op_params.h 43.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/desc_apis.h"
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

35 36
struct ParamBase {
 public:
37 38 39 40 41
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
42 43 44 45 46 47

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
48 49 50
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
51
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
52
  std::vector<float> weight_scale{}; \
53
  float output_scale{1.0f};          \
54
  int bit_length{8};
Y
Yan Chunwei 已提交
55 56

/// ----------------------- Functional operators ------------------------------
57
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
58 59 60 61 62
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

63
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
64 65 66 67 68 69
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
70
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
71 72
  const lite::Tensor* x{};
  lite::Tensor* y{};
73
  int process_type{0};
Y
Yan Chunwei 已提交
74 75
};

76
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
77 78
  const lite::Tensor* x{};
  lite::Tensor* y{};
79
  int process_type{0};
Y
Yan Chunwei 已提交
80 81
};

82
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
83 84 85 86 87
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

88
struct SubgraphParam : ParamBase {
89 90 91 92 93 94 95
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
  int sub_block_idx{-1};
  cpp::BlockDesc* sub_block_desc{nullptr};
  Scope* scope{nullptr};
Y
Yan Chunwei 已提交
96 97 98 99
};

/// -------------------------- NN operators ------------------------------------

100
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
101 102 103 104 105 106
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
107
  std::string activation_type{""};
108
  bool padding_weights{false};
Y
Yan Chunwei 已提交
109 110
  // for int8
  WITH_INT8_CONFIG
111 112
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
113 114
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
115 116 117 118 119
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
120 121
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
122 123 124 125 126 127 128
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
129 130 131 132 133 134 135
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
136
// For Interpolate Op
137
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
138 139 140
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
141
  std::vector<const lite::Tensor*> SizeTensor;
142
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
143 144 145 146 147

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
148
  int align_mode{1};
Y
Yan Chunwei 已提交
149
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
150
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
151 152 153
};

// For Mul Op
154
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
163 164
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
165 166
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
167 168 169 170 171
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
172 173
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
174 175 176 177
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
178 179
};

180
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
181 182 183 184 185 186 187 188 189 190
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

191
// For ReduceMean Op
192
struct ReduceMeanParam : ParamBase {
193 194 195 196 197 198 199 200
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
201
struct StackParam : ParamBase {
202 203 204 205 206 207
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
208
// For Power Op
209
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
210 211 212 213 214 215 216 217
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

218
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
226
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234 235 236 237 238
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
239
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
240 241 242 243 244 245
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
246 247 248
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
249 250
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
251 252
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
253 254 255 256 257
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
258 259
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
260 261 262 263
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
264 265 266
};

// For Softmax op
267
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
268 269 270
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
271 272
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
273 274
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
275 276 277 278 279
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
280 281
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
282 283 284 285
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
286 287 288
};

// For Reshape and Reshape2 Op
289
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
290
  const lite::Tensor* x{};
291 292 293
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
294 295
  lite::Tensor* output{};

296
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
297
  bool inplace{false};
298 299
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
300 301
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
302 303 304 305 306
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
307 308
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
309 310 311 312
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
313 314 315
};

// For Concat op
316
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
317 318 319
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
320
  lite::Tensor* axis_tensor{};
321
  // get a vector of input tensors
322 323
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
324 325 326 327 328 329 330 331 332
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
333 334
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
335 336 337 338
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
339 340
};

341
/// ----------------------- activation operators ----------------------
342
struct ActivationParam : ParamBase {
343
  const lite::Tensor* X{};
344
  lite::Tensor* Out{};
345
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
346
  bool has_active{false};
347 348 349 350 351 352
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
353
  // hard_sigmoid param
354 355
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
356 357 358 359
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
360 361
  // thresholded_relu
  float relu_threshold{1.0f};
362 363
};

364
struct ActivationGradParam : ParamBase {
365 366 367 368 369 370 371
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
372
// For Convolution op
373
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
374 375 376 377 378 379
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
380
  /* paddings type change
381 382 383 384
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
385
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
386
  int groups{1};
H
HappyAngel 已提交
387
  /* dilations type change
388 389 390 391
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
392
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
393 394 395 396 397 398 399 400 401 402 403 404
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
405 406
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
407 408
  // support var_length or not
  bool var_length{false};
409 410
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
411 412
  // for int8
  WITH_INT8_CONFIG
413 414 415

