op_params.h 53.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
24 25
#include "lite/model_parser/base/apis.h"
#include "lite/model_parser/cpp_desc.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

35 36
struct ParamBase {
 public:
37 38 39 40 41
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
42 43 44 45 46 47

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
48 49 50
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
51
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
52
  std::vector<float> weight_scale{}; \
53
  float output_scale{1.0f};          \
54
  int bit_length{8};
Y
Yan Chunwei 已提交
55 56

/// ----------------------- Functional operators ------------------------------
57
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
58 59 60 61 62
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

63
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
64 65 66 67 68 69
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
70
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
71 72
  const lite::Tensor* x{};
  lite::Tensor* y{};
73
  int process_type{0};
Y
Yan Chunwei 已提交
74 75
};

76
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
77 78
  const lite::Tensor* x{};
  lite::Tensor* y{};
79
  int process_type{0};
Y
Yan Chunwei 已提交
80 81
};

82
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
83 84 85
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
101 102
};

103
struct SubgraphParam : ParamBase {
104 105 106 107
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
108 109 110
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
111 112 113 114
};

/// -------------------------- NN operators ------------------------------------

115
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
116 117 118 119 120
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
H
huzhiqiang 已提交
121 122
  // original dims of input weight
  lite::DDim w_dims;
Y
Yan Chunwei 已提交
123
  int in_num_col_dims{1};
124
  std::string activation_type{""};
125
  bool padding_weights{false};
Y
Yan Chunwei 已提交
126 127
  // for int8
  WITH_INT8_CONFIG
128 129
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
130 131
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
132 133 134 135 136
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
137 138
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
139 140 141 142 143 144 145
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
146 147 148 149 150 151 152
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
153
// For Interpolate Op
154
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
155 156 157
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
158
  std::vector<const lite::Tensor*> SizeTensor;
159
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
160 161 162 163 164

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
165
  int align_mode{1};
Y
Yan Chunwei 已提交
166
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
167
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
168 169 170
};

// For Mul Op
171
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
180 181
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
182 183
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
184 185 186 187 188
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
189 190
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
191 192 193 194
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
195 196
};

197
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
198 199 200 201 202 203 204 205 206 207
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

208
// For ReduceMean Op
209
struct ReduceMeanParam : ParamBase {
210 211 212 213 214 215 216 217
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
218
struct StackParam : ParamBase {
219 220 221 222 223 224
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
225
// For Power Op
226
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

235 236 237 238 239 240 241 242 243 244 245 246 247 248
// For Pow Op
struct PowParam : ParamBase {
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float factor{1.};
};

// For Sign Op
struct SignParam : ParamBase {
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

249
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
250 251 252 253 254 255 256
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
257
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
258 259 260 261 262 263 264 265 266
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
267 268
  bool clip_bbox{true};
  float scale_x_y{1.0f};
Y
Yan Chunwei 已提交
269 270 271
};

// For Scale Op
272
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
273 274 275 276 277 278
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
279 280 281
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
282 283
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
284 285
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
286 287 288 289 290
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
291 292
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
293 294 295 296
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
297 298
};

299 300 301 302 303 304 305 306 307 308
// For Scatter OP
struct ScatterParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* indexs{};
  lite::Tensor* updates{};
  lite::Tensor* output{};

  bool overwrite{true};
};

Y
Yan Chunwei 已提交
309
// For Softmax op
310
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
311 312 313
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
W
Wilber 已提交
314
  bool use_cudnn{true};
315 316
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
317 318
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
319 320 321 322 323
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
324 325
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
326 327 328 329
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
330 331 332
};

// For Reshape and Reshape2 Op
333
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
334
  const lite::Tensor* x{};
335 336 337
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
338 339
  lite::Tensor* output{};

340
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
341
  bool inplace{false};
342 343
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
344 345
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
346 347 348 349 350
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
351 352
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
353 354 355 356
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
357 358 359
};

