op_param.h 76.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
qnqinan's avatar
qnqinan 已提交
26 27 28 29 30 31 32 33 34 35 36

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
#endif

#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

qnqinan's avatar
qnqinan 已提交
60 61 62 63 64 65 66 67 68 69 70
#ifdef PADDLE_MOBILE_CL
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
#endif

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

N
nhzlx 已提交
408
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

N
nhzlx 已提交
410
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

418
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
419

qnqinan's avatar
qnqinan 已提交
420 421 422 423 424 425 426
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
427
 private:
N
nhzlx 已提交
428 429 430
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
431 432 433
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
434
  int groups;
qnqinan's avatar
qnqinan 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
449
};
N
nhzlx 已提交
450 451
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
452

N
nhzlx 已提交
453
template <typename Dtype>
朔-望's avatar
朔-望 已提交
454
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
455 456 457
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
458
 public:
459
  ElementwiseAddParam(const VariableNameMap &inputs,
460 461
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
462 463 464
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
465 466 467
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
468
  const GType *InputX() const { return input_x_; }
469

xiebaiyuan's avatar
xiebaiyuan 已提交
470
  const GType *InputY() const { return input_y_; }
471

xiebaiyuan's avatar
xiebaiyuan 已提交
472
  GType *Out() const { return out_; }
473 474 475

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
476
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
477 478 479
  GType *input_x_;
  GType *input_y_;
  GType *out_;
480
  int axis_;
Z
zhangyang 已提交
481 482 483
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
484
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
485 486

 public:
H
hanbuhe 已提交
487 488
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
489
#endif
朔-望's avatar
朔-望 已提交
490 491
};

E
eclipsess 已提交
492
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
522
#endif
E
eclipsess 已提交
523

524
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
525 526
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
527 528
#endif

529
#ifdef ELEMENTWISESUB_OP
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
559
#endif
560

L
liuruilong 已提交
561
#ifdef MUL_OP
N
nhzlx 已提交
562
template <typename Dtype>
朔-望's avatar
朔-望 已提交
563
class MulParam : OpParam {
N
nhzlx 已提交
564 565 566
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
567
 public:
568
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
569
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
570 571 572
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
573 574 575
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
576

xiebaiyuan's avatar
xiebaiyuan 已提交
577
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
578

xiebaiyuan's avatar
xiebaiyuan 已提交
579
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
580

xiebaiyuan's avatar
xiebaiyuan 已提交
581
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
582

583
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
584

585
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
586

朔-望's avatar
朔-望 已提交
587
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
588 589 590
  GType *input_x_;
  GType *input_y_;
  GType *out_;
591 592
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
593
};
L
liuruilong 已提交
594
#endif
朔-望's avatar
朔-望 已提交
595

L
liuruilong 已提交
596
#ifdef CONCAT_OP
N
nhzlx 已提交
597
template <typename Dtype>
朔-望's avatar
朔-望 已提交
598
class ConcatParam : public OpParam {
N
nhzlx 已提交
599 600 601
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
602
 public:
603
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
604
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
605 606
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
607 608
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
609

N
nhzlx 已提交
610
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
611

xiebaiyuan's avatar
xiebaiyuan 已提交
612
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
613

614
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
615

朔-望's avatar
朔-望 已提交
616
 private:
N
nhzlx 已提交
617
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
618
  GType *out_;
619
  int axis_;
Z
zhangyang 已提交
620 621 622 623 624 625 626 627 628
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
629
};
L
liuruilong 已提交
630
#endif
朔-望's avatar
朔-望 已提交
631

E
eclipsess 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
663
#ifdef LRN_OP
N
nhzlx 已提交
664
template <typename Dtype>
E
eclipsess 已提交
665
class LrnParam : public OpParam {
N
nhzlx 已提交
666 667 668
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
669
 public:
670
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
671
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
672 673 674
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
675 676 677 678
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
679
    data_format_ = GetStringAttr("data_format", attrs);
680
  }
E
eclipsess 已提交
681

