op_params.h 41.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
Y
Yan Chunwei 已提交
24 25 26
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/desc_apis.h"
#include "lite/utils/all.h"
27
#include "lite/utils/variant.h"
Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

36 37
struct ParamBase {
 public:
38 39 40 41 42
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
43 44 45 46 47 48

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
49 50 51
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
52
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
53
  std::vector<float> weight_scale{}; \
54
  float output_scale{1.0f};          \
55
  int bit_length{8};
Y
Yan Chunwei 已提交
56 57

/// ----------------------- Functional operators ------------------------------
58
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
59 60 61 62 63
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

64
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
65 66 67 68 69 70
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
71
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
72 73
  const lite::Tensor* x{};
  lite::Tensor* y{};
74
  int process_type{0};
Y
Yan Chunwei 已提交
75 76
};

77
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
78 79
  const lite::Tensor* x{};
  lite::Tensor* y{};
80
  int process_type{0};
Y
Yan Chunwei 已提交
81 82
};

83
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
84 85 86 87 88
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

89
struct SubgraphParam : ParamBase {
90 91 92 93 94 95 96
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
  int sub_block_idx{-1};
  cpp::BlockDesc* sub_block_desc{nullptr};
  Scope* scope{nullptr};
Y
Yan Chunwei 已提交
97 98 99 100
};

/// -------------------------- NN operators ------------------------------------

101
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
102 103 104 105 106 107
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
108
  std::string activation_type{""};
109
  bool padding_weights{false};
Y
Yan Chunwei 已提交
110 111
  // for int8
  WITH_INT8_CONFIG
112 113
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
114 115
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
116 117 118 119 120
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
121 122
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
123 124 125 126 127 128 129
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
130 131 132 133 134 135 136
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
137
// For Interpolate Op
138
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
139 140 141
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
142
  std::vector<const lite::Tensor*> SizeTensor;
143
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
144 145 146 147 148

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
149
  int align_mode{1};
Y
Yan Chunwei 已提交
150
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
151
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
152 153 154
};

// For Mul Op
155
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
164 165
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
166 167
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
168 169 170 171 172
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
173 174
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
175 176 177 178
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
179 180
};

181
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189 190 191
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

192
// For ReduceMean Op
193
struct ReduceMeanParam : ParamBase {
194 195 196 197 198 199 200 201
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
202
struct StackParam : ParamBase {
203 204 205 206 207 208
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
209
// For Power Op
210
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

219
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
220 221 222 223 224 225 226
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
227
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236 237 238 239
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
240
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
241 242 243 244 245 246
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
247 248
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
249 250
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
251 252 253 254 255
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
256 257
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
258 259 260 261
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
262 263 264
};

// For Softmax op
265
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
266 267 268
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
269 270
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
271 272
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
273 274 275 276 277
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
278 279
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
280 281 282 283
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
284 285 286
};

// For Reshape and Reshape2 Op
287
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
288
  const lite::Tensor* x{};
289 290 291
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
292 293
  lite::Tensor* output{};

294
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
295
  bool inplace{false};
296 297
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
298 299
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
300 301 302 303 304
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
305 306
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
307 308 309 310
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
311 312 313
};

// For Concat op
314
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
315 316 317
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
318
  lite::Tensor* axis_tensor{};
319
  // get a vector of input tensors
320 321
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
322 323 324 325 326 327 328 329 330
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
331 332
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
333 334 335 336
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
337 338
};

339
/// ----------------------- activation operators ----------------------
340
struct ActivationParam : ParamBase {
341
  const lite::Tensor* X{};
342
  lite::Tensor* Out{};
343
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
344
  bool has_active{false};
345 346 347 348 349 350
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
351
  // hard_sigmoid param
352 353
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
354 355 356 357
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
358 359
};