// For Concat op
360
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
361 362 363
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
364
  lite::Tensor* axis_tensor{};
365
  // get a vector of input tensors
366 367
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
368 369 370 371 372 373 374 375 376
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
377 378
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
379 380 381 382
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
383 384
};

385
/// ----------------------- activation operators ----------------------
386
struct ActivationParam : ParamBase {
387
  const lite::Tensor* X{};
388
  lite::Tensor* Out{};
389
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
390
  bool has_active{false};
391 392 393 394 395 396
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
397
  // hard_sigmoid param
398 399
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
400 401 402 403
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
404 405
  // thresholded_relu
  float relu_threshold{1.0f};
H
HappyAngel 已提交
406 407
  // elu
  float Elu_alpha{1.0f};
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
424 425
};

426
struct ActivationGradParam : ParamBase {
427 428 429 430 431 432 433
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
434
// For Convolution op
435
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
436 437 438 439 440 441
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
442
  /* paddings type change
443 444 445 446
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
447
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
448
  int groups{1};
H
HappyAngel 已提交
449
  /* dilations type change
450 451 452 453
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
454
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
455 456 457 458 459 460 461 462 463 464 465 466
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
467 468
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
469 470
  // support var_length or not
  bool var_length{false};
471 472
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
473 474
  // for int8
  WITH_INT8_CONFIG
475 476 477

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
478 479
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
480 481 482 483 484
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
485 486
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
487 488 489 490
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
491 492 493
};

// For BatchNorm op
494
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
510 511
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
512 513
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
514 515 516 517 518
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
519 520
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
521 522 523 524
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
525 526 527
};

// For Pooling op
528
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
529 530 531 532 533 534 535
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
536
  /* paddings type change
537 538 539 540
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
541
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
542 543 544 545 546
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
547 548
  // for int8
  WITH_INT8_CONFIG
549 550
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
551 552
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
553 554 555 556 557
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
558 559
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
560 561 562 563
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
564 565 566
};

// For Dropout op
567
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
568 569 570 571 572 573 574 575 576 577 578
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
579
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
580 581
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
582 583 584
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
585 586 587
  int axis{-1};
  int num{0};
  std::vector<int> sections;
588 589
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
590 591
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
592 593 594 595 596
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
597 598
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
599 600 601 602
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
603 604 605
};

// For Transpose op
606
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
607 608
  const lite::Tensor* x{};
  lite::Tensor* output{};
609 610
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
611 612 613
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
614 615
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
616 617
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
618 619 620 621 622
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
623 624
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
625 626 627 628
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
629 630 631
};

/// ----------------------- element wise operators ----------------------
632
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
633 634 635 636
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
637
  // for int8
Z
Zhaolong Xing 已提交
638
  WITH_INT8_CONFIG
J
juncaipeng 已提交
639 640
  float x_input_scale{1.0};
  float y_input_scale{1.0};
641 642
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
643 644
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
645 646 647 648 649
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
650 651
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
652 653 654 655 656 657 658
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
659
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
660
  const lite::Tensor* Y{};
X
xiaogang 已提交
661 662 663
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
664 665 666 667 668 669 670 671 672 673 674 675
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
676
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
677 678 679 680
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

681
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
682 683 684 685 686 687 688
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
689
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
690 691
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
692
  lite::Tensor* shape_tensor{nullptr};
693 694
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
695 696 697 698 699
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
700

701
struct FillConstantBatchSizeLikeParam : ParamBase {
702 703
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
704

705
  std::vector<int> shape{};
706 707 708 709
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
710 711
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
712 713
};

Y
Yan Chunwei 已提交
714
//
715
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
716 717 718 719 720 721 722 723 724 725
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
726
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
727 728
};

729
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
730 731 732 733 734 735
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

736
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
737 738 739 740 741 742
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

743 744 745 746 747 748 749
struct FakeQuantDequantAbsMaxParam : ParamBase {
  const lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  int bit_length;
};

