op_params.h 47.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
24 25
#include "lite/model_parser/base/apis.h"
#include "lite/model_parser/cpp_desc.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

35 36
struct ParamBase {
 public:
37 38 39 40 41
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
42 43 44 45 46 47

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
48 49 50
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
51
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
52
  std::vector<float> weight_scale{}; \
53
  float output_scale{1.0f};          \
54
  int bit_length{8};
Y
Yan Chunwei 已提交
55 56

/// ----------------------- Functional operators ------------------------------
57
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
58 59 60 61 62
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

63
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
64 65 66 67 68 69
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
70
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
71 72
  const lite::Tensor* x{};
  lite::Tensor* y{};
73
  int process_type{0};
Y
Yan Chunwei 已提交
74 75
};

76
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
77 78
  const lite::Tensor* x{};
  lite::Tensor* y{};
79
  int process_type{0};
Y
Yan Chunwei 已提交
80 81
};

82
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
83 84 85 86 87
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

88
struct SubgraphParam : ParamBase {
89 90 91 92 93 94 95
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
  int sub_block_idx{-1};
  cpp::BlockDesc* sub_block_desc{nullptr};
  Scope* scope{nullptr};
Y
Yan Chunwei 已提交
96 97 98 99
};

/// -------------------------- NN operators ------------------------------------

100
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
101 102 103 104 105 106
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
107
  std::string activation_type{""};
108
  bool padding_weights{false};
Y
Yan Chunwei 已提交
109 110
  // for int8
  WITH_INT8_CONFIG
111 112
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
113 114
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
115 116 117 118 119
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
120 121
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
122 123 124 125 126 127 128
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
129 130 131 132 133 134 135
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
136
// For Interpolate Op
137
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
138 139 140
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
141
  std::vector<const lite::Tensor*> SizeTensor;
142
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
143 144 145 146 147

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
148
  int align_mode{1};
Y
Yan Chunwei 已提交
149
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
150
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
151 152 153
};

// For Mul Op
154
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
163 164
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
165 166
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
167 168 169 170 171
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
172 173
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
174 175 176 177
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
178 179
};

180
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
181 182 183 184 185 186 187 188 189 190
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

191
// For ReduceMean Op
192
struct ReduceMeanParam : ParamBase {
193 194 195 196 197 198 199 200
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
201
struct StackParam : ParamBase {
202 203 204 205 206 207
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
208
// For Power Op
209
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
210 211 212 213 214 215 216 217
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

218
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
226
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234 235 236 237 238
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
239
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
240 241 242 243 244 245
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
246 247 248
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
249 250
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
251 252
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
253 254 255 256 257
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
258 259
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
260 261 262 263
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
264 265 266
};

// For Softmax op
267
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
268 269 270
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
271 272
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
273 274
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
275 276 277 278 279
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
280 281
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
282 283 284 285
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
286 287 288
};

// For Reshape and Reshape2 Op
289
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
290
  const lite::Tensor* x{};
291 292 293
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
294 295
  lite::Tensor* output{};

296
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
297
  bool inplace{false};
298 299
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
300 301
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
302 303 304 305 306
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
307 308
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
309 310 311 312
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
313 314 315
};

// For Concat op
316
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
317 318 319
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
320
  lite::Tensor* axis_tensor{};
321
  // get a vector of input tensors
322 323
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
324 325 326 327 328 329 330 331 332
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
333 334
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
335 336 337 338
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
339 340
};

341
/// ----------------------- activation operators ----------------------
342
struct ActivationParam : ParamBase {
343
  const lite::Tensor* X{};
344
  lite::Tensor* Out{};
345
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
346
  bool has_active{false};
347 348 349 350 351 352
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
353
  // hard_sigmoid param
354 355
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
356 357 358 359
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
360 361
  // thresholded_relu
  float relu_threshold{1.0f};
362 363
};