N
nhzlx 已提交
682
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
683

N
nhzlx 已提交
684
  RType *Out() const { return out_; }
E
eclipsess 已提交
685

N
nhzlx 已提交
686
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
687

688
  const int &N() const { return n_; }
E
eclipsess 已提交
689

690
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
691

692
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
693

694
  const float &K() const { return k_; }
E
eclipsess 已提交
695

W
wangliu 已提交
696
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
697

朔-望's avatar
朔-望 已提交
698
 private:
N
nhzlx 已提交
699 700 701
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
702 703 704 705
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
706
  string data_format_;
E
eclipsess 已提交
707
};
L
liuruilong 已提交
708 709 710
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
711
template <typename Dtype>
E
eclipsess 已提交
712
class BatchNormParam : OpParam {
N
nhzlx 已提交
713 714 715
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
716
 public:
717
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
718
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
719 720 721 722 723 724
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
725 726
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
727
    //    is_test_ = GetAttr<bool>("is_test", attrs);
728
  }
E
eclipsess 已提交
729

N
nhzlx 已提交
730
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
731

N
nhzlx 已提交
732
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
733

N
nhzlx 已提交
734
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
735

N
nhzlx 已提交
736
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
737

N
nhzlx 已提交
738
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
739

N
nhzlx 已提交
740
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
741

742
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
743

744
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
745

746
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
747

W
wangliu 已提交
748
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
749

qnqinan's avatar
qnqinan 已提交
750 751 752 753 754 755 756 757
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
758
 private:
N
nhzlx 已提交
759 760 761 762 763 764
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
765 766 767
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
768
  string data_format_;
qnqinan's avatar
qnqinan 已提交
769 770
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
771
};
L
liuruilong 已提交
772 773 774
#endif

#ifdef POOL_OP
N
nhzlx 已提交
775
template <typename Dtype>
776
class PoolParam : public OpParam {
N
nhzlx 已提交
777 778 779
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
780
 public:
781
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
782
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
783
    input_ = InputXFrom<GType>(inputs, scope);
784

N
nhzlx 已提交
785
    output_ = OutFrom<GType>(outputs, scope);
786
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
787 788 789
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
790
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
791
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
792
  }
793

N
nhzlx 已提交
794
  const RType *Input() const { return input_; }
795

N
nhzlx 已提交
796
  RType *Output() const { return output_; }
797

W
wangliu 已提交
798
  const string &PoolingType() const { return pooling_type_; }
799

W
wangliu 已提交
800
  const vector<int> &Ksize() const { return ksize_; }
801

W
wangliu 已提交
802
  const vector<int> &Strides() const { return strides_; }
803

W
wangliu 已提交
804
  const vector<int> &Paddings() const { return paddings_; }
805

806
  bool isCeilMode() const { return ceil_mode_; }
807

Z
zhangyang 已提交
808
  bool isGlobalPooling() const { return global_pooling_; }
809

朔-望's avatar
朔-望 已提交
810
 private:
N
nhzlx 已提交
811 812
  RType *input_;
  RType *output_;
W
wangliu 已提交
813 814 815 816
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
817
  bool ceil_mode_;
818
  bool global_pooling_ = false;
Z
zhangyang 已提交
819
#ifdef PADDLE_MOBILE_FPGA
820 821

 private:
H
hanbuhe 已提交
822
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
823 824

 public:
H
hanbuhe 已提交
825 826
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
827
#endif
828
};
L
liuruilong 已提交
829 830 831
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
832
template <typename Dtype>
E
eclipsess 已提交
833
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
834 835 836
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
837 838
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
839
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
840 841 842 843
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
844 845 846 847
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
848 849 850 851

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
852 853
    } else {
      min_max_aspect_ratios_order_ = false;
854
    }
E
eclipsess 已提交
855 856 857 858 859 860
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
861
  const RType *Input() const { return input_; }
E
eclipsess 已提交
862

N
nhzlx 已提交
863
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
864

N
nhzlx 已提交
865
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
866

N
nhzlx 已提交
867
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
868

W
wangliu 已提交
869
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
870

W
wangliu 已提交
871
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
872

W
wangliu 已提交
873
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
874

W
wangliu 已提交
875
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
876 877 878 879 880 881 882 883 884 885 886

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

887 888 889 890
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
891
 private:
N
nhzlx 已提交
892 893 894 895
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
896 897 898 899
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
900 901 902 903 904
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
905
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
906
};
L
liuruilong 已提交
907
#endif
E
eclipsess 已提交
908