Y
Yan Chunwei 已提交
750
/// ----------------------- sgd operators ----------------------
751
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
752 753 754 755 756 757 758 759 760
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
761
struct UniformRandomParam : ParamBase {
762
  const lite::Tensor* X{nullptr};
Y
Yan Chunwei 已提交
763 764 765 766 767 768 769 770
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
771
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
772 773 774 775
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
776
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
777 778 779 780 781 782 783 784 785
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
786
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
787 788 789 790 791 792 793
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
794
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
795 796 797 798 799 800
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
801
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
802 803 804 805 806 807
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
808
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
824
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
825 826
  const lite::Tensor* X{};
  lite::Tensor* Out{};
827
  int n{5};
828 829 830
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
831 832 833 834
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
835
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
851
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
852 853 854 855 856
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
857 858 859 860
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(
          {prior_box, prior_box_var, target_box}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(
          new std::vector<lite::Tensor*>({proposals}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
878 879 880
};

/// ----------------------- multiclass_nms operators ----------------------
881
struct MulticlassNmsParam : ParamBase {
882 883 884
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
885
  lite::Tensor* index{};
886 887 888
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
889 890
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
891
  int keep_top_k;
892
  bool normalized{true};
Y
Yan Chunwei 已提交
893 894 895
};

/// ----------------------- priorbox operators ----------------------
896
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
916
  bool min_max_aspect_ratios_order{false};
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(
          new std::vector<const Tensor*>({input, image}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(
          new std::vector<lite::Tensor*>({boxes, variances}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
934 935 936 937 938
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
939
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
940 941
};
/// ----------------------- GRU operators ----------------------f
942
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
959
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
960 961 962 963 964 965 966 967 968
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
969
struct LookupTableParam : ParamBase {
970 971
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
972 973 974 975
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

976
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
977 978 979 980 981 982
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

983
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
984 985 986 987 988 989 990 991 992
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

993
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
994 995
  const lite::Tensor* X{};
  lite::Tensor* Out{};
996 997
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
998 999
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1000 1001 1002 1003 1004
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1005 1006
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1007 1008 1009 1010
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1011 1012
};

1013
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
1014 1015
  const lite::Tensor* X{};
  lite::Tensor* Out{};
1016
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
1017
  int axis{1};
1018
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
1019
};
1020
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
1021 1022 1023 1024 1025 1026 1027
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
1028
  float epsilon{1e-5f};
T
TianXiaogang 已提交
1029
};
Y
Yan Chunwei 已提交
1030

1031
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
1032 1033 1034 1035 1036
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

1037
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
1038 1039 1040 1041 1042 1043 1044
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

1045
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
1046
  Tensor* cond{};
1047 1048 1049
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
1050 1051
};

1052
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
1053 1054 1055 1056 1057 1058
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

1059
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
1060 1061 1062 1063 1064
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

1065
struct WriteToArrayParam : ParamBase {
1066 1067 1068
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
1069 1070
};

1071
struct ReadFromArrayParam : ParamBase {
1072 1073 1074
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
1075 1076
};

1077
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

1091
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
1092 1093
  const lite::Tensor* X{};
  lite::Tensor* Out{};
1094
  lite::Tensor* MaxIndex{};
1095 1096 1097 1098
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
Y
Yan Chunwei 已提交
1099 1100
};

1101
struct SequenceConvParam : ParamBase {
1102 1103 1104 1105 1106 1107 1108 1109
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1110
struct SequencePoolConcatParam : ParamBase {
1111 1112 1113 1114 1115
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
struct SequencePoolGradParam : ParamBase {
  const lite::Tensor* X{};
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
  // for backward
  const lite::Tensor* Out_Grad{};
  const lite::Tensor* MaxIndex_Grad{};
  lite::Tensor* X_Grad{};
};

1128
struct SearchGroupPaddingParam : ParamBase {
1129 1130 1131 1132 1133 1134 1135
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1136
struct SequenceReshapeParam : ParamBase {
1137 1138 1139 1140 1141
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1142
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1143 1144 1145 1146 1147 1148
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1149 1150 1151 1152 1153 1154 1155 1156
struct SequencePadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* PadValue{};
  lite::Tensor* Out{};
  lite::Tensor* Length{};
  int padded_length{-1};
};

