sched_rt.c 35.6 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

S
Steven Rostedt 已提交
6
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
7

8
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
9
{
10
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
11
}
I
Ingo Molnar 已提交
12

S
Steven Rostedt 已提交
13 14
static inline void rt_set_overload(struct rq *rq)
{
15 16 17
	if (!rq->online)
		return;

18
	cpu_set(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
19 20 21 22 23 24 25 26
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
27
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
28
}
I
Ingo Molnar 已提交
29

S
Steven Rostedt 已提交
30 31
static inline void rt_clear_overload(struct rq *rq)
{
32 33 34
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
35
	/* the order here really doesn't matter */
36 37
	atomic_dec(&rq->rd->rto_count);
	cpu_clear(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
38
}
39 40 41

static void update_rt_migration(struct rq *rq)
{
42
	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 44 45 46 47
		if (!rq->rt.overloaded) {
			rt_set_overload(rq);
			rq->rt.overloaded = 1;
		}
	} else if (rq->rt.overloaded) {
48
		rt_clear_overload(rq);
49 50
		rq->rt.overloaded = 0;
	}
51
}
S
Steven Rostedt 已提交
52 53
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
54
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
55
{
P
Peter Zijlstra 已提交
56 57 58 59 60 61 62 63
	return container_of(rt_se, struct task_struct, rt);
}

static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

64
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
65

P
Peter Zijlstra 已提交
66
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
67 68
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
69
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
70

P
Peter Zijlstra 已提交
71 72 73 74 75 76
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
103
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
104
{
105
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
P
Peter Zijlstra 已提交
106 107
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

108 109 110
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
			enqueue_rt_entity(rt_se);
111 112
		if (rt_rq->highest_prio < curr->prio)
			resched_task(curr);
P
Peter Zijlstra 已提交
113 114 115
	}
}

P
Peter Zijlstra 已提交
116
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
117 118 119 120 121 122 123
{
	struct sched_rt_entity *rt_se = rt_rq->rt_se;

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

141 142 143 144 145
#ifdef CONFIG_SMP
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
146
#else
147 148 149 150 151
static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}
#endif
P
Peter Zijlstra 已提交
152

153 154
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
155
{
156 157
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
158

P
Peter Zijlstra 已提交
159 160 161 162 163
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

164
#else /* !CONFIG_RT_GROUP_SCHED */
165 166 167

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
168 169 170 171 172 173
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
}

#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
200
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
201
{
202 203
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
204 205
}

P
Peter Zijlstra 已提交
206
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
207 208 209
{
}

P
Peter Zijlstra 已提交
210 211 212 213
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
214 215 216 217 218 219 220 221 222 223 224 225

static inline cpumask_t sched_rt_period_mask(void)
{
	return cpu_online_map;
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
226 227 228 229 230
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

231
#endif /* CONFIG_RT_GROUP_SCHED */
232

P
Peter Zijlstra 已提交
233
#ifdef CONFIG_SMP
234 235 236
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
237
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
238 239 240 241 242 243 244 245 246 247
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

	weight = cpus_weight(rd->span);

	spin_lock(&rt_b->rt_runtime_lock);
	rt_period = ktime_to_ns(rt_b->rt_period);
248
	for_each_cpu_mask_nr(i, rd->span) {
P
Peter Zijlstra 已提交
249 250 251 252 253 254 255
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

		spin_lock(&iter->rt_runtime_lock);
256 257 258 259 260
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
261 262 263
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

264 265 266 267
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
268 269
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
270
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
				spin_unlock(&iter->rt_runtime_lock);
				break;
			}
		}
P
Peter Zijlstra 已提交
281
next:
P
Peter Zijlstra 已提交
282 283 284 285 286 287
		spin_unlock(&iter->rt_runtime_lock);
	}
	spin_unlock(&rt_b->rt_runtime_lock);

	return more;
}
P
Peter Zijlstra 已提交
288

289 290 291
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
307 308 309 310 311
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
312 313 314 315 316
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
		spin_unlock(&rt_rq->rt_runtime_lock);

317 318 319 320 321
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
322 323
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

324 325 326
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
P
Peter Zijlstra 已提交
327 328 329 330
		for_each_cpu_mask(i, rd->span) {
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