364
struct ActivationGradParam : ParamBase {
365 366 367 368 369 370 371
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
372
// For Convolution op
373
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
374 375 376 377 378 379
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
380
  /* paddings type change
381 382 383 384
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
385
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
386
  int groups{1};
H
HappyAngel 已提交
387
  /* dilations type change
388 389 390 391
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
392
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
393 394 395 396 397 398 399 400 401 402 403 404
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
405 406
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
407 408
  // support var_length or not
  bool var_length{false};
409 410
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
411 412
  // for int8
  WITH_INT8_CONFIG
413 414 415

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
416 417
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
418 419 420 421 422
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
423 424
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
425 426 427 428
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
429 430 431
};

// For BatchNorm op
432
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
448 449
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
450 451
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
452 453 454 455 456
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
457 458
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
459 460 461 462
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
463 464 465
};

// For Pooling op
466
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
467 468 469 470 471 472 473
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
474
  /* paddings type change
475 476 477 478
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
479
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
480 481 482 483 484
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
485 486
  // for int8
  WITH_INT8_CONFIG
487 488
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
489 490
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
491 492 493 494 495
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
496 497
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
498 499 500 501
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
502 503 504
};

// For Dropout op
505
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
506 507 508 509 510 511 512 513 514 515 516
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
517
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
518 519
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
520 521 522
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
523 524 525
  int axis{-1};
  int num{0};
  std::vector<int> sections;
526 527
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
528 529
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
530 531 532 533 534
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
535 536
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
537 538 539 540
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
541 542 543
};

// For Transpose op
544
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
545 546
  const lite::Tensor* x{};
  lite::Tensor* output{};
547 548
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
549 550 551
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
552 553
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
554 555
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
556 557 558 559 560
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
561 562
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
563 564 565 566
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
567 568 569
};

/// ----------------------- element wise operators ----------------------
570
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
571 572 573 574
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
575
  // for int8
Z
Zhaolong Xing 已提交
576
  WITH_INT8_CONFIG
J
juncaipeng 已提交
577 578
  float x_input_scale{1.0};
  float y_input_scale{1.0};
579 580
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
581 582
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
583 584 585 586 587
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
588 589
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
590 591 592 593 594 595 596
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
597
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
598
  const lite::Tensor* Y{};
X
xiaogang 已提交
599 600 601
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
602 603 604 605 606 607 608 609 610 611 612 613
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
614
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
615 616 617 618
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

619
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
620 621 622 623 624 625 626
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
627
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
628 629
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
630
  lite::Tensor* shape_tensor{nullptr};
631 632
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
633 634 635 636 637
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
638

639
struct FillConstantBatchSizeLikeParam : ParamBase {
640 641
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
642

643
  std::vector<int> shape{};
644 645 646 647
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
648 649
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
650 651
};

Y
Yan Chunwei 已提交
652
//
653
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
654 655 656 657 658 659 660 661 662 663
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
664
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
665 666
};

667
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
668 669 670 671 672 673
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

674
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
675 676 677 678 679 680
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

Y
Yan Chunwei 已提交
681
/// ----------------------- sgd operators ----------------------
682
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
683 684 685 686 687 688 689 690 691
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
692
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
693 694 695 696 697 698 699 700
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
701
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
702 703 704 705
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
706
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
707 708 709 710 711 712 713 714 715
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
716
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
717 718 719 720 721 722 723
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
724
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
725 726 727 728 729 730
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
731
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
732 733 734 735 736 737
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
738
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
754
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
755 756
  const lite::Tensor* X{};
  lite::Tensor* Out{};
757
  int n{5};
758 759 760
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
761 762 763 764
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
765
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
781
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
782 783 784 785 786
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
787 788 789 790
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
791 792 793
};

/// ----------------------- multiclass_nms operators ----------------------
794
struct MulticlassNmsParam : ParamBase {
795 796 797
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
798
  lite::Tensor* index{};
799 800 801
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
802 803
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
804
  int keep_top_k;
805
  bool normalized{true};
Y
Yan Chunwei 已提交
806 807 808
};

/// ----------------------- priorbox operators ----------------------
809
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
829
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
830 831 832 833 834
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
835
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
836 837
};
/// ----------------------- GRU operators ----------------------f
838
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
855
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
856 857 858 859 860 861 862 863 864
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
865
struct LookupTableParam : ParamBase {
866 867
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
868 869 870 871
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