360
struct ActivationGradParam : ParamBase {
361 362 363 364 365 366 367
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
368
// For Convolution op
369
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
370 371 372 373 374 375
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
376 377 378 379 380 381
  /* paddings type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
382
  int groups{1};
H
HappyAngel 已提交
383 384 385 386 387 388
  /* dilations type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
389 390 391 392 393 394 395 396 397 398 399 400
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
401 402
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
403 404
  // support var_length or not
  bool var_length{false};
405 406
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
407 408
  // for int8
  WITH_INT8_CONFIG
409 410 411

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
412 413
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
414 415 416 417 418
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
419 420
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
421 422 423 424
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
425 426 427
};

// For BatchNorm op
428
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
444 445
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
446 447
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
448 449 450 451 452
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
453 454
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
455 456 457 458
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
459 460 461
};

// For Pooling op
462
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
463 464 465 466 467 468 469
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
470 471 472 473 474 475
  /* paddings type change
  * from std::vector<int> to std::shared_ptr<std::vector<int>>
  * to support dynamically modify padding
  * let kernel param and operator param Synchronous update
  */
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
476 477 478 479 480
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
481 482
  // for int8
  WITH_INT8_CONFIG
483 484
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
485 486
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
487 488 489 490 491
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
492 493
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
494 495 496 497
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
498 499 500
};

// For Dropout op
501
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
502 503 504 505 506 507 508 509 510 511 512
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
513
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
514 515
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
516 517 518
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
519 520 521
  int axis{-1};
  int num{0};
  std::vector<int> sections;
522 523
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
524 525
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
526 527 528 529 530
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
531 532
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
533 534 535 536
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
537 538 539
};

// For Transpose op
540
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
541 542
  const lite::Tensor* x{};
  lite::Tensor* output{};
543 544
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
545 546 547
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
548 549
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
550 551
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
552 553 554 555 556
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
557 558
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
559 560 561 562
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
563 564 565
};

/// ----------------------- element wise operators ----------------------
566
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
567 568 569 570
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
571
  // for int8
Z
Zhaolong Xing 已提交
572
  WITH_INT8_CONFIG
J
juncaipeng 已提交
573 574
  float x_input_scale{1.0};
  float y_input_scale{1.0};
575 576
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
577 578
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
579 580 581 582 583
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
584 585
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
586 587 588 589 590 591 592
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
593
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
594
  const lite::Tensor* Y{};
X
xiaogang 已提交
595 596 597
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
598 599 600 601 602 603 604 605 606 607 608 609
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
610
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
611 612 613 614
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

615
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
616 617 618 619 620 621 622
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
623
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
624 625
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
626
  lite::Tensor* shape_tensor{nullptr};
627 628
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
629 630 631 632 633
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
634

635
struct FillConstantBatchSizeLikeParam : ParamBase {
636 637
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
638

639
  std::vector<int> shape{};
640 641 642 643
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
644 645
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
646 647
};

Y
Yan Chunwei 已提交
648
//
649
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
650 651 652 653 654 655 656 657 658 659
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
660
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
661 662
};

663
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
664 665 666 667 668 669
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

670
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
671 672 673 674 675 676
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

Y
Yan Chunwei 已提交
677
/// ----------------------- sgd operators ----------------------
678
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
679 680 681 682 683 684 685 686 687
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
688
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
689 690 691 692 693 694 695 696
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
697
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
698 699 700 701
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
702
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
703 704 705 706 707 708 709 710 711
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
712
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
713 714 715 716 717 718 719
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
720
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
721 722 723 724 725 726
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
727
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
728 729 730 731 732 733
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
734
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
750
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
751 752
  const lite::Tensor* X{};
  lite::Tensor* Out{};
753
  int n{5};
754 755 756
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
757 758 759 760
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
761
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
777
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
778 779 780 781 782
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
783 784 785 786
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
787 788 789
};

