op_params.h 41.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
Y
Yan Chunwei 已提交
24 25 26
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/desc_apis.h"
#include "lite/utils/all.h"
27
#include "lite/utils/variant.h"
Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

36 37
struct ParamBase {
 public:
38 39 40 41 42
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
43 44 45 46 47 48

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
49 50 51
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
52
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
53
  std::vector<float> weight_scale{}; \
54
  float output_scale{1.0f};          \
55
  int bit_length{8};
Y
Yan Chunwei 已提交
56 57

/// ----------------------- Functional operators ------------------------------
58
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
59 60 61 62 63
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

64
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
65 66 67 68 69 70
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
71
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
72 73
  const lite::Tensor* x{};
  lite::Tensor* y{};
74
  int process_type{0};
Y
Yan Chunwei 已提交
75 76
};

77
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
78 79
  const lite::Tensor* x{};
  lite::Tensor* y{};
80
  int process_type{0};
Y
Yan Chunwei 已提交
81 82
};

83
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
84 85 86 87 88
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

89
struct SubgraphParam : ParamBase {
90 91 92 93 94 95 96
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
  int sub_block_idx{-1};
  cpp::BlockDesc* sub_block_desc{nullptr};
  Scope* scope{nullptr};
Y
Yan Chunwei 已提交
97 98 99 100
};

/// -------------------------- NN operators ------------------------------------

101
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
102 103 104 105 106 107
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
108
  std::string activation_type{""};
109
  bool padding_weights{false};
Y
Yan Chunwei 已提交
110 111
  // for int8
  WITH_INT8_CONFIG
112 113
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
114 115
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
116 117 118 119 120
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
121 122
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
123 124 125 126 127 128 129
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
130 131 132 133 134 135 136
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
137
// For Interpolate Op
138
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
139 140 141
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
142
  std::vector<const lite::Tensor*> SizeTensor;
143
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
144 145 146 147 148

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
149
  int align_mode{1};
Y
Yan Chunwei 已提交
150
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
151
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
152 153 154
};

// For Mul Op
155
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
164 165
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
166 167
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
168 169 170 171 172
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
173 174
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
175 176 177 178
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
179 180
};

181
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

192
// For ReduceMean Op
193
struct ReduceMeanParam : ParamBase {
194 195 196 197 198 199 200 201
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
202
struct StackParam : ParamBase {
203 204 205 206 207 208
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
209
// For Power Op
210
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

219
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
220 221 222 223 224 225 226
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
227
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236 237 238 239
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
240
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
241 242 243 244 245 246
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
247 248 249
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
250 251
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
252 253
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
254 255 256 257 258
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
259 260
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
261 262 263 264
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
265 266 267
};

// For Softmax op
268
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
269 270 271
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
272 273
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
274 275
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
276 277 278 279 280
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
281 282
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
283 284 285 286
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
287 288 289
};

// For Reshape and Reshape2 Op
290
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
291
  const lite::Tensor* x{};
292 293 294
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
295 296
  lite::Tensor* output{};

297
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
298
  bool inplace{false};
299 300
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
301 302
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
303 304 305 306 307
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
308 309
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
310 311 312 313
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
314 315 316
};

// For Concat op
317
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
318 319 320
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
321
  lite::Tensor* axis_tensor{};
322
  // get a vector of input tensors
323 324
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
325 326 327 328 329 330 331 332 333
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
334 335
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
336 337 338 339
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
340 341
};

342
/// ----------------------- activation operators ----------------------
343
struct ActivationParam : ParamBase {
344
  const lite::Tensor* X{};
345
  lite::Tensor* Out{};
346
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
347
  bool has_active{false};
348 349 350 351 352 353
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
354
  // hard_sigmoid param
355 356
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
357 358 359 360
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
361 362
};

363
struct ActivationGradParam : ParamBase {
364 365 366 367 368 369 370
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
371
// For Convolution op
372
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
373 374 375 376 377 378
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
379
  /* paddings type change
380 381 382 383
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
384
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
385
  int groups{1};
H
HappyAngel 已提交
386
  /* dilations type change
387 388 389 390
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
391
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
392 393 394 395 396 397 398 399 400 401 402 403
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
404 405
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
406 407
  // support var_length or not
  bool var_length{false};
408 409
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
410 411
  // for int8
  WITH_INT8_CONFIG
412 413 414

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
415 416
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
417 418 419 420 421
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
422 423
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
424 425 426 427
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
428 429 430
};

// For BatchNorm op
431
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
447 448
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
449 450
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
451 452 453 454 455
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
456 457
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
458 459 460 461
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
462 463 464
};

// For Pooling op
465
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
466 467 468 469 470 471 472
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
473
  /* paddings type change
474 475 476 477
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
478
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
479 480 481 482 483
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
484 485
  // for int8
  WITH_INT8_CONFIG
486 487
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
488 489
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
490 491 492 493 494
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
495 496
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
497 498 499 500
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
501 502 503
};