331 332 333
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
334
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
				continue;

			spin_lock(&iter->rt_runtime_lock);
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
			spin_unlock(&iter->rt_runtime_lock);

			if (!want)
				break;
		}

		spin_lock(&rt_rq->rt_runtime_lock);
353 354 355 356
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
357 358
		BUG_ON(want);
balanced:
359 360 361 362
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		rt_rq->rt_runtime = RUNTIME_INF;
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__disable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static void __enable_runtime(struct rq *rq)
{
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

385 386 387
	/*
	 * Reset each runqueue's bandwidth settings
	 */
P
Peter Zijlstra 已提交
388 389 390 391 392 393 394
	for_each_leaf_rt_rq(rt_rq, rq) {
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

		spin_lock(&rt_b->rt_runtime_lock);
		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
395
		rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409
		spin_unlock(&rt_rq->rt_runtime_lock);
		spin_unlock(&rt_b->rt_runtime_lock);
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__enable_runtime(rq);
	spin_unlock_irqrestore(&rq->lock, flags);
}

410 411 412 413 414 415 416 417 418 419 420 421
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
		spin_unlock(&rt_rq->rt_runtime_lock);
		more = do_balance_runtime(rt_rq);
		spin_lock(&rt_rq->rt_runtime_lock);
	}

	return more;
}
422
#else /* !CONFIG_SMP */
423 424 425 426
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
427
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
428

429 430 431 432 433
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
	cpumask_t span;

434
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
		return 1;

	span = sched_rt_period_mask();
	for_each_cpu_mask(i, span) {
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

		spin_lock(&rq->lock);
		if (rt_rq->rt_time) {
			u64 runtime;

			spin_lock(&rt_rq->rt_runtime_lock);
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
			spin_unlock(&rt_rq->rt_runtime_lock);
459 460
		} else if (rt_rq->rt_nr_running)
			idle = 0;
461 462 463 464 465 466 467 468

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
		spin_unlock(&rq->lock);
	}

	return idle;
}
P
Peter Zijlstra 已提交
469

P
Peter Zijlstra 已提交
470 471
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
472
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
473 474 475 476 477 478 479 480 481
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
		return rt_rq->highest_prio;
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
482
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
483
{
P
Peter Zijlstra 已提交
484
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
485 486

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
487
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
488

P
Peter Zijlstra 已提交
489 490 491
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

492 493 494 495
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
496

P
Peter Zijlstra 已提交
497
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
498
		rt_rq->rt_throttled = 1;
P
Peter Zijlstra 已提交
499
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
500
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
501 502
			return 1;
		}
P
Peter Zijlstra 已提交
503 504 505 506 507
	}

	return 0;
}

I
Ingo Molnar 已提交
508 509 510 511
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
512
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
513 514
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
515 516
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
517 518 519 520 521
	u64 delta_exec;

	if (!task_has_rt_policy(curr))
		return;

522
	delta_exec = rq->clock - curr->se.exec_start;
I
Ingo Molnar 已提交
523 524
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
525 526

	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
I
Ingo Molnar 已提交
527 528

	curr->se.sum_exec_runtime += delta_exec;
529 530
	account_group_exec_runtime(curr, delta_exec);

531
	curr->se.exec_start = rq->clock;
532
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
533

534 535 536
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
537 538 539 540
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

		spin_lock(&rt_rq->rt_runtime_lock);
541 542 543 544 545
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
		}
D
Dhaval Giani 已提交
546 547
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
I
Ingo Molnar 已提交
548 549
}

P
Peter Zijlstra 已提交
550 551
static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
552
{
P
Peter Zijlstra 已提交
553 554
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	rt_rq->rt_nr_running++;
555
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
556
	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
557
#ifdef CONFIG_SMP
558
		struct rq *rq = rq_of_rt_rq(rt_rq);
559
#endif
560

P
Peter Zijlstra 已提交
561
		rt_rq->highest_prio = rt_se_prio(rt_se);
I
Ingo Molnar 已提交
562
#ifdef CONFIG_SMP
563 564 565
		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_se_prio(rt_se));
I
Ingo Molnar 已提交
566
#endif
567
	}
P
Peter Zijlstra 已提交
568
#endif
569
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
570 571
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
I
Ingo Molnar 已提交
572

573
		rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
574
	}
575

P
Peter Zijlstra 已提交
576 577
	update_rt_migration(rq_of_rt_rq(rt_rq));
#endif
578
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
579 580
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;
581 582 583 584 585

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
#else
	start_rt_bandwidth(&def_rt_bandwidth);
P
Peter Zijlstra 已提交
586
#endif
587 588
}