L
liuruilong 已提交
909
#ifdef BOXCODER_OP
N
nhzlx 已提交
910
template <typename Dtype>
E
eclipsess 已提交
911
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
912 913 914
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
915 916
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
917
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
918 919 920 921
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
922
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
923
  }
N
nhzlx 已提交
924
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
925

N
nhzlx 已提交
926
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
927

N
nhzlx 已提交
928
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
929

N
nhzlx 已提交
930
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
931 932 933 934

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
935 936 937 938
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
939 940
  std::string code_type_;
};
L
liuruilong 已提交
941
#endif
W
wangliu 已提交
942

L
liuruilong 已提交
943
#ifdef SOFTMAX_OP
N
nhzlx 已提交
944
template <typename Dtype>
W
wangliu 已提交
945
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
946 947 948
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
949 950
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
951
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
952 953
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
954
  }
N
nhzlx 已提交
955 956
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
957 958

 private:
N
nhzlx 已提交
959 960
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
961 962 963 964

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
965
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
966 967 968
  fpga::BypassArgs fpga_bypass_args;

 public:
969
  RType *FloatInput() const {
H
hanbuhe 已提交
970 971 972 973 974 975
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
976
};
L
liuruilong 已提交
977
#endif
W
wangliu 已提交
978

L
liuruilong 已提交
979
#ifdef SIGMOID_OP
N
nhzlx 已提交
980
template <typename Dtype>
W
wangliu 已提交
981
class SigmoidParam : public OpParam {
N
nhzlx 已提交
982 983 984
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
985 986
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
987
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
988 989
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
990
  }
N
nhzlx 已提交
991 992
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
993 994

 private:
N
nhzlx 已提交
995 996
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
997
};
L
liuruilong 已提交
998 999 1000
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1001
template <typename Dtype>
E
eclipsess 已提交
1002
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1003 1004 1005
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1006 1007 1008 1009
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1010 1011 1012
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1013 1014 1015 1016 1017 1018 1019 1020
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1021
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1022

Y
yangfei 已提交
1023
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1024

N
nhzlx 已提交
1025
  RType *Out() const { return out_; }
E
eclipsess 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1040 1041 1042
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1043 1044 1045 1046 1047 1048 1049
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1050
#endif
W
wangliu 已提交
1051

L
lijiancheng0614 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1074
template <typename Dtype>
L
liuruilong 已提交
1075
class FeedParam : public OpParam {
N
nhzlx 已提交
1076 1077 1078
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1079 1080
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
qnqinan's avatar
qnqinan 已提交
1081 1082 1083 1084
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1085
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1086
  }
qnqinan's avatar
qnqinan 已提交
1087
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1088
  GType *Out() const { return out_; }
W
wangliu 已提交
1089
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1090

L
liuruilong 已提交
1091
 private:
qnqinan's avatar
qnqinan 已提交
1092
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1093
  GType *out_;
W
wangliu 已提交
1094
  int batch_size;
L
liuruilong 已提交
1095 1096
};

N
nhzlx 已提交
1097
template <typename Dtype>
L
liuruilong 已提交
1098
class FetchParam : public OpParam {
N
nhzlx 已提交
1099 1100 1101
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1102 1103
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1104
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1105
    input_x_ = InputXFrom<GType>(inputs, scope);
qnqinan's avatar
qnqinan 已提交
1106
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1107
  }
qnqinan's avatar
qnqinan 已提交
1108

N
nhzlx 已提交
1109
  const RType *InputX() const { return input_x_; }
qnqinan's avatar
qnqinan 已提交
1110 1111 1112 1113 1114
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<LoDTensor>("Out", outputs, scope);
  }
L
liuruilong 已提交
1115

L
liuruilong 已提交
1116
 private:
N
nhzlx 已提交
1117
  RType *input_x_;
qnqinan's avatar
qnqinan 已提交
1118
  Tensor *out_;
L
liuruilong 已提交
1119 1120
};

L
lijiancheng0614 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1157
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1158
template <typename Dtype>
E
eclipsess 已提交
1159
class TransposeParam : public OpParam {
N
nhzlx 已提交
1160 1161 1162
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1163 1164 1165
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1166 1167
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1168 1169 1170
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1171
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1172

N
nhzlx 已提交
1173
  RType *Out() const { return out_; }
E
eclipsess 已提交
1174 1175 1176 1177