872
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
873 874 875 876 877 878
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

879
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
880 881 882 883 884 885 886 887 888
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

889
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
890 891
  const lite::Tensor* X{};
  lite::Tensor* Out{};
892 893
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
894 895
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
896 897 898 899 900
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
901 902
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
903 904 905 906
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
907 908
};

909
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
910 911
  const lite::Tensor* X{};
  lite::Tensor* Out{};
912
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
913
  int axis{1};
914
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
915
};
916
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
917 918 919 920 921 922 923
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
924
  float epsilon{1e-5f};
T
TianXiaogang 已提交
925
};
Y
Yan Chunwei 已提交
926

927
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
928 929 930 931 932
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

933
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
934 935 936 937 938 939 940
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

941
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
942 943 944 945 946 947 948
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

949
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
950 951 952 953 954 955
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

956
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
957 958 959 960 961
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

962
struct WriteToArrayParam : ParamBase {
963 964 965
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
966 967
};

968
struct ReadFromArrayParam : ParamBase {
969 970 971
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
972 973
};

974
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

988
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
989 990
  const lite::Tensor* X{};
  lite::Tensor* Out{};
991 992 993
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
994
  lite::Tensor* MaxIndex{};
995
#endif
Y
Yan Chunwei 已提交
996 997
};

998
struct SequenceConvParam : ParamBase {
999 1000 1001 1002 1003 1004 1005 1006
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1007
struct SequencePoolConcatParam : ParamBase {
1008 1009 1010 1011 1012
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1013
struct SearchGroupPaddingParam : ParamBase {
1014 1015 1016 1017 1018 1019 1020
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1021
struct SequenceReshapeParam : ParamBase {
1022 1023 1024 1025 1026
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1027
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1028 1029 1030 1031 1032 1033
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1034 1035 1036 1037 1038 1039 1040 1041
struct SequencePadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* PadValue{};
  lite::Tensor* Out{};
  lite::Tensor* Length{};
  int padded_length{-1};
};

1042 1043 1044 1045 1046 1047
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1048 1049 1050 1051 1052 1053 1054 1055
struct SequenceMaskParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* MaxLenTensor{nullptr};
  lite::Tensor* Y{};
  int maxlen{-1};
  int out_dtype;
};

1056
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1057 1058 1059 1060 1061
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1062
struct SequenceReverseParam : ParamBase {
1063 1064 1065 1066
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1067
struct SequenceConcatParam : ParamBase {
1068 1069 1070 1071
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1072
struct AttentionPaddingMaskParam : ParamBase {
1073 1074 1075 1076 1077 1078 1079 1080
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1081
struct SequenceArithmeticParam : ParamBase {
1082 1083 1084 1085 1086 1087
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1088
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1089 1090 1091 1092 1093 1094
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1095
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1096 1097 1098 1099 1100 1101 1102
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1103
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1104 1105 1106
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1107

1108
struct ReduceParam : ParamBase {
1109 1110 1111 1112 1113 1114 1115
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1116
struct VarConv2DParam : ParamBase {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1130 1131

  bool fuse_relu{false};
1132 1133 1134 1135 1136

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1137 1138
};

Y
Yan Chunwei 已提交
1139
/// ----------------------- shape operators ----------------------
1140
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1141 1142 1143 1144
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1145
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1146 1147 1148 1149 1150 1151
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1152
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1153 1154 1155 1156 1157 1158
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1159 1160 1161 1162 1163
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1164 1165
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1166 1167
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1168 1169 1170 1171 1172
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1173 1174
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1175 1176 1177 1178
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1179
};
Y
Yan Chunwei 已提交
1180

1181
struct AffineChannelParam : ParamBase {
1182 1183 1184 1185 1186 1187 1188
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1189 1190 1191 1192 1193 1194 1195
struct AffineGridParam : ParamBase {
  const lite::Tensor* X{};  // Theta:shape {?, 2, 3}
  std::vector<int> output_shape;
  const lite::Tensor* OutputShape;
  lite::Tensor* Out{};
};