1157 1158 1159 1160 1161 1162
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1163 1164 1165 1166 1167 1168 1169 1170
struct SequenceMaskParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* MaxLenTensor{nullptr};
  lite::Tensor* Y{};
  int maxlen{-1};
  int out_dtype;
};

1171
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1172 1173 1174 1175 1176
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1177
struct SequenceReverseParam : ParamBase {
1178 1179 1180 1181
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1182
struct SequenceConcatParam : ParamBase {
1183 1184 1185 1186
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1187
struct AttentionPaddingMaskParam : ParamBase {
1188 1189 1190 1191 1192 1193 1194 1195
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1196
struct SequenceArithmeticParam : ParamBase {
1197 1198 1199 1200 1201 1202
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1203
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1204 1205 1206 1207 1208 1209
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1210
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1211 1212 1213 1214 1215 1216 1217
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1218
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1219 1220 1221
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1222

1223
struct ReduceParam : ParamBase {
1224 1225 1226 1227 1228 1229 1230
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1231
struct VarConv2DParam : ParamBase {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1245 1246

  bool fuse_relu{false};
1247 1248 1249 1250 1251

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1252 1253
};

Y
Yan Chunwei 已提交
1254
/// ----------------------- shape operators ----------------------
1255
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1256 1257 1258 1259
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1260
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1261 1262 1263 1264 1265 1266
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1267
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1268 1269 1270 1271 1272 1273
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1274 1275 1276 1277 1278
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1279 1280
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1281 1282
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1283 1284 1285 1286 1287
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1288 1289
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1290 1291 1292 1293
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1294
};
Y
Yan Chunwei 已提交
1295

1296
struct AffineChannelParam : ParamBase {
1297 1298 1299 1300 1301 1302 1303
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1304 1305 1306 1307 1308 1309 1310
struct AffineGridParam : ParamBase {
  const lite::Tensor* X{};  // Theta:shape {?, 2, 3}
  std::vector<int> output_shape;
  const lite::Tensor* OutputShape;
  lite::Tensor* Out{};
};

1311
struct AnchorGeneratorParam : ParamBase {
1312 1313 1314 1315
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1316 1317
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1318 1319 1320 1321 1322

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1323
struct GenerateProposalsParam : ParamBase {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1334 1335 1336
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1337 1338 1339 1340 1341

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1342
/// ----------------------- squeeze operators ----------------------
1343
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1344 1345 1346 1347
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1348 1349
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1350 1351
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1352 1353 1354 1355 1356
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1357 1358
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1359 1360 1361 1362
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1363 1364
};

1365
struct UnsqueezeParam : ParamBase {
1366 1367 1368 1369
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1370
  const lite::Tensor* axes_tensor{};
1371
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1372 1373
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1374 1375
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1376 1377 1378 1379 1380
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1381 1382
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1383 1384 1385 1386
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1387 1388
};

Y
Yan Chunwei 已提交
1389
/// ----------------------- expand operators ----------------------
1390
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1391 1392 1393 1394 1395
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

1396 1397 1398 1399 1400 1401 1402
/// ----------------------- expand as operators ----------------------
struct ExpandAsParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Target{};
  lite::Tensor* Out{};
};

Y
Yan Chunwei 已提交
1403
/// ----------------------- matmul operators ----------------------
1404
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1405 1406 1407 1408 1409 1410
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1411 1412
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1413 1414
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1415 1416 1417 1418 1419
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1420 1421
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1422 1423 1424 1425
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1426
};
1427

1428
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1429 1430 1431 1432 1433
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1434
/// ----------------------- assign operators -----------------------
1435
struct AssignParam : ParamBase {
1436 1437 1438 1439 1440 1441 1442
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1443
};
1444