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
416 417
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
418 419 420 421 422
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
423 424
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
425 426 427 428
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
429 430 431
};

// For BatchNorm op
432
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
448 449
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
450 451
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
452 453 454 455 456
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
457 458
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
459 460 461 462
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
463 464 465
};

// For Pooling op
466
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
467 468 469 470 471 472 473
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
474
  /* paddings type change
475 476 477 478
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
479
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
480 481 482 483 484
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
485 486
  // for int8
  WITH_INT8_CONFIG
487 488
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
489 490
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
491 492 493 494 495
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
496 497
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
498 499 500 501
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
502 503 504
};

// For Dropout op
505
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
506 507 508 509 510 511 512 513 514 515 516
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
517
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
518 519
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
520 521 522
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
523 524 525
  int axis{-1};
  int num{0};
  std::vector<int> sections;
526 527
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
528 529
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
530 531 532 533 534
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
535 536
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
537 538 539 540
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
541 542 543
};

// For Transpose op
544
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
545 546
  const lite::Tensor* x{};
  lite::Tensor* output{};
547 548
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
549 550 551
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
552 553
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
554 555
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
556 557 558 559 560
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
561 562
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
563 564 565 566
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
567 568 569
};

/// ----------------------- element wise operators ----------------------
570
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
571 572 573 574
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
575
  // for int8
Z
Zhaolong Xing 已提交
576
  WITH_INT8_CONFIG
J
juncaipeng 已提交
577 578
  float x_input_scale{1.0};
  float y_input_scale{1.0};
579 580
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
581 582
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
583 584 585 586 587
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
588 589
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
590 591 592 593 594 595 596
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
597
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
598
  const lite::Tensor* Y{};
X
xiaogang 已提交
599 600 601
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
602 603 604 605 606 607 608 609 610 611 612 613
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
614
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
615 616 617 618
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

619
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
620 621 622 623 624 625 626
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
627
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
628 629
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
630
  lite::Tensor* shape_tensor{nullptr};
631 632
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
633 634 635 636 637
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
638

639
struct FillConstantBatchSizeLikeParam : ParamBase {
640 641
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
642

643
  std::vector<int> shape{};
644 645 646 647
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
648 649
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
650 651
};

Y
Yan Chunwei 已提交
652
//
653
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
654 655 656 657 658 659 660 661 662 663
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
664
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
665 666
};

667
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
668 669 670 671 672 673
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

674
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
675 676 677 678 679 680
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

Y
Yan Chunwei 已提交
681
/// ----------------------- sgd operators ----------------------
682
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
683 684 685 686 687 688 689 690 691
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
692
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
693 694 695 696 697 698 699 700
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
701
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
702 703 704 705
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
706
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
707 708 709 710 711 712 713 714 715
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
716
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
717 718 719 720 721 722 723
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
724
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
725 726 727 728 729 730
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
731
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
732 733 734 735 736 737
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
738
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
754
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
755 756
  const lite::Tensor* X{};
  lite::Tensor* Out{};
757
  int n{5};
758 759 760
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
761 762 763 764
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
765
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
781
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
782 783 784 785 786
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
787 788 789 790
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
791 792 793
};

/// ----------------------- multiclass_nms operators ----------------------
794
struct MulticlassNmsParam : ParamBase {
795 796 797
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
798
  lite::Tensor* index{};
799 800 801
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
802 803
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
804
  int keep_top_k;
805
  bool normalized{true};
Y
Yan Chunwei 已提交
806 807 808
};

/// ----------------------- priorbox operators ----------------------
809
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
829
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
830 831 832 833 834
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
835
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
836 837
};
/// ----------------------- GRU operators ----------------------f
838
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
855
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
856 857 858 859 860 861 862 863 864
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
865
struct LookupTableParam : ParamBase {
866 867
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
868 869 870 871
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

872
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
873 874 875 876 877 878
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

879
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
880 881 882 883 884 885 886 887 888
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

889
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
890 891
  const lite::Tensor* X{};
  lite::Tensor* Out{};
892 893
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
894 895
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
896 897 898 899 900
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
901 902
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
903 904 905 906
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
907 908
};