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1178 1179
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1180 1181
  vector<int> axis_;
};
L
liuruilong 已提交
1182
#endif
E
eclipsess 已提交
1183

L
lijiancheng0614 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1281
#ifdef RESHAPE_OP
N
nhzlx 已提交
1282
template <typename Dtype>
E
eclipsess 已提交
1283
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1284 1285 1286
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1287 1288 1289
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1290 1291 1292
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1293
    shape_ = GetAttr<vector<int>>("shape", attrs);
1294 1295 1296 1297 1298 1299 1300

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1301 1302
  }

N
nhzlx 已提交
1303
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1304

N
nhzlx 已提交
1305
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1306

N
nhzlx 已提交
1307
  RType *Out() const { return out_; }
E
eclipsess 已提交
1308 1309 1310 1311 1312 1313

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1314 1315 1316
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1317 1318 1319
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1320
#endif
E
eclipsess 已提交
1321

L
lijiancheng0614 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

qnqinan's avatar
qnqinan 已提交
1343
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1344

qnqinan's avatar
qnqinan 已提交
1345
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1346

qnqinan's avatar
qnqinan 已提交
1347
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1348

qnqinan's avatar
qnqinan 已提交
1349
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1350 1351 1352 1353 1354 1355

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
qnqinan's avatar
qnqinan 已提交
1356 1357 1358 1359
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1360 1361 1362 1363 1364
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1365
#ifdef SCALE_OP
N
nhzlx 已提交
1366
template <typename Dtype>
I
itminner 已提交
1367
class ScaleParam : public OpParam {
N
nhzlx 已提交
1368 1369 1370
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1371 1372 1373
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1374 1375 1376
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1377 1378 1379 1380 1381 1382
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1383
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1384

N
nhzlx 已提交
1385
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1386

N
nhzlx 已提交
1387
  RType *Out() const { return out_; }
I
itminner 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1398 1399 1400
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1401 1402 1403 1404 1405
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1406 1407 1408
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1409
template <typename Dtype>
I
itminner 已提交
1410
class SliceParam : public OpParam {
N
nhzlx 已提交
1411 1412 1413
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1414 1415 1416
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1417 1418 1419
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1420 1421 1422 1423 1424
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1425
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1426

N
nhzlx 已提交
1427
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1428

N
nhzlx 已提交
1429
  RType *Out() const { return out_; }
I
itminner 已提交
1430 1431 1432 1433 1434 1435 1436 1437

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1438 1439 1440
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1441 1442 1443 1444
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1445 1446 1447
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1448
template <typename Dtype>
T
Tian 已提交
1449
class ResizeParam : public OpParam {
N
nhzlx 已提交
1450 1451 1452
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1453 1454 1455
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1456 1457 1458
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1459 1460 1461 1462 1463 1464
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1465

N
nhzlx 已提交
1466
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1467

N
nhzlx 已提交
1468
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1469

N
nhzlx 已提交
1470
  RType *Out() const { return out_; }
T
Tian 已提交
1471

I
itminner 已提交
1472
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1473

I
itminner 已提交
1474
  const int &Height() const { return height_; }
T
Tian 已提交
1475

I
itminner 已提交
1476
  const int &Width() const { return width_; }
T
Tian 已提交
1477

I
itminner 已提交
1478
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1479

I
itminner 已提交
1480
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1481

I
itminner 已提交
1482
 private:
N
nhzlx 已提交
1483 1484 1485
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1486 1487 1488 1489 1490
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1491 1492 1493
};
#endif

L
liuruilong 已提交
1494
#ifdef RELU_OP
L
liuruilong 已提交
1495 1496 1497
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1498
template <typename Dtype>
qnqinan's avatar
qnqinan 已提交
1499
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1500 1501 1502
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1503
 public:
qnqinan's avatar
qnqinan 已提交
1504 1505
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1506 1507
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1508 1509
  }

N
nhzlx 已提交
1510
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1511

N
nhzlx 已提交
1512
  RType *Out() const { return out_; }
E
eclipsess 已提交
1513 1514

 private:
N
nhzlx 已提交
1515 1516
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1517
};
qnqinan's avatar
qnqinan 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
 public:
  using ReluParamBase<Dtype>::ReluParamBase;
};