/// ----------------------- multiclass_nms operators ----------------------
790
struct MulticlassNmsParam : ParamBase {
791 792 793
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
794
  lite::Tensor* index{};
795 796 797
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
798 799
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
800
  int keep_top_k;
801
  bool normalized{true};
Y
Yan Chunwei 已提交
802 803 804
};

/// ----------------------- priorbox operators ----------------------
805
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
825
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
826 827 828 829 830
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
831
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
832 833
};
/// ----------------------- GRU operators ----------------------f
834
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
851
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
852 853 854 855 856 857 858 859 860
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
861
struct LookupTableParam : ParamBase {
862 863
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
864 865 866 867
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

868
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
869 870 871 872 873 874
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

875
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
876 877 878 879 880 881 882 883 884
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

885
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
886 887
  const lite::Tensor* X{};
  lite::Tensor* Out{};
888 889
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
890 891
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
892 893 894 895 896
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
897 898
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
899 900 901 902
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
903 904
};

905
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
906 907
  const lite::Tensor* X{};
  lite::Tensor* Out{};
908
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
909
  int axis{1};
910
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
911
};
912
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
913 914 915 916 917 918 919
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
920
  float epsilon{1e-5f};
T
TianXiaogang 已提交
921
};
Y
Yan Chunwei 已提交
922

923
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
924 925 926 927 928
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

929
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
930 931 932 933 934 935 936
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

937
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
938 939 940 941 942 943 944
  Scope* scope{};
  Tensor* cond{};
  cpp::BlockDesc* sub_block{};
  std::vector<Tensor*> x{};
  std::vector<Tensor*> outs{};
};

945
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
946 947 948 949 950 951
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

952
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
953 954 955 956 957
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

958
struct WriteToArrayParam : ParamBase {
959 960 961
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
962 963
};

964
struct ReadFromArrayParam : ParamBase {
965 966 967
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
968 969
};

970
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

984
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
985 986
  const lite::Tensor* X{};
  lite::Tensor* Out{};
987 988 989
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
990
  lite::Tensor* MaxIndex{};
991
#endif
Y
Yan Chunwei 已提交
992 993
};

994
struct SequenceConvParam : ParamBase {
995 996 997 998 999 1000 1001 1002
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1003
struct SequencePoolConcatParam : ParamBase {
1004 1005 1006 1007 1008
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1009
struct SearchGroupPaddingParam : ParamBase {
1010 1011 1012 1013 1014 1015 1016
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1017
struct SequenceReshapeParam : ParamBase {
1018 1019 1020 1021 1022
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1023
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1024 1025 1026 1027 1028 1029
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1030 1031 1032 1033 1034 1035
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1036
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1037 1038 1039 1040 1041
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1042
struct SequenceReverseParam : ParamBase {
1043 1044 1045 1046
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1047
struct SequenceConcatParam : ParamBase {
1048 1049 1050 1051
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1052
struct AttentionPaddingMaskParam : ParamBase {
1053 1054 1055 1056 1057 1058 1059 1060
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1061
struct SequenceArithmeticParam : ParamBase {
1062 1063 1064 1065 1066 1067
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1068
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1069 1070 1071 1072 1073 1074
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1075
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1076 1077 1078 1079 1080 1081 1082
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1083
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1084 1085 1086
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1087

1088
struct ReduceParam : ParamBase {
1089 1090 1091 1092 1093 1094 1095
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1096
struct VarConv2DParam : ParamBase {
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1110 1111

  bool fuse_relu{false};
1112 1113
};

Y
Yan Chunwei 已提交
1114
/// ----------------------- shape operators ----------------------
1115
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1116 1117 1118 1119
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1120
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1121 1122 1123 1124 1125 1126
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1127
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1128 1129 1130 1131 1132 1133
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1134 1135 1136 1137 1138
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1139 1140
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1141 1142
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1143 1144 1145 1146 1147
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1148 1149
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1150 1151 1152 1153
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1154
};
Y
Yan Chunwei 已提交
1155