P
Peter Zijlstra 已提交
589 590
static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
591
{
592 593 594 595
#ifdef CONFIG_SMP
	int highest_prio = rt_rq->highest_prio;
#endif

P
Peter Zijlstra 已提交
596 597 598
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;
599
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
600
	if (rt_rq->rt_nr_running) {
601 602
		struct rt_prio_array *array;

P
Peter Zijlstra 已提交
603 604
		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
605
			/* recalculate */
P
Peter Zijlstra 已提交
606 607
			array = &rt_rq->active;
			rt_rq->highest_prio =
608 609 610
				sched_find_first_bit(array->bitmap);
		} /* otherwise leave rq->highest prio alone */
	} else
P
Peter Zijlstra 已提交
611 612 613 614 615
		rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
	if (rt_se->nr_cpus_allowed > 1) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
616
		rq->rt.rt_nr_migratory--;
P
Peter Zijlstra 已提交
617
	}
618

619 620
	if (rt_rq->highest_prio != highest_prio) {
		struct rq *rq = rq_of_rt_rq(rt_rq);
621 622 623 624

		if (rq->online)
			cpupri_set(&rq->rd->cpupri, rq->cpu,
				   rt_rq->highest_prio);
625 626
	}

P
Peter Zijlstra 已提交
627
	update_rt_migration(rq_of_rt_rq(rt_rq));
628
#endif /* CONFIG_SMP */
629
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
630 631 632 633 634
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
#endif
635 636
}

637
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
I
Ingo Molnar 已提交
638
{
P
Peter Zijlstra 已提交
639 640 641
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
642
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
643

644 645 646 647 648 649 650
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
651
		return;
652

653
	list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
654
	__set_bit(rt_se_prio(rt_se), array->bitmap);
655

P
Peter Zijlstra 已提交
656 657 658
	inc_rt_tasks(rt_se, rt_rq);
}

659
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
675
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
676
{
677
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
678

679 680 681 682 683 684 685
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
			__dequeue_rt_entity(rt_se);
	}
}

static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
		__enqueue_rt_entity(rt_se);
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
			__enqueue_rt_entity(rt_se);
706
	}
I
Ingo Molnar 已提交
707 708 709 710 711
}

/*
 * Adding/removing a task to/from a priority array:
 */
P
Peter Zijlstra 已提交
712 713 714 715 716 717 718
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
{
	struct sched_rt_entity *rt_se = &p->rt;

	if (wakeup)
		rt_se->timeout = 0;

719
	enqueue_rt_entity(rt_se);
720 721

	inc_cpu_load(rq, p->se.load.weight);
P
Peter Zijlstra 已提交
722 723
}

724
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
I
Ingo Molnar 已提交
725
{
P
Peter Zijlstra 已提交
726
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
727

728
	update_curr_rt(rq);
729
	dequeue_rt_entity(rt_se);
730 731

	dec_cpu_load(rq, p->se.load.weight);
I
Ingo Molnar 已提交
732 733 734 735 736 737
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
738 739
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
740
{
741
	if (on_rt_rq(rt_se)) {
742 743 744 745 746 747 748
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
749
	}
P
Peter Zijlstra 已提交
750 751
}

752
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
753
{
P
Peter Zijlstra 已提交
754 755
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
756

P
Peter Zijlstra 已提交
757 758
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
759
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
760
	}
I
Ingo Molnar 已提交
761 762
}

P
Peter Zijlstra 已提交
763
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
764
{
765
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
766 767
}

768
#ifdef CONFIG_SMP
769 770
static int find_lowest_rq(struct task_struct *task);

771 772
static int select_task_rq_rt(struct task_struct *p, int sync)
{
773 774 775
	struct rq *rq = task_rq(p);

	/*
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	 * If the current task is an RT task, then
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
	 * We want to avoid overloading runqueues. Even if
	 * the RT task is of higher priority than the current RT task.
	 * RT tasks behave differently than other tasks. If
	 * one gets preempted, we try to push it off to another queue.
	 * So trying to keep a preempting RT task on the same
	 * cache hot CPU will force the running RT task to
	 * a cold CPU. So we waste all the cache for the lower
	 * RT task in hopes of saving some of a RT task
	 * that is just being woken and probably will have
	 * cold cache anyway.
791
	 */
792
	if (unlikely(rt_task(rq->curr)) &&
P
Peter Zijlstra 已提交
793
	    (p->rt.nr_cpus_allowed > 1)) {
794 795 796 797 798 799 800 801 802
		int cpu = find_lowest_rq(p);

		return (cpu == -1) ? task_cpu(p) : cpu;
	}

	/*
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 */
803 804
	return task_cpu(p);
}
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	cpumask_t mask;

