Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
26470600
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
26470600
编写于
11月 12, 2019
作者:
J
juncaipeng
提交者:
GitHub
11月 12, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Upgrade concat and unsqueeze, test=develop (#2378)
* update concat and unsqueeze, test=develop
上级
15eccb9e
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
329 addition
and
14 deletion
+329
-14
lite/kernels/arm/concat_compute.cc
lite/kernels/arm/concat_compute.cc
+7
-0
lite/kernels/arm/unsqueeze_compute.cc
lite/kernels/arm/unsqueeze_compute.cc
+8
-0
lite/kernels/cuda/concat_compute.cu
lite/kernels/cuda/concat_compute.cu
+7
-0
lite/kernels/x86/concat_compute.cc
lite/kernels/x86/concat_compute.cc
+2
-0
lite/kernels/x86/concat_compute.h
lite/kernels/x86/concat_compute.h
+5
-0
lite/operators/concat_op.cc
lite/operators/concat_op.cc
+24
-2
lite/operators/op_params.h
lite/operators/op_params.h
+3
-0
lite/operators/unsqueeze_op.cc
lite/operators/unsqueeze_op.cc
+46
-2
lite/tests/kernels/CMakeLists.txt
lite/tests/kernels/CMakeLists.txt
+1
-0
lite/tests/kernels/concat_compute_test.cc
lite/tests/kernels/concat_compute_test.cc
+177
-0
lite/tests/kernels/unsqueeze_compute_test.cc
lite/tests/kernels/unsqueeze_compute_test.cc
+49
-10
未找到文件。
lite/kernels/arm/concat_compute.cc
浏览文件 @
26470600
...
...
@@ -39,6 +39,11 @@ void ConcatCompute::Run() {
std
::
vector
<
lite
::
Tensor
*>
inputs
=
param
.
x
;
auto
*
out
=
param
.
output
;
int
axis
=
param
.
axis
;
auto
*
axis_tensor
=
param
.
axis_tensor
;
if
(
axis_tensor
!=
nullptr
)
{
auto
*
axis_tensor_data
=
axis_tensor
->
data
<
int
>
();
axis
=
axis_tensor_data
[
0
];
}
out
->
mutable_data
<
float
>
();
/// Sometimes direct copies will be faster, this maybe need deeply analysis.
...
...
@@ -83,5 +88,7 @@ void ConcatCompute::Run() {
REGISTER_LITE_KERNEL
(
concat
,
kARM
,
kFloat
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
ConcatCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"AxisTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
lite/kernels/arm/unsqueeze_compute.cc
浏览文件 @
26470600
...
...
@@ -55,6 +55,10 @@ REGISTER_LITE_KERNEL(unsqueeze,
paddle
::
lite
::
kernels
::
host
::
UnsqueezeCompute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"AxesTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kInt32
))})
.
BindInput
(
"AxesTensorList"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
...
...
@@ -65,6 +69,10 @@ REGISTER_LITE_KERNEL(unsqueeze2,
paddle
::
lite
::
kernels
::
host
::
Unsqueeze2Compute
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"AxesTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kInt32
))})
.
BindInput
(
"AxesTensorList"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"XShape"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
lite/kernels/cuda/concat_compute.cu
浏览文件 @
26470600
...
...
@@ -51,6 +51,11 @@ void ConcatCompute<Dtype>::Run() {
Tensor
*
output
=
param
.
output
;
auto
*
output_data
=
output
->
mutable_data
<
Dtype
>
(
TARGET
(
kCUDA
));
int
axis
=
param
.
axis
;
auto
*
axis_tensor
=
param
.
axis_tensor
;
if
(
axis_tensor
!=
nullptr
)
{
auto
*
axis_tensor_data
=
axis_tensor
->
data
<
int
>
();
axis
=
axis_tensor_data
[
0
];
}
int
inner_size
=
1
;
int
outer_size
=
1
;
auto
input_dims
=
input
[
0
]
->
dims
();
...
...
@@ -97,5 +102,7 @@ REGISTER_LITE_KERNEL(concat,
paddle
::
lite
::
kernels
::
cuda
::
ConcatCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
BindInput
(
"AxisTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kCUDA
))})
.
