memcontrol.c 142.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
568
	for_each_node(node) {
569
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778 779 780 781 782 783 784 785 786 787 788
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit, do_numainfo;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

789
		mem_cgroup_threshold(memcg);
790
		if (unlikely(do_softlimit))
791
			mem_cgroup_update_tree(memcg, page);
792
#if MAX_NUMNODES > 1
793
		if (unlikely(do_numainfo))
794
			atomic_inc(&memcg->numainfo_events);
795
#endif
796 797
	} else
		preempt_enable();
798 799
}

G
Glauber Costa 已提交
800
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
801 802 803 804 805 806
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

807
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808
{
809 810 811 812 813 814 815 816
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

817 818 819 820
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

821
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822
{
823
	struct mem_cgroup *memcg = NULL;
824 825 826

	if (!mm)
		return NULL;
827 828 829 830 831 832 833
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
834 835
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
836
			break;
837
	} while (!css_tryget(&memcg->css));
838
	rcu_read_unlock();
839
	return memcg;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
862
{
863 864
	struct mem_cgroup *memcg = NULL;
	int id = 0;
865

866 867 868
	if (mem_cgroup_disabled())
		return NULL;

869 870
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
871

872 873
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
874

875 876
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
877

878 879 880 881 882
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
883

884
	while (!memcg) {
885
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886
		struct cgroup_subsys_state *css;
887

888 889 890 891 892 893 894 895 896 897 898
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
908 909
		rcu_read_unlock();

910 911 912 913 914 915 916
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
917 918 919 920 921

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
922
}
K
KAMEZAWA Hiroyuki 已提交
923

924 925 926 927 928 929 930
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
931 932 933 934 935 936
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
937

938 939 940 941 942 943
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
944
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945
	     iter != NULL;				\
946
	     iter = mem_cgroup_iter(root, iter, NULL))
947

948
#define for_each_mem_cgroup(iter)			\
949
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950
	     iter != NULL;				\
951
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
952

953
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954
{
955
	return (memcg == root_mem_cgroup);
956 957
}

958 959
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
960
	struct mem_cgroup *memcg;
961 962 963 964 965

	if (!mm)
		return;

	rcu_read_lock();
966 967
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
968 969 970 971
		goto out;

	switch (idx) {
	case PGFAULT:
972 973 974 975
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 977 978 979 980 981 982 983 984
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1034 1035
{
	struct mem_cgroup_per_zone *mz;
1036 1037
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1038

1039
	if (mem_cgroup_disabled())
1040 1041
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1042
	pc = lookup_page_cgroup(page);
1043
	memcg = pc->mem_cgroup;
1044 1045 1046 1047
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1048
}
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1059
 */
1060
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1061 1062
{
	struct mem_cgroup_per_zone *mz;
1063
	struct mem_cgroup *memcg;
1064 1065 1066 1067 1068 1069
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1070 1071
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1072 1073
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1074
	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1075
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1076 1077
}

1078
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1079
{
1080
	mem_cgroup_lru_del_list(page, page_lru(page));
1081 1082
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1101
{
1102 1103 1104
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1105
}
1106

1107
/*
1108
 * Checks whether given mem is same or in the root_mem_cgroup's
1109 1110
 * hierarchy subtree
 */
1111 1112
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1113
{
1114 1115 1116
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1117 1118 1119 1120 1121
	}

	return true;
}

1122
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1123 1124
{
	int ret;
1125
	struct mem_cgroup *curr = NULL;
1126
	struct task_struct *p;
1127

1128
	p = find_lock_task_mm(task);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1144 1145
	if (!curr)
		return 0;
1146
	/*
1147
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1148
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1149 1150
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1151
	 */
1152
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1153
	css_put(&curr->css);
1154 1155 1156
	return ret;
}

1157
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1158
{
1159 1160 1161
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1162
	unsigned long inactive;
1163
	unsigned long active;
1164
	unsigned long gb;
1165

1166 1167 1168 1169
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1170

1171 1172 1173 1174 1175 1176
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1177
	return inactive * inactive_ratio < active;
1178 1179
}