#ifdef PADDLE_MOBILE_CL
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
 public:
  using ReluParamBase<GPU_CL>::ReluParamBase;
  framework::CLImage &getMidImage() { return midImage; }

 private:
  framework::CLImage midImage;
};
#endif

L
liuruilong 已提交
1537
#endif
E
eclipsess 已提交
1538

Z
zhangyang 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1571
};
L
liuruilong 已提交
1572
#endif
E
eclipsess 已提交
1573

T
Tian 已提交
1574
#ifdef PRELU_OP
N
nhzlx 已提交
1575
template <typename Dtype>
T
Tian 已提交
1576
class PReluParam : public OpParam {
N
nhzlx 已提交
1577 1578 1579
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1580 1581 1582
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1583
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1584
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1585
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1586
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1587
    out_ = OutFrom<GType>(outputs, scope);
1588
    mode_ = GetStringAttr("mode", attrs);
1589
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1590
  }
N
nhzlx 已提交
1591
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1592
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1593
  RType *Out() const { return out_; }
1594
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1595

I
itminner 已提交
1596
 private:
N
nhzlx 已提交
1597 1598
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1599
  RType *alpha_;
1600
  std::string mode_;
T
Tian 已提交
1601 1602 1603
};
#endif

N
nhzlx 已提交
1604
template <typename Dtype>
L
liuruilong 已提交
1605
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1606 1607 1608
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1609
 public:
L
liuruilong 已提交
1610
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1611
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1612 1613 1614 1615
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1616 1617 1618 1619
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1620
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1621

N
nhzlx 已提交
1622
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1623

N
nhzlx 已提交
1624
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1625

xiebaiyuan's avatar
xiebaiyuan 已提交
1626
  GType *Out() const { return out_; }
E
eclipsess 已提交
1627 1628 1629 1630 1631 1632 1633 1634

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1635
  GType *input_x_;
N
nhzlx 已提交
1636 1637
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1638
  GType *out_;
E
eclipsess 已提交
1639 1640 1641
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1642 1643 1644
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1645
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1646 1647

 public:
Z
zhangyang 已提交
1648 1649
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1650
#endif
E
eclipsess 已提交
1651
};
1652 1653

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1654 1655
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1656
#endif
E
eclipsess 已提交
1657

N
nhzlx 已提交
1658
template <typename Dtype>
1659
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1660 1661 1662
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1663
 public:
L
liuruilong 已提交
1664
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1665
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1666 1667 1668 1669 1670
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1671
  }
N
nhzlx 已提交
1672
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1673 1674 1675

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1676
  RType *Output() const { return output_; }
W
wangliu 已提交
1677

L
liuruilong 已提交
1678
 protected:
N
nhzlx 已提交
1679
  RType *bias_;
W
wangliu 已提交
1680
  int axis_;
N
nhzlx 已提交
1681
  RType *output_;
W
wangliu 已提交
1682 1683
};

N
nhzlx 已提交
1684 1685
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1686

Z
zhangyang 已提交
1687
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1688 1689
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1690
 public:
L
liuruilong 已提交
1691
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1692 1693
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1694
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1695 1696 1697
};
#endif

1698
#ifdef FUSION_CONVADDPRELU_OP
1699 1700 1701 1702
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1703 1704 1705 1706

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1707 1708 1709
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1710
    mode_ = OpParam::GetStringAttr("mode", attrs);
1711
    framework::DDim dims = alpha_->dims();
1712 1713 1714
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1732 1733 1734 1735
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1736 1737 1738 1739

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1740 1741 1742 1743
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1744
    mode_ = OpParam::GetStringAttr("mode", attrs);
1745
    framework::DDim dims = alpha_->dims();
1746 1747 1748 1749 1750 1751
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1752
    if (keyX1_ == keyOutput_) {
1753
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1754
    } else if (keyY1_ == keyOutput_) {
1755
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1780
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1781
template <typename Dtype>
1782
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1783 1784 1785
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1786 1787 1788
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1801
  }
N
nhzlx 已提交
1802
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1803 1804 1805

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1806
  RType *Output() const { return output_; }
E
eclipsess 已提交
1807