Finalize
();
lite/kernels/x86/concat_compute.cc
浏览文件 @
26470600
...
...
@@ -21,5 +21,7 @@ REGISTER_LITE_KERNEL(concat,
paddle
::
lite
::
kernels
::
x86
::
ConcatCompute
<
float
>
,
def
)
.
BindInput
(
"X"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
BindInput
(
"AxisTensor"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
),
PRECISION
(
kInt32
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kX86
))})
.
Finalize
();
lite/kernels/x86/concat_compute.h
浏览文件 @
26470600
...
...
@@ -40,6 +40,11 @@ class ConcatCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
int64_t
axis
=
static_cast
<
int64_t
>
(
param
.
axis
);
auto
*
axis_tensor
=
param
.
axis_tensor
;
if
(
axis_tensor
!=
nullptr
)
{
auto
*
axis_tensor_data
=
axis_tensor
->
data
<
int
>
();
axis
=
static_cast
<
int64_t
>
(
axis_tensor_data
[
0
]);
}
auto
x_dims
=
param
.
x
[
0
]
->
dims
();
auto
out
=
param
.
output
;
if
(
param
.
x
.
size
()
==
1
)
{
...
...
lite/operators/concat_op.cc
浏览文件 @
26470600
...
...
@@ -31,14 +31,25 @@ bool ConcatOpLite::InferShape() const {
for
(
auto
p
:
param_
.
x
)
{
input_dims
.
push_back
(
p
->
dims
());
}
size_t
axis
=
static_cast
<
size_t
>
(
param_
.
axis
);
const
size_t
n
=
input_dims
.
size
();
CHECK_GT_OR_FALSE
(
n
,
0
);
int
axis
=
0
;
if
(
param_
.
axis_tensor
==
nullptr
)
{
axis
=
param_
.
axis
;
}
else
{
auto
*
axis_tensor_val
=
param_
.
axis_tensor
->
data
<
int
>
();
axis
=
axis_tensor_val
[
0
];
}
if
(
axis
<
0
)
{
axis
+=
input_dims
[
0
].
size
();
}
auto
&
out_dims
=
input_dims
[
0
];
size_t
in_zero_dims_size
=
out_dims
.
size
();
for
(
size_t
i
=
1
;
i
<
n
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
in_zero_dims_size
;
j
++
)
{
if
(
j
==
axis
)
{
if
(
j
==
static_cast
<
size_t
>
(
axis
)
)
{
out_dims
[
axis
]
+=
input_dims
[
i
][
j
];
}
else
{
CHECK_EQ_OR_FALSE
(
out_dims
[
j
],
input_dims
[
i
][
j
]);
...
...
@@ -68,6 +79,17 @@ bool ConcatOpLite::AttachImpl(const cpp::OpDesc &op_desc, lite::Scope *scope) {
param_
.
output
=
scope
->
FindVar
(
out
)
->
GetMutable
<
lite
::
Tensor
>
();
param_
.
axis
=
op_desc
.
GetAttr
<
int
>
(
"axis"
);
std
::
vector
<
std
::
string
>
input_arg_names
=
op_desc
.
InputArgumentNames
();
if
(
std
::
find
(
input_arg_names
.
begin
(),
input_arg_names
.
end
(),
"AxisTensor"
)
!=
input_arg_names
.
end
())
{
auto
arguments
=
op_desc
.
Input
(
"AxisTensor"
);
if
(
arguments
.
size
()
>
0
)
{
auto
var
=
scope
->
FindVar
(
arguments
.
front
());
if
(
var
!=
nullptr
)
{
param_
.
axis_tensor
=
var
->
GetMutable
<
lite
::
Tensor
>
();
}
}
}
return
true
;
}
...
...
lite/operators/op_params.h
浏览文件 @
26470600
...
...
@@ -207,6 +207,7 @@ struct ConcatParam {
std
::
vector
<
lite
::
Tensor
*>
x
{};
lite
::
Tensor
*
output
{};
int
axis
{
0
};
lite
::
Tensor
*
axis_tensor
{};
};
/// ----------------------- activation operators ----------------------
...
...