	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

	if (p->rt.nr_cpus_allowed != 1
	    && cpupri_find(&rq->rd->cpupri, p, &mask))
		return;

	if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
		return;

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

829 830
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
831 832 833
/*
 * Preempt the current task with a newly woken task if needed:
 */
834
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
835
{
836
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
837
		resched_task(rq->curr);
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
854 855
	if (p->prio == rq->curr->prio && !need_resched())
		check_preempt_equal_prio(rq, p);
856
#endif
I
Ingo Molnar 已提交
857 858
}

P
Peter Zijlstra 已提交
859 860
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
861
{
P
Peter Zijlstra 已提交
862 863
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
864 865 866 867
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
868
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
869 870

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
871
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
872

P
Peter Zijlstra 已提交
873 874
	return next;
}
I
Ingo Molnar 已提交
875

P
Peter Zijlstra 已提交
876 877 878 879 880
static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
881

P
Peter Zijlstra 已提交
882 883 884 885 886
	rt_rq = &rq->rt;

	if (unlikely(!rt_rq->rt_nr_running))
		return NULL;

P
Peter Zijlstra 已提交
887
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
888 889 890 891
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
892
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
893 894 895 896 897 898
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
	p->se.exec_start = rq->clock;
	return p;
I
Ingo Molnar 已提交
899 900
}

901
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
902
{
903
	update_curr_rt(rq);
I
Ingo Molnar 已提交
904 905 906
	p->se.exec_start = 0;
}

907
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
908

S
Steven Rostedt 已提交
909 910 911 912
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
913 914
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);

S
Steven Rostedt 已提交
915 916
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

917 918 919
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
920
	    (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
P
Peter Zijlstra 已提交
921
	    (p->rt.nr_cpus_allowed > 1))
922 923 924 925
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
926
/* Return the second highest RT task, NULL otherwise */
927
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
928
{
P
Peter Zijlstra 已提交
929 930 931 932
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
933 934
	int idx;

P
Peter Zijlstra 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
 next_idx:
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
			struct task_struct *p = rt_task_of(rt_se);
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
954 955
	}

S
Steven Rostedt 已提交
956 957 958 959 960
	return next;
}

static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);

G
Gregory Haskins 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
{
	int first;

	/* "this_cpu" is cheaper to preempt than a remote processor */
	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
		return this_cpu;

	first = first_cpu(*mask);
	if (first != NR_CPUS)
		return first;

	return -1;
}

static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
	cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
982

983 984
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
985

986 987
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
988

989 990 991 992 993 994 995
	/*
	 * Only consider CPUs that are usable for migration.
	 * I guess we might want to change cpupri_find() to ignore those
	 * in the first place.
	 */
	cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);

G
Gregory Haskins 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
	if (cpu_isset(cpu, *lowest_mask))
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
	if (this_cpu == cpu)
		this_cpu = -1; /* Skip this_cpu opt if the same */

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			cpumask_t domain_mask;
			int       best_cpu;

			cpus_and(domain_mask, sd->span, *lowest_mask);

			best_cpu = pick_optimal_cpu(this_cpu,
						    &domain_mask);
			if (best_cpu != -1)
				return best_cpu;
		}
	}

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
	return pick_optimal_cpu(this_cpu, lowest_mask);
1034 1035 1036
}

/* Will lock the rq it finds */
1037
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1038 1039 1040
{
	struct rq *lowest_rq = NULL;
	int tries;
1041
	int cpu;
S
Steven Rostedt 已提交
1042

1043 1044 1045
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1046
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1047 1048
			break;

1049 1050
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1051
		/* if the prio of this runqueue changed, try again */
1052
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1053 1054 1055 1056 1057 1058
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1059
			if (unlikely(task_rq(task) != rq ||
1060 1061
				     !cpu_isset(lowest_rq->cpu,
						task->cpus_allowed) ||
1062
				     task_running(rq, task) ||
S
Steven Rostedt 已提交
1063
				     !task->se.on_rq)) {
1064

S
Steven Rostedt 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
				spin_unlock(&lowest_rq->lock);
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
		if (lowest_rq->rt.highest_prio > task->prio)
			break;