N
nhzlx 已提交
1808
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1809

N
nhzlx 已提交
1810
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1811

N
nhzlx 已提交
1812
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1813

N
nhzlx 已提交
1814
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1815 1816 1817 1818 1819 1820 1821

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1822
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1823

N
nhzlx 已提交
1824
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1825

N
nhzlx 已提交
1826
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1827

N
nhzlx 已提交
1828
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1829 1830

 protected:
N
nhzlx 已提交
1831
  RType *bias_;
E
eclipsess 已提交
1832
  int axis_;
N
nhzlx 已提交
1833 1834 1835 1836 1837
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1838 1839 1840
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1841 1842
  RType *new_bias_;
  RType *new_scale_;
1843 1844 1845 1846 1847
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1848
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1849 1850 1851 1852 1853 1854
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1869
    if (keyX_ == keyBNY_) {
1870
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1871
    } else if (keyY_ == keyBNY_) {
1872
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1873
    }
1874
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1920
};
1921
#endif
E
eclipsess 已提交
1922

Z
zhangyang 已提交
1923
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1924
template <typename Dtype>
1925
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1926 1927 1928
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1929 1930 1931
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1942
  }
N
nhzlx 已提交
1943
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1944

N
nhzlx 已提交
1945
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1946

N
nhzlx 已提交
1947
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1948

N
nhzlx 已提交
1949
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1950

N
nhzlx 已提交
1951
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1952 1953 1954 1955 1956 1957 1958

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1959
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1960

N
nhzlx 已提交
1961
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1962

N
nhzlx 已提交
1963
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1964

N
nhzlx 已提交
1965
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1966 1967

 protected:
N
nhzlx 已提交
1968 1969 1970 1971 1972
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1973 1974 1975
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1976 1977
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1978 1979 1980
};
#endif

1981
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1982
template <typename Dtype>
1983
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1984 1985 1986
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1987 1988 1989
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2002
  }
N
nhzlx 已提交
2003
  RType *Bias() const { return bias_; }
2004 2005 2006

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2007
  RType *Output() const { return output_y_; }
2008

N
nhzlx 已提交
2009
  const RType *InputBias() const { return input_bias_; }
2010

N
nhzlx 已提交
2011
  const RType *InputMean() const { return input_mean_; }
2012

N
nhzlx 已提交
2013
  const RType *InputScale() const { return input_scale_; }
2014

N
nhzlx 已提交
2015
  const RType *InputVariance() const { return input_variance_; }
2016 2017 2018 2019 2020 2021 2022

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2023
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2024

N
nhzlx 已提交
2025
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2026

N
nhzlx 已提交
2027
  const RType *NewScale() const { return new_scale_; }
2028

N
nhzlx 已提交
2029
  const RType *NewBias() const { return new_bias_; }
2030 2031

 protected:
N
nhzlx 已提交
2032
  RType *bias_;
2033
  int axis_;
N
nhzlx 已提交
2034 2035 2036 2037 2038
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2039 2040 2041
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2042 2043
  RType *new_bias_;
  RType *new_scale_;
2044
};
E
eclipsess 已提交
2045
#endif
Y
Yao,kun 已提交
2046

E
eclipsess 已提交
2047
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2048
template <typename Dtype>
2049
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2050 2051 2052
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2053 2054 2055
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2066
  }
N
nhzlx 已提交
2067
  RType *Output() const { return output_; }
E
eclipsess 已提交
2068

N
nhzlx 已提交
2069
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2070

N
nhzlx 已提交
2071
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2072

N
nhzlx 已提交
2073
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2074

N
nhzlx 已提交
2075
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2076 2077 2078 2079 2080 2081 2082

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2083
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2084

N
nhzlx 已提交
2085
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2086

N
nhzlx 已提交
2087
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2088

N
nhzlx 已提交
2089
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2090 2091

 protected:
N
nhzlx 已提交
2092 2093 2094 2095 2096
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2097 2098 2099
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2100 2101
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2102 2103 2104 2105
};

#endif

2106
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2107
template <typename Dtype>
2108
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2109 2110 2111
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2112 2113 2114
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2125
  }
N
nhzlx 已提交
2126
  RType *Output() const { return output_; }
2127