@@ -854,6 +855,8 @@ struct UnsqueezeParam {
lite
::
Tensor
*
Out
{};
lite
::
Tensor
*
XShape
{};
std
::
vector
<
int
>
axes
{};
const
lite
::
Tensor
*
axes_tensor
{};
std
::
vector
<
lite
::
Tensor
>*
axes_tensor_vct
{};
};
/// ----------------------- expand operators ----------------------
...
...
lite/operators/unsqueeze_op.cc
浏览文件 @
26470600
...
...
@@ -63,9 +63,30 @@ bool UnsqueezeOp::CheckShape() const {
}
bool
UnsqueezeOp
::
InferShape
()
const
{
std
::
vector
<
int
>
unsqueeze_dims
=
param_
.
axes
;
std
::
vector
<
int
>
final_axes
;
auto
axes
=
param_
.
axes
;
auto
*
axes_tensor
=
param_
.
axes_tensor
;
std
::
vector
<
lite
::
Tensor
>
axes_tensor_vct
;
if
(
param_
.
axes_tensor_vct
)
{
axes_tensor_vct
=
*
(
param_
.
axes_tensor_vct
);
}
if
(
!
axes
.
empty
())
{
final_axes
=
axes
;
}
else
if
(
axes_tensor
!=
nullptr
)
{
auto
*
axes_tensor_data
=
axes_tensor
->
data
<
int
>
();
final_axes
=
std
::
vector
<
int
>
(
axes_tensor_data
,
axes_tensor_data
+
axes_tensor
->
numel
());
}
else
if
(
!
axes_tensor_vct
.
empty
())
{
for
(
int
i
=
0
;
i
<
axes_tensor_vct
.
size
();
i
++
)
{
final_axes
.
push_back
(
axes_tensor_vct
[
i
].
data
<
int
>
()[
0
]);
}
}
else
{
LOG
(
FATAL
)
<<
"Input axis error"
;
}
DDim
in_dims
=
param_
.
X
->
dims
();
DDim
out_dim
=
GetOutputShape
(
unsqueeze_dim
s
,
in_dims
);
DDim
out_dim
=
GetOutputShape
(
final_axe
s
,
in_dims
);
param_
.
Out
->
Resize
(
out_dim
);
return
true
;
}
...
...
@@ -81,6 +102,29 @@ bool UnsqueezeOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
if
(
opdesc
.
HasAttr
(
"axes"
))
{
param_
.
axes
=
opdesc
.
GetAttr
<
std
::
vector
<
int
>>
(
"axes"
);
}
if
(
opdesc
.
HasInput
(
"AxesTensor"
)
&&
opdesc
.
Input
(
"AxesTensor"
).
size
()
>
0
)
{
auto
var
=
scope
->
FindVar
(
opdesc
.
Input
(
"AxesTensor"
).
front
());
if
(
var
!=
nullptr
)
{
param_
.
axes_tensor
=
var
->
GetMutable
<
lite
::
Tensor
>
();
VLOG
(
5
)
<<
"load AxesTensor"
;
}
}
if
(
opdesc
.
HasInput
(
"AxesTensorList"
)
&&
opdesc
.
Input
(
"AxesTensorList"
).
size
()
>
0
)
{
auto
args
=
opdesc
.
Input
(
"AxesTensorList"
);
/*
for (auto arg : args) {
auto *var = scope->FindVar(arg);
if (var != nullptr) {
param_.axes_tensor_vct.push_back(var->GetMutable<lite::Tensor>());
}
}
*/
auto
*
var
=
scope
->
FindVar
(
args
.
front
());
param_
.
axes_tensor_vct
=
var
->
GetMutable
<
std
::
vector
<
lite
::
Tensor
>>
();
}
CHECK
(
param_
.
X
)
<<
"Input(X) of UnsqueezeOp should not be null."
;
CHECK
(
param_
.
Out
)
<<
"Output(Out) of UnsqueezeOp should not be null."
;
return
true
;
...
...
lite/tests/kernels/CMakeLists.txt
浏览文件 @
26470600
...
...
@@ -22,6 +22,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA AND NOT LITE_WITH_XPU) AND (LITE
#lite_cc_test(test_kernel_increment_compute SRCS increment_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_write_to_array_compute SRCS write_to_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
#lite_cc_test(test_kernel_read_from_array_compute SRCS read_from_array_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test
(
test_concat_compute SRCS concat_compute_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
if
(
LITE_BUILD_EXTRA
)
lite_cc_test
(
test_gru_unit SRCS gru_unit_test.cc DEPS arena_framework
${
x86_kernels
}
${
arm_kernels
}
${
lite_ops
}
${
host_kernels
}
)
...