909
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
910 911
  const lite::Tensor* X{};
  lite::Tensor* Out{};
912
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
913
  int axis{1};
914
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
915
};
916
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
917 918 919 920 921 922 923
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
924
  float epsilon{1e-5f};
T
TianXiaogang 已提交
925
};
Y
Yan Chunwei 已提交
926

927
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
928 929 930 931 932
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

933
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
934 935 936 937 938 939 940
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

941
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
942 943 944 945 946 947 948
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

949
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
950 951 952 953 954 955
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

956
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
957 958 959 960 961
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

962
struct WriteToArrayParam : ParamBase {
963 964 965
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
966 967
};

968
struct ReadFromArrayParam : ParamBase {
969 970 971
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
972 973
};

974
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

988
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
989 990
  const lite::Tensor* X{};
  lite::Tensor* Out{};
991 992 993
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
994
  lite::Tensor* MaxIndex{};
995
#endif
Y
Yan Chunwei 已提交
996 997
};

998
struct SequenceConvParam : ParamBase {
999 1000 1001 1002 1003 1004 1005 1006
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1007
struct SequencePoolConcatParam : ParamBase {
1008 1009 1010 1011 1012
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1013
struct SearchGroupPaddingParam : ParamBase {
1014 1015 1016 1017 1018 1019 1020
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1021
struct SequenceReshapeParam : ParamBase {
1022 1023 1024 1025 1026
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1027
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1028 1029 1030 1031 1032 1033
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1034 1035 1036 1037 1038 1039
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1040
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1041 1042 1043 1044 1045
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1046
struct SequenceReverseParam : ParamBase {
1047 1048 1049 1050
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1051
struct SequenceConcatParam : ParamBase {
1052 1053 1054 1055
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1056
struct AttentionPaddingMaskParam : ParamBase {
1057 1058 1059 1060 1061 1062 1063 1064
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1065
struct SequenceArithmeticParam : ParamBase {
1066 1067 1068 1069 1070 1071
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1072
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1073 1074 1075 1076 1077 1078
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1079
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1080 1081 1082 1083 1084 1085 1086
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1087
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1088 1089 1090
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1091

1092
struct ReduceParam : ParamBase {
1093 1094 1095 1096 1097 1098 1099
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1100
struct VarConv2DParam : ParamBase {
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1114 1115

  bool fuse_relu{false};
1116 1117
};

Y
Yan Chunwei 已提交
1118
/// ----------------------- shape operators ----------------------
1119
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1120 1121 1122 1123
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1124
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1125 1126 1127 1128 1129 1130
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1131
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1132 1133 1134 1135 1136 1137
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1138 1139 1140 1141 1142
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1143 1144
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1145 1146
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1147 1148 1149 1150 1151
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1152 1153
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1154 1155 1156 1157
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1158
};
Y
Yan Chunwei 已提交
1159

1160
struct AffineChannelParam : ParamBase {
1161 1162 1163 1164 1165 1166 1167
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1168 1169 1170 1171 1172 1173 1174
struct AffineGridParam : ParamBase {
  const lite::Tensor* X{};  // Theta:shape {?, 2, 3}
  std::vector<int> output_shape;
  const lite::Tensor* OutputShape;
  lite::Tensor* Out{};
};

1175
struct AnchorGeneratorParam : ParamBase {
1176 1177 1178 1179
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1180 1181
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1182 1183 1184 1185 1186

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1187
struct GenerateProposalsParam : ParamBase {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1198 1199 1200
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1201 1202 1203 1204 1205

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1206
/// ----------------------- squeeze operators ----------------------
1207
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1208 1209 1210 1211
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1212 1213
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1214 1215
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1216 1217 1218 1219 1220
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1221 1222
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1223 1224 1225 1226
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1227 1228
};

1229
struct UnsqueezeParam : ParamBase {
1230 1231 1232 1233
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1234
  const lite::Tensor* axes_tensor{};
1235
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1236 1237
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1238 1239
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1240 1241 1242 1243 1244
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1245 1246
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1247 1248 1249 1250
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1251 1252
};