N
nhzlx 已提交
2128
  const RType *InputBias() const { return input_bias_; }
2129

N
nhzlx 已提交
2130
  const RType *InputMean() const { return input_mean_; }
2131

N
nhzlx 已提交
2132
  const RType *InputScale() const { return input_scale_; }
2133

N
nhzlx 已提交
2134
  const RType *InputVariance() const { return input_variance_; }
2135 2136 2137 2138 2139 2140 2141

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2142
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2143

N
nhzlx 已提交
2144
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2145

N
nhzlx 已提交
2146
  const RType *NewScale() const { return new_scale_; }
2147

N
nhzlx 已提交
2148
  const RType *NewBias() const { return new_bias_; }
2149 2150

 protected:
N
nhzlx 已提交
2151 2152 2153 2154 2155
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2156 2157 2158
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2159 2160
  RType *new_bias_;
  RType *new_scale_;
2161 2162 2163
};
#endif

Y
Yao,kun 已提交
2164
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2165
template <typename Dtype>
Y
Yao,kun 已提交
2166
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2167 2168 2169
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2170 2171 2172 2173
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2174 2175
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2176 2177 2178 2179 2180
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2181
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2182

E
eclipsess 已提交
2183
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2184 2185 2186 2187 2188 2189 2190 2191

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2192 2193
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2194 2195 2196 2197
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2198
#endif
Y
Yao,kun 已提交
2199

2200
#ifdef DROPOUT_OP
N
nhzlx 已提交
2201
template <typename Dtype>
Y
Yao,kun 已提交
2202
class DropoutParam : public OpParam {
N
nhzlx 已提交
2203 2204 2205
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2206 2207 2208
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2209 2210
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2211 2212

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2213 2214
  }

N
nhzlx 已提交
2215
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2216

N
nhzlx 已提交
2217
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2218

Y
yangfei 已提交
2219 2220
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2221
 private:
N
nhzlx 已提交
2222 2223
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2224
  float dropout_prob_;
Y
Yao,kun 已提交
2225
};
2226
#endif
Y
Yao,kun 已提交
2227

N
nhzlx 已提交
2228
template <typename Dtype>
L
liuruilong 已提交
2229
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2230 2231 2232
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2233 2234 2235 2236
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2237 2238
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2239
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2240
    if (outputs.count("Output")) {
2241
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2242
    }
L
liuruilong 已提交
2243 2244 2245 2246 2247 2248
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2249
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2250

N
nhzlx 已提交
2251
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2252

N
nhzlx 已提交
2253
  RType *Output() const { return output_; }
L
liuruilong 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2264 2265 2266
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2267 2268 2269 2270
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2281
};
Z
zhangyang 已提交
2282

qnqinan's avatar
qnqinan 已提交
2283 2284 2285 2286 2287
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2288 2289

 public:
qnqinan's avatar
qnqinan 已提交
2290
  FusionDeconvAddParam(const VariableNameMap &inputs,
2291 2292 2293
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2315

Z
zhangyang 已提交
2316 2317 2318 2319 2320
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2346 2347
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2392
    axis = GetAttr<int>("axis", attrs);
2393 2394 2395
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2396
  const int &Axis() const { return axis; }
2397 2398 2399 2400

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2401
  int axis;
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2415
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2416
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2417 2418 2419 2420 2421 2422
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2423 2424
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2425 2426 2427 2428 2429
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2430 2431 2432

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2433
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2434
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2435 2436 2437
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2438 2439 2440 2441 2442 2443 2444 2445 2446
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2463 2464
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2465 2466
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2467
  const RType *InputOutPutSize() const { return input_outsize_; }
2468
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2469 2470
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2471 2472 2473 2474 2475

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2476 2477
  int out_h_;
  int out_w_;
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2493
  const RType *Input() const { return input_; }
2494 2495 2496 2497 2498 2499 2500 2501
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2502
#ifdef QUANT_OP
2503
template <typename Dtype>
2504 2505 2506 2507 2508
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2509 2510
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2511 2512 2513 2514 2515 2516 2517
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2518
      is_static_ = true;
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2540
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2541
};
2542
#endif
2543

2544
#ifdef DEQUANT_OP
2545
template <typename Dtype>
2546 2547 2548 2549 2550
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2551 2552
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2572
#endif
2573

朔-望's avatar
朔-望 已提交
2574 2575
}  // namespace operators
}  // namespace paddle_mobile