...
lite/tests/kernels/concat_compute_test.cc
0 → 100644
浏览文件 @
26470600
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
namespace
paddle
{
namespace
lite
{
DDim
infer_shape
(
const
std
::
vector
<
const
Tensor
*>&
inputs
,
int
in_axis
)
{
std
::
vector
<
DDim
>
input_dims
;
for
(
auto
*
tensor
:
inputs
)
{
input_dims
.
push_back
(
tensor
->
dims
());
}
size_t
axis
=
static_cast
<
size_t
>
(
in_axis
);
DDim
out_dims
=
input_dims
[
0
];
for
(
size_t
i
=
1
;
i
<
input_dims
.
size
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
input_dims
[
0
].
size
();
j
++
)
{
if
(
j
==
axis
)
{
out_dims
[
axis
]
+=
input_dims
[
i
][
j
];
}
else
{
if
(
out_dims
[
j
]
!=
input_dims
[
i
][
j
])
{
LOG
(
FATAL
)
<<
"infer shape error."
;
}
}
}
}
if
(
out_dims
[
axis
]
<
0
)
{
out_dims
[
axis
]
=
-
1
;
}
return
out_dims
;
}
class
ConcateComputeTester
:
public
arena
::
TestCase
{
protected:
// common attributes for this op.
std
::
vector
<
std
::
string
>
x_vct_
{};
std
::
string
out_
=
"out"
;
std
::
string
axis_tensor_
=
"axis_tensor"
;
int
axis_
=
0
;
bool
is_use_axis_tensor_
=
false
;
int
x_num_
=
3
;
DDim
x_dims_
{{
2
,
3
,
4
,
5
}};
public:
ConcateComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
int
axis
,
bool
is_use_axis_tensor
)
:
TestCase
(
place
,
alias
)
{
axis_
=
axis
;
is_use_axis_tensor_
=
is_use_axis_tensor
;
}
void
RunBaseline
(
Scope
*
scope
)
override
{
std
::
vector
<
const
Tensor
*>
x_vct
;
for
(
std
::
string
&
name
:
x_vct_
)
{
x_vct
.
push_back
(
scope
->
FindTensor
(
name
));
}
auto
*
out
=
scope
->
NewTensor
(
out_
);
DDim
output_dims
=
infer_shape
(
x_vct
,
axis_
);
out
->
Resize
(
output_dims
);
auto
*
output_data
=
out
->
mutable_data
<
float
>
();
int
num
=
x_vct
.
size
();
int
rows
=
1
;
auto
dim_0
=
x_vct
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis_
;
++
i
)
{
rows
*=
dim_0
[
i
];
}
int
out_rows
=
rows
,
out_cols
=
0
;
std
::
vector
<
int
>
input_cols
(
x_vct
.
size
());
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
input_i_numel
=
x_vct
[
i
]
->
dims
().
size
()
==
0
?
0
:
1
;
for
(
int
didx
=
0
;
didx
<
x_vct
[
i
]
->
dims
().
size
();
++
didx
)
{
input_i_numel
*=
x_vct
[
i
]
->
dims
()[
didx
];
}
int
t_cols
=
input_i_numel
/
rows
;
out_cols
+=
t_cols
;
input_cols
[
i
]
=
t_cols
;
}
// computation
int
col_idx
=
0
;
for
(
int
j
=
0
;
j
<
num
;
++
j
)
{
int
col_len
=
input_cols
[
j
];
auto
input_data
=
x_vct
[
j
]
->
data
<
float
>
();
for
(
int
k
=
0
;
k
<
out_rows
;
++
k
)
{
memcpy
(
output_data
+
k
*
out_cols
+
col_idx
,
input_data
+
k
*
col_len
,
sizeof
(
float
)
*
col_len
);
}
col_idx
+=
col_len
;
}
}
void
PrepareOpDesc
(
cpp
::
OpDesc
*
op_desc
)
{
op_desc
->
SetType
(
"concat"
);
op_desc
->
SetInput
(
"X"
,
x_vct_
);
op_desc
->
SetAttr
(
"axis"
,
axis_
);
if
(
is_use_axis_tensor_
)
{
op_desc
->
SetInput
(
"AxisTensor"
,
{
axis_tensor_
});
}
op_desc
->
SetOutput
(
"Out"
,
{
out_
});
}
void
PrepareData
()
override
{
for
(
int
n
=
0
;
n
<
x_num_
;
n
++
)
{
std
::
vector
<
float
>
x_data
(
x_dims_
.