Y
Yan Chunwei 已提交
1253
/// ----------------------- expand operators ----------------------
1254
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1255 1256 1257 1258 1259 1260
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
1261
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1262 1263 1264 1265 1266 1267
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1268 1269
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1270 1271
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1272 1273 1274 1275 1276
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1277 1278
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1279 1280 1281 1282
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1283
};
1284

1285
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1286 1287 1288 1289 1290
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1291
/// ----------------------- assign operators -----------------------
1292
struct AssignParam : ParamBase {
1293 1294 1295 1296 1297 1298 1299
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1300
};
1301

1302
/// ----------------------- roi_align operators -----------------------
1303
struct RoiAlignParam : ParamBase {
1304 1305 1306 1307 1308 1309 1310 1311 1312
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1313
/// ----------------------- box_clip operators -----------------------
1314
struct BoxClipParam : ParamBase {
1315 1316 1317 1318 1319
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1320
struct RangeParam : ParamBase {
1321 1322 1323 1324 1325 1326
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1327
/// ----------------------- assign_value operators -----------------------
1328
struct AssignValueParam : ParamBase {
1329 1330 1331 1332 1333 1334 1335
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
  lite::Tensor* Out{};
};

1336
/// --------------- sequence_topk_avg_pooling operators ------------------
1337
struct SequenceTopkAvgPoolingParam : ParamBase {
1338 1339 1340 1341 1342 1343 1344 1345 1346
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

1347 1348 1349 1350 1351 1352 1353 1354 1355
/// --------------- topk_pooling operators ------------------
struct TopkPoolingParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int top_k{1};
  int feat_map_num{1};
};

1356
/// --------------- search_fc operators ------------------
1357
struct SearchFcParam : ParamBase {
1358 1359 1360 1361 1362 1363
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
};
J
juncaipeng 已提交
1364
/// --------------------- match_matrix_tensor operators --------------------
1365
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
};

/// --------------------- search_seq_depadding operators --------------------
1376
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1377 1378 1379 1380 1381 1382
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1383
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
};

1396
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1397 1398 1399 1400 1401 1402 1403
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1404
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1405 1406 1407 1408 1409 1410 1411 1412
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1413
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1414 1415 1416 1417 1418 1419 1420 1421
  const lite::Tensor* cond{};
  std::vector<lite::Tensor*> x{};
  std::vector<lite::Tensor*> outs{};
  cpp::BlockDesc* sub_block{};
  Scope* scope{};
  bool is_scalar_condition{};
};

1422
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1423 1424 1425 1426 1427 1428
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1429
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1439
/// --------------------- instance_norm operators --------------------
1440
struct InstanceNormParam : ParamBase {
1441 1442 1443 1444 1445 1446 1447 1448
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
H
HappyAngel 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/// --------------------- group_norm operators --------------------
struct GroupNormParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
  int groups;
  int channels;
};

1462
/// --------------------- grid sampler operators --------------------
1463
struct GridSamplerParam : ParamBase {
1464 1465 1466 1467
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1468
struct LstmParam : ParamBase {
X
xiaogang 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1484

1485
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1486 1487 1488 1489 1490 1491 1492
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1525
  std::string precision{};
1526 1527
};

C
Cwndmiao 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

H
HappyAngel 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
// For DeformableConvolution op
struct DeformableConvParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* offset{};
  lite::Tensor* mask{};
  lite::Tensor* output{};
  int deformable_groups{1};
  int im2col_step{1};
  bool modulated{true};  // True-v2 False-v1
  std::string data_format{"Anylayout"};
  // convolution parameter
  ConvParam conv_param;
  // support var_length or not
  bool var_length{false};
  // only used in conv_transpose.
  std::vector<int> output_size;
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

1581 1582 1583 1584 1585
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

struct RetinanetDetectionOutputParam : ParamBase {
  std::vector<Tensor*> bboxes{};
  std::vector<Tensor*> scores{};
  std::vector<Tensor*> anchors{};
  Tensor* im_info{};
  Tensor* out{};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{};
  float nms_eta{};
  int keep_top_k{};
};

Y
yiicy 已提交
1600 1601 1602 1603 1604
struct WhereIndexParam : ParamBase {
  const lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};
};

Y
Yan Chunwei 已提交
1605 1606 1607
}  // namespace operators
}  // namespace lite
}  // namespace paddle