1445
/// ----------------------- roi_align operators -----------------------
1446
struct RoiAlignParam : ParamBase {
1447 1448 1449 1450 1451 1452 1453 1454 1455
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1456
/// ----------------------- box_clip operators -----------------------
1457
struct BoxClipParam : ParamBase {
1458 1459 1460 1461 1462
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1463
struct RangeParam : ParamBase {
1464 1465 1466 1467 1468 1469
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1470
/// ----------------------- assign_value operators -----------------------
1471
struct AssignValueParam : ParamBase {
1472 1473 1474 1475
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
1476 1477
  std::vector<int64_t> int64_values{};
  std::vector<int> bool_values{};
1478 1479 1480
  lite::Tensor* Out{};
};

1481
/// --------------- sequence_topk_avg_pooling operators ------------------
1482
struct SequenceTopkAvgPoolingParam : ParamBase {
1483 1484 1485 1486 1487 1488 1489 1490 1491
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

1492 1493 1494 1495 1496 1497 1498 1499 1500
/// --------------- topk_pooling operators ------------------
struct TopkPoolingParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int top_k{1};
  int feat_map_num{1};
};

1501
/// --------------- search_fc operators ------------------
1502
struct SearchFcParam : ParamBase {
1503 1504 1505 1506 1507
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
1508 1509 1510 1511 1512 1513 1514

  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1515
};
J
juncaipeng 已提交
1516
/// --------------------- match_matrix_tensor operators --------------------
1517
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1518 1519 1520 1521 1522 1523 1524
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
1525 1526 1527 1528 1529 1530
  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is w already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in w
#endif
J
juncaipeng 已提交
1531 1532 1533
};

/// --------------------- search_seq_depadding operators --------------------
1534
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1535 1536 1537 1538 1539 1540
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1541
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
1552 1553 1554 1555 1556 1557

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};   // Is wi/wh already converted to int16/int8
  std::vector<float> __xpu__wi_max;  // Abs max in wi
  std::vector<float> __xpu__wh_max;  // Abs max in wh
#endif
J
juncaipeng 已提交
1558 1559
};

1560
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1561 1562 1563 1564 1565 1566 1567
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1568
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1569 1570 1571 1572 1573 1574 1575 1576
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1577
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1578
  const lite::Tensor* cond{};
1579
  std::vector<lite::Tensor*> inputs{};
J
juncaipeng 已提交
1580
  std::vector<lite::Tensor*> outs{};
1581 1582 1583
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
J
juncaipeng 已提交
1584 1585 1586
  bool is_scalar_condition{};
};

1587
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1588 1589 1590 1591 1592 1593
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1594
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1604
/// --------------------- instance_norm operators --------------------
1605
struct InstanceNormParam : ParamBase {
1606 1607 1608 1609 1610 1611 1612 1613
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
H
HappyAngel 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/// --------------------- group_norm operators --------------------
struct GroupNormParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
  int groups;
  int channels;
};

1627
/// --------------------- grid sampler operators --------------------
1628
struct GridSamplerParam : ParamBase {
1629 1630 1631 1632
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1633
struct LstmParam : ParamBase {
X
xiaogang 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1649

1650
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1651 1652 1653 1654 1655 1656 1657
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1690
  std::string precision{};
1691
  bool enable_qkv_fusion{false};
1692 1693
};

C
Cwndmiao 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
struct XPUResNetCbamParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};

  float pool_p{1.0f};
};

struct XPUMmdnnSearchAttentionParam : ParamBase {
  lite::Tensor* X{};
  lite::Tensor* W{};
  lite::Tensor* b{};
  lite::Tensor* Out{};

  float W_max{0.0f};
  int pad_id{0};
  float alpha0{1.0f};
  float alpha1{1.0f};
  float mask{1.0f};
};

struct XPUMmdnnBidEmbGrnnAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
};

struct XPUMmdnnBidEmbGrnnAttParam2 : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

  lite::Tensor* emb0_out{};
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
};

struct XPUMmdnnBidEmbAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  float att_fc_w_max{0.0f};