1180
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1181 1182 1183
{
	unsigned long active;
	unsigned long inactive;
1184 1185
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1186

1187 1188 1189 1190
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1191 1192 1193 1194

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1195 1196 1197
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1198
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1215 1216
	if (!PageCgroupUsed(pc))
		return NULL;
1217 1218
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1219
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1220 1221 1222
	return &mz->reclaim_stat;
}

1223 1224 1225
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1226
/**
1227 1228
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1229
 *
1230
 * Returns the maximum amount of memory @mem can be charged with, in
1231
 * pages.
1232
 */
1233
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1234
{
1235 1236
	unsigned long long margin;

1237
	margin = res_counter_margin(&memcg->res);
1238
	if (do_swap_account)
1239
		margin = min(margin, res_counter_margin(&memcg->memsw));
1240
	return margin >> PAGE_SHIFT;
1241 1242
}

1243
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1244 1245 1246 1247 1248 1249 1250
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1251
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1252 1253
}

1254
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1255 1256
{
	int cpu;
1257 1258

	get_online_cpus();
1259
	spin_lock(&memcg->pcp_counter_lock);
1260
	for_each_online_cpu(cpu)
1261 1262 1263
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1264
	put_online_cpus();
1265 1266 1267 1268

	synchronize_rcu();
}

1269
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1270 1271 1272
{
	int cpu;

1273
	if (!memcg)
1274
		return;
1275
	get_online_cpus();
1276
	spin_lock(&memcg->pcp_counter_lock);
1277
	for_each_online_cpu(cpu)
1278 1279 1280
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1281
	put_online_cpus();
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1295
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1296 1297
{
	VM_BUG_ON(!rcu_read_lock_held());
1298
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1299
}
1300

1301
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1302
{
1303 1304
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1305
	bool ret = false;
1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1315

1316 1317
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1318 1319
unlock:
	spin_unlock(&mc.lock);
1320 1321 1322
	return ret;
}

1323
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1324 1325
{
	if (mc.moving_task && current != mc.moving_task) {
1326
		if (mem_cgroup_under_move(memcg)) {
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1339
/**
1340
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1359
	if (!memcg || !p)
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1406 1407 1408 1409
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1410
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1411 1412
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1413 1414
	struct mem_cgroup *iter;

1415
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1416
		num++;
1417 1418 1419
	return num;
}

D
David Rientjes 已提交
1420 1421 1422 1423 1424 1425 1426 1427
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1428 1429 1430
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1431 1432 1433 1434 1435 1436 1437 1438
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1485
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1486 1487
		int nid, bool noswap)
{
1488
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1489 1490 1491
		return true;
	if (noswap || !total_swap_pages)
		return false;
1492
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1493 1494 1495 1496
		return true;
	return false;

}
1497 1498 1499 1500 1501 1502 1503 1504
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1505
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1506 1507
{
	int nid;
1508 1509 1510 1511
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1512
	if (!atomic_read(&memcg->numainfo_events))
1513
		return;
1514
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1515 1516 1517
		return;

	/* make a nodemask where this memcg uses memory from */
1518
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1519 1520 1521

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1522 1523
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1524
	}
1525

1526 1527
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1542
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1543 1544 1545
{
	int node;

1546 1547
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1548

1549
	node = next_node(node, memcg->scan_nodes);
1550
	if (node == MAX_NUMNODES)
1551
		node = first_node(memcg->scan_nodes);
1552 1553 1554 1555 1556 1557 1558 1559 1560
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1561
	memcg->last_scanned_node = node;
1562 1563 1564
	return node;
}

1565 1566 1567 1568 1569 1570
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1571
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1572 1573 1574 1575 1576 1577 1578
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1579 1580
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1581
		     nid < MAX_NUMNODES;
1582
		     nid = next_node(nid, memcg->scan_nodes)) {
1583