production
());
for
(
int
i
=
0
;
i
<
x_dims_
.
production
();
i
++
)
{
x_data
[
i
]
=
static_cast
<
float
>
(
i
+
n
);
}
const
std
::
string
x_name
=
"x_tensor_"
+
std
::
to_string
(
n
);
x_vct_
.
push_back
(
x_name
);
SetCommonTensor
(
x_name
,
x_dims_
,
x_data
.
data
());
}
if
(
is_use_axis_tensor_
)
{
SetCommonTensor
(
axis_tensor_
,
DDim
({
1
}),
&
axis_
);
LOG
(
INFO
)
<<
"set axis tensor"
;
}
}
};
TEST
(
Concat
,
precision
)
{
LOG
(
INFO
)
<<
"test concat op, kARM"
;
#ifdef LITE_WITH_ARM
Place
place
(
TARGET
(
kARM
));
for
(
int
axis
:
{
1
,
2
})
{
for
(
bool
is_use_axis_tensor
:
{
false
,
true
})
{
LOG
(
INFO
)
<<
"axis:"
<<
axis
<<
", is_use_axis_tensor:"
<<
is_use_axis_tensor
;
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ConcateComputeTester
(
place
,
"def"
,
axis
,
is_use_axis_tensor
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
.
TestPrecision
();
}
}
#endif
#ifdef LITE_WITH_X86
Place
place
(
TARGET
(
kX86
));
LOG
(
INFO
)
<<
"test concate op, x86"
;
for
(
int
axis
:
{
1
,
2
})
{
for
(
bool
is_use_axis_tensor
:
{
false
,
true
})
{
LOG
(
INFO
)
<<
"axis:"
<<
axis
<<
", is_use_axis_tensor:"
<<
is_use_axis_tensor
;
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
ConcateComputeTester
(
place
,
"def"
,
axis
,
is_use_axis_tensor
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
.
TestPrecision
();
}
}
#endif
}
}
// namespace lite
}
// namespace paddle
lite/tests/kernels/unsqueeze_compute_test.cc
浏览文件 @
26470600
...
...
@@ -13,10 +13,10 @@
// limitations under the License.
#include <gtest/gtest.h>
#include <string>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
namespace
paddle
{
namespace
lite
{
...
...
@@ -25,15 +25,24 @@ class UnsqueezeComputeTester : public arena::TestCase {
// common attributes for this op.
std
::
string
x_
=
"X"
;
std
::
string
out_
=
"Out"
;
std
::
string
axes_tensor_
=
"AxesTensor"
;
std
::
vector
<
std
::
string
>
axes_tensor_list_
;
std
::
vector
<
int
>
axes_
;
DDim
dims_
;
// input_axes_flag_: 1 for axes, 2 for axes_tensor, 3 for axes_tensor_list
int
input_axes_flag_
=
1
;
public:
UnsqueezeComputeTester
(
const
Place
&
place
,
const
std
::
string
&
alias
,
const
std
::
vector
<
int
>&
axes
,
DDim
dims
)
:
TestCase
(
place
,
alias
),
axes_
(
axes
),
dims_
(
dims
)
{}
DDim
dims
,
int
input_axes_flag
)
:
TestCase
(
place
,
alias
),
dims_
(
dims
),
input_axes_flag_
(
input_axes_flag
)
{
for
(
int
v
:
axes
)
{
axes_
.
push_back
(
v
);
}
}
void
RunBaseline
(
Scope
*
scope
)
override
{
const
auto
*
input
=
scope
->
FindTensor
(
x_
);
...
...