1156
struct AffineChannelParam : ParamBase {
1157 1158 1159 1160 1161 1162 1163
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1164
struct AnchorGeneratorParam : ParamBase {
1165 1166 1167 1168
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1169 1170
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1171 1172 1173 1174 1175

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1176
struct GenerateProposalsParam : ParamBase {
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1187 1188 1189
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1190 1191 1192 1193 1194

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1195
/// ----------------------- squeeze operators ----------------------
1196
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1197 1198 1199 1200
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1201 1202
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1203 1204
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1205 1206 1207 1208 1209
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1210 1211
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1212 1213 1214 1215
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1216 1217
};

1218
struct UnsqueezeParam : ParamBase {
1219 1220 1221 1222
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1223
  const lite::Tensor* axes_tensor{};
1224
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1225 1226
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1227 1228
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1229 1230 1231 1232 1233
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1234 1235
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1236 1237 1238 1239
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1240 1241
};

Y
Yan Chunwei 已提交
1242
/// ----------------------- expand operators ----------------------
1243
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1244 1245 1246 1247 1248 1249
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

/// ----------------------- matmul operators ----------------------
1250
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1251 1252 1253 1254 1255 1256
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1257 1258
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1259 1260
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1261 1262 1263 1264 1265
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1266 1267
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1268 1269 1270 1271
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1272
};
1273

1274
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1275 1276 1277 1278 1279
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1280
/// ----------------------- assign operators -----------------------
1281
struct AssignParam : ParamBase {
1282 1283 1284 1285 1286 1287 1288
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1289
};
1290

1291
/// ----------------------- roi_align operators -----------------------
1292
struct RoiAlignParam : ParamBase {
1293 1294 1295 1296 1297 1298 1299 1300 1301
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1302
/// ----------------------- box_clip operators -----------------------
1303
struct BoxClipParam : ParamBase {
1304 1305 1306 1307 1308
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1309
struct RangeParam : ParamBase {
1310 1311 1312 1313 1314 1315
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1316
/// ----------------------- assign_value operators -----------------------
1317
struct AssignValueParam : ParamBase {
1318 1319 1320 1321 1322 1323 1324
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
  lite::Tensor* Out{};
};

1325
/// --------------- sequence_topk_avg_pooling operators ------------------
1326
struct SequenceTopkAvgPoolingParam : ParamBase {
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

/// --------------- search_fc operators ------------------
1337
struct SearchFcParam : ParamBase {
1338 1339 1340 1341 1342 1343
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
};
J
juncaipeng 已提交
1344
/// --------------------- match_matrix_tensor operators --------------------
1345
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
};

/// --------------------- search_seq_depadding operators --------------------
1356
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1357 1358 1359 1360 1361 1362
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1363
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
};

1376
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1377 1378 1379 1380 1381 1382 1383
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1384
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1385 1386 1387 1388 1389 1390 1391 1392
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1393
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1394 1395 1396 1397 1398 1399 1400 1401
  const lite::Tensor* cond{};
  std::vector<lite::Tensor*> x{};
  std::vector<lite::Tensor*> outs{};
  cpp::BlockDesc* sub_block{};
  Scope* scope{};
  bool is_scalar_condition{};
};

1402
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1403 1404 1405 1406 1407 1408
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1409
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1419
/// --------------------- instance_norm operators --------------------
1420
struct InstanceNormParam : ParamBase {
1421 1422 1423 1424 1425 1426 1427 1428
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
1429
/// --------------------- grid sampler operators --------------------
1430
struct GridSamplerParam : ParamBase {
1431 1432 1433 1434
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1435
struct LstmParam : ParamBase {
X
xiaogang 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1451

1452
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1453 1454 1455 1456 1457 1458 1459
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
};

C
Cwndmiao 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

Y
Yan Chunwei 已提交
1514 1515 1516
}  // namespace operators
}  // namespace lite
}  // namespace paddle