		/* try again */
1076
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		lowest_rq = NULL;
	}

	return lowest_rq;
}

/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1088
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1089 1090 1091 1092 1093 1094
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
	int ret = 0;
	int paranoid = RT_MAX_TRIES;

G
Gregory Haskins 已提交
1095 1096 1097
	if (!rq->rt.overloaded)
		return 0;

1098
	next_task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1099 1100 1101 1102
	if (!next_task)
		return 0;

 retry:
1103
	if (unlikely(next_task == rq->curr)) {
1104
		WARN_ON(1);
S
Steven Rostedt 已提交
1105
		return 0;
1106
	}
S
Steven Rostedt 已提交
1107 1108 1109 1110 1111 1112

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1113 1114
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1115 1116 1117
		return 0;
	}

1118
	/* We might release rq lock */
S
Steven Rostedt 已提交
1119 1120 1121
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1122
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1123 1124 1125
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1126
		 * find lock_lowest_rq releases rq->lock
S
Steven Rostedt 已提交
1127 1128 1129
		 * so it is possible that next_task has changed.
		 * If it has, then try again.
		 */
1130
		task = pick_next_highest_task_rt(rq, -1);
S
Steven Rostedt 已提交
1131 1132 1133 1134 1135 1136 1137 1138
		if (unlikely(task != next_task) && task && paranoid--) {
			put_task_struct(next_task);
			next_task = task;
			goto retry;
		}
		goto out;
	}

1139
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1140 1141 1142 1143 1144
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);

	resched_task(lowest_rq->curr);

1145
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	ret = 1;
out:
	put_task_struct(next_task);

	return ret;
}

/*
 * TODO: Currently we just use the second highest prio task on
 *       the queue, and stop when it can't migrate (or there's
 *       no more RT tasks).  There may be a case where a lower
 *       priority RT task has a different affinity than the
 *       higher RT task. In this case the lower RT task could
 *       possibly be able to migrate where as the higher priority
 *       RT task could not.  We currently ignore this issue.
 *       Enhancements are welcome!
 */
static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1171 1172
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1173 1174
	int this_cpu = this_rq->cpu, ret = 0, cpu;
	struct task_struct *p, *next;
1175 1176
	struct rq *src_rq;

1177
	if (likely(!rt_overloaded(this_rq)))
1178 1179 1180 1181
		return 0;

	next = pick_next_task_rt(this_rq);

1182
	for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
		 * steal our next task - hence we must cause
		 * the caller to recalculate the next task
		 * in that case:
		 */
		if (double_lock_balance(this_rq, src_rq)) {
			struct task_struct *old_next = next;
I
Ingo Molnar 已提交
1196

1197 1198 1199 1200 1201 1202 1203 1204
			next = pick_next_task_rt(this_rq);
			if (next != old_next)
				ret = 1;
		}

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1205 1206
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
		if (p && (!next || (p->prio < next->prio))) {
			WARN_ON(p == src_rq->curr);
			WARN_ON(!p->se.on_rq);

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
			 * current task on the run queue or
			 * this_rq next task is lower in prio than
			 * the current task on that rq.
			 */
			if (p->prio < src_rq->curr->prio ||
			    (next && next->prio < src_rq->curr->prio))
M
Mike Galbraith 已提交
1230
				goto skip;
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
			 * in another runqueue. (low likelyhood
			 * but possible)
I
Ingo Molnar 已提交
1242
			 *
1243 1244 1245 1246 1247 1248 1249
			 * Update next so that we won't pick a task
			 * on another cpu with a priority lower (or equal)
			 * than the one we just picked.
			 */
			next = p;

		}
M
Mike Galbraith 已提交
1250
 skip:
1251
		double_unlock_balance(this_rq, src_rq);
1252 1253 1254 1255 1256
	}

	return ret;
}

1257
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1258 1259
{
	/* Try to pull RT tasks here if we lower this rq's prio */
1260
	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1261 1262 1263
		pull_rt_task(rq);
}

1264
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1265 1266 1267 1268 1269 1270 1271 1272
{
	/*
	 * If we have more than one rt_task queued, then
	 * see if we can push the other rt_tasks off to other CPUS.
	 * Note we may release the rq lock, and since
	 * the lock was owned by prev, we need to release it
	 * first via finish_lock_switch and then reaquire it here.
	 */
G
Gregory Haskins 已提交
1273
	if (unlikely(rq->rt.overloaded)) {
S
Steven Rostedt 已提交
1274 1275 1276 1277 1278 1279
		spin_lock_irq(&rq->lock);
		push_rt_tasks(rq);
		spin_unlock_irq(&rq->lock);
	}
}