1196
struct AnchorGeneratorParam : ParamBase {
1197 1198 1199 1200
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1201 1202
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1203 1204 1205 1206 1207

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1208
struct GenerateProposalsParam : ParamBase {
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1219 1220 1221
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1222 1223 1224 1225 1226

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1227
/// ----------------------- squeeze operators ----------------------
1228
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1229 1230 1231 1232
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1233 1234
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1235 1236
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1237 1238 1239 1240 1241
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1242 1243
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1244 1245 1246 1247
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1248 1249
};

1250
struct UnsqueezeParam : ParamBase {
1251 1252 1253 1254
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1255
  const lite::Tensor* axes_tensor{};
1256
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1257 1258
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1259 1260
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1261 1262 1263 1264 1265
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1266 1267
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1268 1269 1270 1271
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1272 1273
};

Y
Yan Chunwei 已提交
1274
/// ----------------------- expand operators ----------------------
1275
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1276 1277 1278 1279 1280 1281
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
1282
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1283 1284 1285 1286 1287 1288
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1289 1290
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1291 1292
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1293 1294 1295 1296 1297
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1298 1299
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1300 1301 1302 1303
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1304
};
1305

1306
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1307 1308 1309 1310 1311
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1312
/// ----------------------- assign operators -----------------------
1313
struct AssignParam : ParamBase {
1314 1315 1316 1317 1318 1319 1320
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1321
};
1322

1323
/// ----------------------- roi_align operators -----------------------
1324
struct RoiAlignParam : ParamBase {
1325 1326 1327 1328 1329 1330 1331 1332 1333
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1334
/// ----------------------- box_clip operators -----------------------
1335
struct BoxClipParam : ParamBase {
1336 1337 1338 1339 1340
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1341
struct RangeParam : ParamBase {
1342 1343 1344 1345 1346 1347
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1348
/// ----------------------- assign_value operators -----------------------
1349
struct AssignValueParam : ParamBase {
1350 1351 1352 1353
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
1354 1355
  std::vector<int64_t> int64_values{};
  std::vector<int> bool_values{};
1356 1357 1358
  lite::Tensor* Out{};
};

1359
/// --------------- sequence_topk_avg_pooling operators ------------------
1360
struct SequenceTopkAvgPoolingParam : ParamBase {
1361 1362 1363 1364 1365 1366 1367 1368 1369
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

1370 1371 1372 1373 1374 1375 1376 1377 1378
/// --------------- topk_pooling operators ------------------
struct TopkPoolingParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int top_k{1};
  int feat_map_num{1};
};

1379
/// --------------- search_fc operators ------------------
1380
struct SearchFcParam : ParamBase {
1381 1382 1383 1384 1385
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
1386 1387 1388 1389 1390 1391 1392

  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1393
};
J
juncaipeng 已提交
1394
/// --------------------- match_matrix_tensor operators --------------------
1395
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1396 1397 1398 1399 1400 1401 1402
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
1403 1404 1405 1406 1407 1408
  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is w already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in w
#endif
J
juncaipeng 已提交
1409 1410 1411
};

/// --------------------- search_seq_depadding operators --------------------
1412
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1413 1414 1415 1416 1417 1418
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1419
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
1430 1431 1432 1433 1434 1435

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};   // Is wi/wh already converted to int16/int8
  std::vector<float> __xpu__wi_max;  // Abs max in wi
  std::vector<float> __xpu__wh_max;  // Abs max in wh
#endif
J
juncaipeng 已提交
1436 1437
};

1438
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1439 1440 1441 1442 1443 1444 1445
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1446
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1447 1448 1449 1450 1451 1452 1453 1454
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1455
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1456 1457 1458 1459 1460 1461 1462 1463
  const lite::Tensor* cond{};
  std::vector<lite::Tensor*> x{};
  std::vector<lite::Tensor*> outs{};
  cpp::BlockDesc* sub_block{};
  Scope* scope{};
  bool is_scalar_condition{};
};