@@ -86,7 +95,15 @@ class UnsqueezeComputeTester : public arena::TestCase {
op_desc
->
SetType
(
"unsqueeze"
);
op_desc
->
SetInput
(
"X"
,
{
x_
});
op_desc
->
SetOutput
(
"Out"
,
{
out_
});
op_desc
->
SetAttr
(
"axes"
,
axes_
);
if
(
input_axes_flag_
==
1
)
{
op_desc
->
SetAttr
(
"axes"
,
axes_
);
}
else
if
(
input_axes_flag_
==
2
)
{
op_desc
->
SetInput
(
"AxesTensor"
,
{
axes_tensor_
});
}
else
if
(
input_axes_flag_
==
3
)
{
op_desc
->
SetInput
(
"AxesTensorList"
,
axes_tensor_list_
);
}
else
{
LOG
(
FATAL
)
<<
"input input_axes_flag_ error. "
<<
input_axes_flag_
;
}
}
void
PrepareData
()
override
{
...
...
@@ -95,6 +112,23 @@ class UnsqueezeComputeTester : public arena::TestCase {
in_data
[
i
]
=
i
;
}
SetCommonTensor
(
x_
,
dims_
,
in_data
.
data
());
if
(
input_axes_flag_
==
2
)
{
DDim
axes_tensor_dim
{{
static_cast
<
int
>
(
axes_
.
size
())}};
std
::
vector
<
int
>
axes_tensor_data
(
axes_
.
size
());
for
(
int
i
=
0
;
i
<
axes_tensor_dim
.
production
();
i
++
)
{
axes_tensor_data
[
i
]
=
axes_
[
i
];
}
SetCommonTensor
(
axes_tensor_
,
axes_tensor_dim
,
axes_tensor_data
.
data
());
}
else
if
(
input_axes_flag_
==
3
)
{
std
::
string
name
=
"axes_tensor_"
;
for
(
size_t
i
=
0
;
i
<
axes_
.
size
();
i
++
)
{
name
=
name
+
std
::
to_string
(
i
);
axes_tensor_list_
.
push_back
(
name
);
std
::
vector
<
int
>
in_data
=
{
axes_
[
i
]};
SetCommonTensor
(
name
,
DDim
({
1
}),
in_data
.
data
());
}
}
}
};
...
...
@@ -189,17 +223,22 @@ class Unsqueeze2ComputeTester : public arena::TestCase {
};
void
test_unsqueeze
(
Place
place
)
{
for
(
std
::
vector
<
int
>
axes
:
{
std
::
vector
<
int
>
({}),
for
(
std
::
vector
<
int
>
axes
:
{
std
::
vector
<
int
>
({
1
}),
std
::
vector
<
int
>
({
0
,
2
}),
std
::
vector
<
int
>
({
0
,
-
2
})})
{
for
(
int
N
:
{
1
})
{
for
(
int
C
:
{
3
})
{
for
(
int
H
:
{
1
})
{
for
(
int
W
:
{
5
})
{
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
UnsqueezeComputeTester
(
place
,
"def"
,
axes
,
DDim
({
N
,
C
,
H
,
W
})));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
.
TestPrecision
();
for
(
int
input_axes_flag
:
{
1
,
2
})
{
LOG
(
INFO
)
<<
N
<<
" "
<<
C
<<
" "
<<
H
<<
" "
<<
W
<<
" "
<<
input_axes_flag
;
std
::
unique_ptr
<
arena
::
TestCase
>
tester
(
new
UnsqueezeComputeTester
(
place
,
"def"
,
axes
,
DDim
({
N
,
C
,
H
,
W
}),
input_axes_flag
));
arena
::
Arena
arena
(
std
::
move
(
tester
),
place
,
2e-5
);
arena
.
TestPrecision
();
}
}
}
}
...
...
@@ -208,7 +247,7 @@ void test_unsqueeze(Place place) {
}
void
test_unsqueeze2
(
Place
place
)
{
for
(
std
::
vector
<
int
>
axes
:
{
std
::
vector
<
int
>
({}),
for
(
std
::
vector
<
int
>
axes
:
{
std
::
vector
<
int
>
({
0
}),
std
::
vector
<
int
>
({
0
,
2
}),
std
::
vector
<
int
>
({
0
,
-
2
})})
{
for
(
int
N
:
{
1
})
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录