// For Dropout op
504
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
505 506 507 508 509 510 511 512 513 514 515
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
516
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
517 518
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
519 520 521
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
522 523 524
  int axis{-1};
  int num{0};
  std::vector<int> sections;
525 526
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
527 528
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
529 530 531 532 533
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
534 535
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
536 537 538 539
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
540 541 542
};

// For Transpose op
543
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
544 545
  const lite::Tensor* x{};
  lite::Tensor* output{};
546 547
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
548 549 550
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
551 552
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
553 554
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
555 556 557 558 559
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
560 561
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
562 563 564 565
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
566 567 568
};

/// ----------------------- element wise operators ----------------------
569
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
570 571 572 573
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
574
  // for int8
Z
Zhaolong Xing 已提交
575
  WITH_INT8_CONFIG
J
juncaipeng 已提交
576 577
  float x_input_scale{1.0};
  float y_input_scale{1.0};
578 579
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
580 581
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
582 583 584 585 586
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
587 588
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
589 590 591 592 593 594 595
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
596
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
597
  const lite::Tensor* Y{};
X
xiaogang 已提交
598 599 600
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
601 602 603 604 605 606 607 608 609 610 611 612
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
613
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
614 615 616 617
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

618
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
619 620 621 622 623 624 625
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
626
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
627 628
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
629
  lite::Tensor* shape_tensor{nullptr};
630 631
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
632 633 634 635 636
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
637

638
struct FillConstantBatchSizeLikeParam : ParamBase {
639 640
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
641

642
  std::vector<int> shape{};
643 644 645 646
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
647 648
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
649 650
};

Y
Yan Chunwei 已提交
651
//
652
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
653 654 655 656 657 658 659 660 661 662
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
663
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
664 665
};

666
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
667 668 669 670 671 672
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

673
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
674 675 676 677 678 679
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

Y
Yan Chunwei 已提交
680
/// ----------------------- sgd operators ----------------------
681
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
682 683 684 685 686 687 688 689 690
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
691
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
692 693 694 695 696 697 698 699
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
700
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
701 702 703 704
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
705
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
706 707 708 709 710 711 712 713 714
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
715
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
716 717 718 719 720 721 722
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
723
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
724 725 726 727 728 729
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
730
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
731 732 733 734 735 736
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
737
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
753
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
754 755
  const lite::Tensor* X{};
  lite::Tensor* Out{};
756
  int n{5};
757 758 759
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
760 761 762 763
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
764
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
780
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
781 782 783 784 785
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
786 787 788 789
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
790 791 792
};

/// ----------------------- multiclass_nms operators ----------------------
793
struct MulticlassNmsParam : ParamBase {
794 795 796
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
797
  lite::Tensor* index{};
798 799 800
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
801 802
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
803
  int keep_top_k;
804
  bool normalized{true};
Y
Yan Chunwei 已提交
805 806 807
};

/// ----------------------- priorbox operators ----------------------
808
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
828
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
829 830 831 832 833
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
834
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
835 836
};
/// ----------------------- GRU operators ----------------------f
837
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
854
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
855 856 857 858 859 860 861 862 863
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
864
struct LookupTableParam : ParamBase {
865 866
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
867 868 869 870
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

871
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
872 873 874 875 876 877
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

878
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
879 880 881 882 883 884 885 886 887
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

888
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
889 890
  const lite::Tensor* X{};
  lite::Tensor* Out{};
891 892
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
893 894
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
895 896 897 898 899
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
900 901
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
902 903 904 905
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
906 907
};

908
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
909 910
  const lite::Tensor* X{};
  lite::Tensor* Out{};
911
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
912
  int axis{1};
913
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
914
};
915
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
916 917 918 919 920 921 922
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
923
  float epsilon{1e-5f};
T
TianXiaogang 已提交
924
};
Y
Yan Chunwei 已提交
925

926
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
927 928 929 930 931
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

932
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
933 934 935 936 937 938 939
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

940
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
941 942 943 944 945 946 947
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

948
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
949 950 951 952 953 954
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

955
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
956 957 958 959 960
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

961
struct WriteToArrayParam : ParamBase {
962 963 964
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
965 966
};

967
struct ReadFromArrayParam : ParamBase {
968 969 970
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
971 972
};

973
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

987
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
988 989
  const lite::Tensor* X{};
  lite::Tensor* Out{};
990 991 992
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
993
  lite::Tensor* MaxIndex{};
994
#endif
Y
Yan Chunwei 已提交
995 996
};

997
struct SequenceConvParam : ParamBase {
998 999 1000 1001 1002 1003 1004 1005
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1006
struct SequencePoolConcatParam : ParamBase {
1007 1008 1009 1010 1011
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1012
struct SearchGroupPaddingParam : ParamBase {
1013 1014 1015 1016 1017 1018 1019
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1020
struct SequenceReshapeParam : ParamBase {
1021 1022 1023 1024 1025
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1026
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1027 1028 1029 1030 1031 1032
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1033 1034 1035 1036 1037 1038
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1039
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1040 1041 1042 1043 1044
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1045
struct SequenceReverseParam : ParamBase {
1046 1047 1048 1049
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1050
struct SequenceConcatParam : ParamBase {
1051 1052 1053 1054
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1055
struct AttentionPaddingMaskParam : ParamBase {
1056 1057 1058 1059 1060 1061 1062 1063
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1064
struct SequenceArithmeticParam : ParamBase {
1065 1066 1067 1068 1069 1070
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1071
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1072 1073 1074 1075 1076 1077
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1078
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1079 1080 1081 1082 1083 1084 1085
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1086
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1087 1088 1089
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1090