1464
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1465 1466 1467 1468 1469 1470
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1471
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1481
/// --------------------- instance_norm operators --------------------
1482
struct InstanceNormParam : ParamBase {
1483 1484 1485 1486 1487 1488 1489 1490
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
H
HappyAngel 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
/// --------------------- group_norm operators --------------------
struct GroupNormParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
  int groups;
  int channels;
};

1504
/// --------------------- grid sampler operators --------------------
1505
struct GridSamplerParam : ParamBase {
1506 1507 1508 1509
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1510
struct LstmParam : ParamBase {
X
xiaogang 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1526

1527
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1528 1529 1530 1531 1532 1533 1534
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1567
  std::string precision{};
1568 1569
};

C
Cwndmiao 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
struct XPUResNetCbamParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};

  float pool_p{1.0f};
};

struct XPUMmdnnSearchAttentionParam : ParamBase {
  lite::Tensor* X{};
  lite::Tensor* W{};
  lite::Tensor* b{};
  lite::Tensor* Out{};

  float W_max{0.0f};
  int pad_id{0};
  float alpha0{1.0f};
  float alpha1{1.0f};
  float mask{1.0f};
};

struct XPUMmdnnBidEmbGrnnAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

  lite::Tensor* grnn_fw_pool_out{};  // 1
  lite::Tensor* grnn_rv_pool_out{};  // 2
  lite::Tensor* att_pool_out{};      // 3
  lite::Tensor* concat_3in1_out{};   // 4
  lite::Tensor* emb_fw_out{};        // 5
};

struct XPUMmdnnBidEmbAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  float att_fc_w_max{0.0f};

  lite::Tensor* att_pool_out{};  // 1
  lite::Tensor* emb_fw_out{};    // 2
};

struct XPUMmdnnMatchConvTopkParam : ParamBase {
  lite::Tensor* input_x{};
  lite::Tensor* input_y{};
  lite::Tensor* input_w{};
  lite::Tensor* conv_w{};

  float input_w_max{0.0f};
  float conv_w_max{0.0f};
  std::vector<int> topks;
  int channel_num{0};
  int dim_t{0};

  lite::Tensor* topk_out{};
};

struct XPUMmdnnMergeAllParam : ParamBase {
  std::vector<lite::Tensor*> concat_7in1_x;
  std::vector<lite::Tensor*> concat_2in1_x;
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* fc0_w{};
  lite::Tensor* fc0_b{};
  lite::Tensor* fc1_w{};
  lite::Tensor* fc1_b{};
  lite::Tensor* fc2_w{};
  lite::Tensor* fc2_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float fc0_w_max{0.0f};
  float fc1_w_max{0.0f};
  float fc2_w_max{0.0f};

  lite::Tensor* out{};
};

H
HappyAngel 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
// For DeformableConvolution op
struct DeformableConvParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* offset{};
  lite::Tensor* mask{};
  lite::Tensor* output{};
  int deformable_groups{1};
  int im2col_step{1};
  bool modulated{true};  // True-v2 False-v1
  std::string data_format{"Anylayout"};
  // convolution parameter
  ConvParam conv_param;
  // support var_length or not
  bool var_length{false};
  // only used in conv_transpose.
  std::vector<int> output_size;
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

1723 1724 1725 1726 1727
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

struct RetinanetDetectionOutputParam : ParamBase {
  std::vector<Tensor*> bboxes{};
  std::vector<Tensor*> scores{};
  std::vector<Tensor*> anchors{};
  Tensor* im_info{};
  Tensor* out{};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{};
  float nms_eta{};
  int keep_top_k{};
};

Y
yiicy 已提交
1742 1743 1744 1745 1746
struct WhereIndexParam : ParamBase {
  const lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};
};

C
cc 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755
struct ClipParam : ParamBase {
  Tensor* x{};
  Tensor* min_tensor{};
  Tensor* max_tensor{};
  Tensor* out{};
  float min{};
  float max{};
};

Y
Yan Chunwei 已提交
1756 1757 1758
}  // namespace operators
}  // namespace lite
}  // namespace paddle