TestPrecision
();
}
}
}
}
}
}
}
}
TEST
(
SearchAlignedMatMul
,
precision
)
{
#ifdef LITE_WITH_X86
Place
place
(
TARGET
(
kX86
));
test_search_aligned_mat_mul
(
place
);
#endif
}
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/search_seq_fc_compute_test.cc
0 → 100644
浏览文件 @
78f76834
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
namespace
paddle
{
namespace
lite
{
class
SearchSeqFcOPTest
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
string
x_
=
"x"
;
std
::
string
w_
=
"w"
;
std
::
string
b_
=
"b"
;
std
::
string
out_
=
"out"
;
DDim
x_dims_
;
DDim
w_dims_
;
DDim
b_dims_
;
LoD
x_lod_
;
bool
has_bias_
;
int
out_size_
;
public:
SearchSeqFcOPTest
(
const
Place
&
place
,
const
std
::
string
&
alias
,
DDim
x_dims
,
DDim
w_dims
,
DDim
b_dims
,
LoD
x_lod
,
bool
has_bias
,
int
out_size
)
:
TestCase
(
place
,
alias
),
x_dims_
(
x_dims
),
w_dims_
(
w_dims
),
b_dims_
(
b_dims
),
x_lod_
(
x_lod
),
has_bias_
(
has_bias
),
out_size_
(
out_size
)
{}
void
RunBaseline
(
Scope
*
scope
)
override
{
auto
x
=
scope
->
FindTensor
(
x_
);
auto
w
=
scope
->
FindTensor
(
w_
);
CHECK
(
x
);
CHECK
(
w
);
auto
out
=
scope
->
NewTensor
(
out_
);
CHECK
(
out
);
const
auto
x_data
=
x
->
data
<
float
>
();
const
auto
w_data
=
w
->
data
<
float
>
();
const
auto
x_dims
=
x
->
dims
();
const
auto
w_dims
=
w
->
dims
();
const
auto
&
x_lod
=
x
->
lod
();
CHECK_EQ
(
x_dims
.
size
(),
2
)
<<
"The Input(X) should be 2-D tensor."
;
CHECK
(
!
x_lod
.
empty
())
<<
"The Input(X) must hold lod info."
;
const
auto
&
x_lod_0
=
x_lod
[
0
];
CHECK_GE
(
x_lod_0
.
size
(),
2
)
<<
"The Input(X)'s lod info is corrupted."
;
CHECK_EQ
(
x_dims
[
0
],
static_cast
<
int64_t
>
(
x_lod_0
.
back
()))
<<
"The Input(X)'s lod info mismatches the actual tensor shape."
;
CHECK_EQ
(
w_dims
.
size
(),
2
)
<<
"W should be 2-D tensor."
;
CHECK_EQ
(
x_dims
[
1
],
w_dims
[
1
])
<<
"Wrong shape: x_dims[1] != w_dims[1]"
;
CHECK_EQ
(
w_dims
[
0
],
out_size_
)
<<
"Wrong shape: w_dims[0] != out_size"
;
const
float
*
b_data
=
nullptr
;
if
(
has_bias_
)
{
auto
b
=
scope
->
FindTensor
(
b_
);
CHECK
(
b
);
auto
b_dims
=
b
->
dims
();
CHECK_EQ
(
b_dims
.
size
(),
1
)
<<
"b should be 1-D tensor."
;
CHECK_EQ
(
b_dims
[
0
],
w_dims
[
0
])
<<
"Wrong shape: b_dims[0] != w_dims[0]"
;
b_data
=
b
->
data
<
float
>
();
}
out
->
set_lod
(
x_lod
);
out
->
Resize
({
x_dims
[
0
],
w_dims
[
0
]});
int
M
=
x_dims
[
0
];
int
K
=
x_dims
[
1
];
int
N
=
w_dims
[
0
];
auto
out_data
=
out
->
mutable_data
<
float
>
();
basic_gemm
<
float
,
float
>
(
false
,
true
,
M
,
N
,
K
,
1.
f
,
x_data
,
K
,
w_data
,
K
,
0
,
out_data
,
N
,
nullptr
,
false
,
false
);
if
(
b_data
!=
nullptr
)
{
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
out_data
[
i
*
N
+
j
]
+=
b_data
[
j
];
}
}
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"search_seq_fc"
);
op_desc
->
SetInput
(
"X"
,
{
x_
});
op_desc
->
SetInput
(
"W"
,
{
w_
});
if
(
has_bias_
)
{
op_desc
->
SetInput
(
"b"
,
{
b_
});
}
op_desc
->
SetAttr
<
bool
>
(
"has_bias"
,
has_bias_
);
op_desc
->
SetAttr
<
int
>
(
"out_size"
,
out_size_
);
op_desc
->
SetOutput
(
"Out"
,
{
out_
});
}
void
PrepareData
()
override
{
std
::
vector
<
float
>
x_data
(
x_dims_
.
production
());
std
::
vector
<
float
>
w_data
(
w_dims_
.
production
());
fill_data_rand
(
x_data
.
data
(),
-
1.
f
,
1.
f
,
x_dims_
.
production
());
fill_data_rand
(
w_data
.
data
(),
-
1.
f
,
1.
f
,
w_dims_
.
production
());
SetCommonTensor
(
x_
,
x_dims_
,
x_data
.
data
(),
x_lod_
);
SetCommonTensor
(
w_
,
w_dims_
,
w_data
.
data
());
if
(
has_bias_
)
{
std
::
vector
<
float
>
b_data
(
b_dims_
.
production
());
fill_data_rand
(
b_data
.
data
(),
-
1.
f
,
1.
f
,
b_dims_
.
production
());
SetCommonTensor
(
b_
,
b_dims_
,
b_data
.
data
());
}
}
};
void
test_search_seq_fc
(
Place
place
)
{
for
(
auto
x_lod_0
:
{
std
::
vector
<
uint64_t
>
({
0
,
1
,
3
}),
std
::
vector
<
uint64_t
>
({
0
,
3
,
4
,
5
})})
{
for
(
auto
feature_size
:
{
2
,
9
})
{
for
(
auto
out_size
:
{
3
,
5
})
{
for
(
auto
has_bias
:
{
true
,
false
})
{
DDim
x_dims
({
static_cast
<
int64_t
>
(
x_lod_0
.
back
()),
feature_size
});
DDim
w_dims
({
out_size
,
feature_size
});
DDim
b_dims
({
has_bias
?
out_size
:
0
});
LoD
x_lod
;
x_lod
.
push_back
(
x_lod_0
);
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
SearchSeqFcOPTest
(
place
,
"def"
,
x_dims
,
w_dims
,
b_dims
,
x_lod
,
has_bias
,
out_size
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
6e-5
);
arena
.
TestPrecision
();
}
}
}
}
}
TEST
(
SearchSeqFcOP
,
precision
)
{
#ifdef LITE_WITH_X86
Place
place
(
TARGET
(
kX86
));
test_search_seq_fc
(
place
);
#endif
}
}
// namespace lite
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录