1795 1796
  lite::Tensor* att_pool_out{};
  lite::Tensor* emb_fw_out{};
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
};

struct XPUMmdnnMatchConvTopkParam : ParamBase {
  lite::Tensor* input_x{};
  lite::Tensor* input_y{};
  lite::Tensor* input_w{};
  lite::Tensor* conv_w{};

  float input_w_max{0.0f};
  float conv_w_max{0.0f};
  std::vector<int> topks;
1808
  int output_channel{0};
1809 1810 1811 1812 1813 1814 1815 1816
  int channel_num{0};
  int dim_t{0};

  lite::Tensor* topk_out{};
};

struct XPUMmdnnMergeAllParam : ParamBase {
  std::vector<lite::Tensor*> concat_7in1_x;
1817
  std::vector<lite::Tensor*> concat_topk_x;
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* fc0_w{};
  lite::Tensor* fc0_b{};
  lite::Tensor* fc1_w{};
  lite::Tensor* fc1_b{};
  lite::Tensor* fc2_w{};
  lite::Tensor* fc2_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float fc0_w_max{0.0f};
  float fc1_w_max{0.0f};
  float fc2_w_max{0.0f};

  lite::Tensor* out{};
};

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
struct XPUConv2dParam : ParamBase {
  lite::Tensor* Input{nullptr};
  lite::Tensor* Filter{nullptr};
  lite::Tensor* InputMax{nullptr};
  lite::Tensor* FilterMax{nullptr};
  lite::Tensor* Bias{nullptr};
  lite::Tensor* Branch{nullptr};
  lite::Tensor* Output{nullptr};
  lite::Tensor* OutputMax{nullptr};

  int groups{1};
1851
  std::string act_type{""};
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
  std::string filter_type{""};
  std::vector<int> strides;
  std::shared_ptr<std::vector<int>> paddings;
  std::shared_ptr<std::vector<int>> dilations;
};

struct XPUSfaHeadParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};

  std::string op_type{""};
};

H
HappyAngel 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
// For DeformableConvolution op
struct DeformableConvParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* offset{};
  lite::Tensor* mask{};
  lite::Tensor* output{};
  int deformable_groups{1};
  int im2col_step{1};
  bool modulated{true};  // True-v2 False-v1
  std::string data_format{"Anylayout"};
  // convolution parameter
  ConvParam conv_param;
  // support var_length or not
  bool var_length{false};
  // only used in conv_transpose.
  std::vector<int> output_size;
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

1898 1899 1900 1901 1902
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

struct RetinanetDetectionOutputParam : ParamBase {
  std::vector<Tensor*> bboxes{};
  std::vector<Tensor*> scores{};
  std::vector<Tensor*> anchors{};
  Tensor* im_info{};
  Tensor* out{};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{};
  float nms_eta{};
  int keep_top_k{};
};

Y
yiicy 已提交
1917 1918 1919 1920 1921
struct WhereIndexParam : ParamBase {
  const lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};
};

C
cc 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930
struct ClipParam : ParamBase {
  Tensor* x{};
  Tensor* min_tensor{};
  Tensor* max_tensor{};
  Tensor* out{};
  float min{};
  float max{};
};

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
struct PrintParam : ParamBase {
  const lite::Tensor* in{};
  lite::Tensor* out{};
  std::string name;
  int first_n{-1};
  std::string message;
  int summarize{20};
  bool print_tensor_name{true};
  bool print_tensor_type{true};
  bool print_tensor_shape{true};
  bool print_tensor_lod{true};
  bool print_tensor_layout{true};
  std::string print_phase;
  bool is_forward{true};
};

1947 1948 1949 1950 1951 1952 1953 1954 1955
struct OneHotParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* depth_tensor{nullptr};
  lite::Tensor* Out{};
  int depth;
  int dtype;
  bool allow_out_of_range;
};

Y
Yan Chunwei 已提交
1956 1957 1958
}  // namespace operators
}  // namespace lite
}  // namespace paddle