1091
struct ReduceParam : ParamBase {
1092 1093 1094 1095 1096 1097 1098
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1099
struct VarConv2DParam : ParamBase {
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1113 1114

  bool fuse_relu{false};
1115 1116
};

Y
Yan Chunwei 已提交
1117
/// ----------------------- shape operators ----------------------
1118
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1119 1120 1121 1122
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1123
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1124 1125 1126 1127 1128 1129
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1130
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1131 1132 1133 1134 1135 1136
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1137 1138 1139 1140 1141
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1142 1143
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1144 1145
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1146 1147 1148 1149 1150
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1151 1152
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1153 1154 1155 1156
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1157
};
Y
Yan Chunwei 已提交
1158

1159
struct AffineChannelParam : ParamBase {
1160 1161 1162 1163 1164 1165 1166
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1167
struct AnchorGeneratorParam : ParamBase {
1168 1169 1170 1171
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1172 1173
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1174 1175 1176 1177 1178

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1179
struct GenerateProposalsParam : ParamBase {
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1190 1191 1192
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1193 1194 1195 1196 1197

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1198
/// ----------------------- squeeze operators ----------------------
1199
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1200 1201 1202 1203
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1204 1205
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1206 1207
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1208 1209 1210 1211 1212
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1213 1214
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1215 1216 1217 1218
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1219 1220
};

1221
struct UnsqueezeParam : ParamBase {
1222 1223 1224 1225
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1226
  const lite::Tensor* axes_tensor{};
1227
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1228 1229
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1230 1231
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1232 1233 1234 1235 1236
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1237 1238
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1239 1240 1241 1242
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1243 1244
};

Y
Yan Chunwei 已提交
1245
/// ----------------------- expand operators ----------------------
1246
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1247 1248 1249 1250 1251 1252
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
1253
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1254 1255 1256 1257 1258 1259
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1260 1261
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1262 1263
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1264 1265 1266 1267 1268
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1269 1270
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1271 1272 1273 1274
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1275
};
1276

1277
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1278 1279 1280 1281 1282
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1283
/// ----------------------- assign operators -----------------------
1284
struct AssignParam : ParamBase {
1285 1286 1287 1288 1289 1290 1291
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1292
};
1293

1294
/// ----------------------- roi_align operators -----------------------
1295
struct RoiAlignParam : ParamBase {
1296 1297 1298 1299 1300 1301 1302 1303 1304
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1305
/// ----------------------- box_clip operators -----------------------
1306
struct BoxClipParam : ParamBase {
1307 1308 1309 1310 1311
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1312
struct RangeParam : ParamBase {
1313 1314 1315 1316 1317 1318
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1319
/// ----------------------- assign_value operators -----------------------
1320
struct AssignValueParam : ParamBase {
1321 1322 1323 1324 1325 1326 1327
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
  lite::Tensor* Out{};
};

1328
/// --------------- sequence_topk_avg_pooling operators ------------------
1329
struct SequenceTopkAvgPoolingParam : ParamBase {
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

/// --------------- search_fc operators ------------------
1340
struct SearchFcParam : ParamBase {
1341 1342 1343 1344 1345 1346
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
};
J
juncaipeng 已提交
1347
/// --------------------- match_matrix_tensor operators --------------------
1348
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
};

/// --------------------- search_seq_depadding operators --------------------
1359
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1360 1361 1362 1363 1364 1365
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1366
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
};

1379
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1380 1381 1382 1383 1384 1385 1386
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1387
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1388 1389 1390 1391 1392 1393 1394 1395
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1396
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1397 1398 1399 1400 1401 1402 1403 1404
  const lite::Tensor* cond{};
  std::vector<lite::Tensor*> x{};
  std::vector<lite::Tensor*> outs{};
  cpp::BlockDesc* sub_block{};
  Scope* scope{};
  bool is_scalar_condition{};
};

1405
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1406 1407 1408 1409 1410 1411
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1412
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1422
/// --------------------- instance_norm operators --------------------
1423
struct InstanceNormParam : ParamBase {
1424 1425 1426 1427 1428 1429 1430 1431
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
1432
/// --------------------- grid sampler operators --------------------
1433
struct GridSamplerParam : ParamBase {
1434 1435 1436 1437
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1438
struct LstmParam : ParamBase {
X
xiaogang 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1454

1455
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1456 1457 1458 1459 1460 1461 1462
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1495
  std::string precision{};
1496 1497
};

C
Cwndmiao 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

1518 1519 1520 1521 1522
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
Y
Yan Chunwei 已提交
1523 1524 1525
}  // namespace operators
}  // namespace lite
}  // namespace paddle