1280 1281 1282 1283
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1284
static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1285
{
1286
	if (!task_running(rq, p) &&
1287
	    !test_tsk_need_resched(rq->curr) &&
G
Gregory Haskins 已提交
1288
	    rq->rt.overloaded)
1289 1290 1291
		push_rt_tasks(rq);
}

P
Peter Williams 已提交
1292
static unsigned long
I
Ingo Molnar 已提交
1293
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1294 1295 1296
		unsigned long max_load_move,
		struct sched_domain *sd, enum cpu_idle_type idle,
		int *all_pinned, int *this_best_prio)
I
Ingo Molnar 已提交
1297
{
1298 1299
	/* don't touch RT tasks */
	return 0;
1300 1301 1302 1303 1304 1305
}

static int
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
		 struct sched_domain *sd, enum cpu_idle_type idle)
{
1306 1307
	/* don't touch RT tasks */
	return 0;
I
Ingo Molnar 已提交
1308
}
1309

1310 1311
static void set_cpus_allowed_rt(struct task_struct *p,
				const cpumask_t *new_mask)
1312 1313 1314 1315 1316 1317 1318 1319 1320
{
	int weight = cpus_weight(*new_mask);

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1321
	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1322 1323
		struct rq *rq = task_rq(p);

P
Peter Zijlstra 已提交
1324
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1325
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1326
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1327 1328 1329 1330 1331 1332 1333 1334
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

		update_rt_migration(rq);
	}

	p->cpus_allowed    = *new_mask;
P
Peter Zijlstra 已提交
1335
	p->rt.nr_cpus_allowed = weight;
1336
}
1337

1338
/* Assumes rq->lock is held */
1339
static void rq_online_rt(struct rq *rq)
1340 1341 1342
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1343

P
Peter Zijlstra 已提交
1344 1345
	__enable_runtime(rq);

1346
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1347 1348 1349
}

/* Assumes rq->lock is held */
1350
static void rq_offline_rt(struct rq *rq)
1351 1352 1353
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1354

P
Peter Zijlstra 已提交
1355 1356
	__disable_runtime(rq);

1357
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1358
}
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
static void switched_from_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
	if (!rq->rt.rt_nr_running)
		pull_rt_task(rq);
}
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
static void switched_to_rt(struct rq *rq, struct task_struct *p,
			   int running)
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
	if (!running) {
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
static void prio_changed_rt(struct rq *rq, struct task_struct *p,
			    int oldprio, int running)
{
	if (running) {
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1425 1426 1427
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1428
		 */
1429
		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1430 1431 1432 1433 1434
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1435
#endif /* CONFIG_SMP */
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

	if (!p->signal)
		return;

	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1462
		if (p->rt.timeout > next)
1463
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1464 1465
	}
}
I
Ingo Molnar 已提交
1466

P
Peter Zijlstra 已提交
1467
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1468
{
1469 1470
	update_curr_rt(rq);

1471 1472
	watchdog(rq, p);

I
Ingo Molnar 已提交
1473 1474 1475 1476 1477 1478 1479
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1480
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1481 1482
		return;

P
Peter Zijlstra 已提交
1483
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1484

1485 1486 1487 1488
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1489
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1490
		requeue_task_rt(rq, p, 0);
1491 1492
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1493 1494
}

1495 1496 1497 1498 1499 1500 1501
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

	p->se.exec_start = rq->clock;
}

1502
static const struct sched_class rt_sched_class = {
1503
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1513
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1514 1515
	.select_task_rq		= select_task_rq_rt,

I
Ingo Molnar 已提交
1516
	.load_balance		= load_balance_rt,
1517
	.move_one_task		= move_one_task_rt,
1518
	.set_cpus_allowed       = set_cpus_allowed_rt,
1519 1520
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1521 1522 1523
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
	.task_wake_up		= task_wake_up_rt,
1524
	.switched_from		= switched_from_rt,
1525
#endif
I
Ingo Molnar 已提交
1526

1527
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1528
	.task_tick		= task_tick_rt,
1529 1530 1531

	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1532
};
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
	struct rt_rq *rt_rq;

	rcu_read_lock();
	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1546
#endif /* CONFIG_SCHED_DEBUG */