1584
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1585 1586 1587 1588 1589 1590 1591
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1592
		if (node_isset(nid, memcg->scan_nodes))
1593
			continue;
1594
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1595 1596 1597 1598 1599
			return true;
	}
	return false;
}

1600
#else
1601
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1602 1603 1604
{
	return 0;
}
1605

1606
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607
{
1608
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1609
}
1610 1611
#endif

1612 1613 1614 1615
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1616
{
1617
	struct mem_cgroup *victim = NULL;
1618
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1619
	int loop = 0;
1620
	unsigned long excess;
1621
	unsigned long nr_scanned;
1622 1623 1624 1625
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1626

1627
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1628

1629
	while (1) {
1630
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1631
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1632
			loop++;
1633 1634 1635 1636 1637 1638
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1639
				if (!total)
1640 1641
					break;
				/*
L
Lucas De Marchi 已提交
1642
				 * We want to do more targeted reclaim.
1643 1644 1645 1646 1647
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1648
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1649 1650
					break;
			}
1651
			continue;
1652
		}
1653
		if (!mem_cgroup_reclaimable(victim, false))
1654
			continue;
1655 1656 1657 1658
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1659
			break;
1660
	}
1661
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1662
	return total;
1663 1664
}

K
KAMEZAWA Hiroyuki 已提交
1665 1666 1667
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1668
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1669
 */
1670
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1671
{
1672
	struct mem_cgroup *iter, *failed = NULL;
1673

1674
	for_each_mem_cgroup_tree(iter, memcg) {
1675
		if (iter->oom_lock) {
1676 1677 1678 1679 1680
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1681 1682
			mem_cgroup_iter_break(memcg, iter);
			break;
1683 1684
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1685
	}
K
KAMEZAWA Hiroyuki 已提交
1686

1687
	if (!failed)
1688
		return true;
1689 1690 1691 1692 1693

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1694
	for_each_mem_cgroup_tree(iter, memcg) {
1695
		if (iter == failed) {
1696 1697
			mem_cgroup_iter_break(memcg, iter);
			break;
1698 1699 1700
		}
		iter->oom_lock = false;
	}
1701
	return false;
1702
}
1703

1704
/*
1705
 * Has to be called with memcg_oom_lock
1706
 */
1707
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1708
{
K
KAMEZAWA Hiroyuki 已提交
1709 1710
	struct mem_cgroup *iter;

1711
	for_each_mem_cgroup_tree(iter, memcg)
1712 1713 1714 1715
		iter->oom_lock = false;
	return 0;
}

1716
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1717 1718 1719
{
	struct mem_cgroup *iter;

1720
	for_each_mem_cgroup_tree(iter, memcg)
1721 1722 1723
		atomic_inc(&iter->under_oom);
}

1724
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1725 1726 1727
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1728 1729 1730 1731 1732
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1733
	for_each_mem_cgroup_tree(iter, memcg)
1734
		atomic_add_unless(&iter->under_oom, -1, 0);
1735 1736
}

1737
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1738 1739
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1740 1741 1742 1743 1744 1745 1746 1747
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1748 1749
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1750 1751 1752
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1753
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1754 1755 1756 1757 1758

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1759 1760
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1761 1762 1763 1764
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1765
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1766
{
1767 1768
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1769 1770
}

1771
static void memcg_oom_recover(struct mem_cgroup *memcg)
1772
{
1773 1774
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1775 1776
}

K
KAMEZAWA Hiroyuki 已提交
1777 1778 1779
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1780
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1781
{
K
KAMEZAWA Hiroyuki 已提交
1782
	struct oom_wait_info owait;
1783
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1784

1785
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1786 1787 1788 1789
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1790
	need_to_kill = true;
1791
	mem_cgroup_mark_under_oom(memcg);
1792

1793
	/* At first, try to OOM lock hierarchy under memcg.*/
1794
	spin_lock(&memcg_oom_lock);
1795
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1796 1797 1798 1799 1800
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1801
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1802
	if (!locked || memcg->oom_kill_disable)
1803 1804
		need_to_kill = false;
	if (locked)
1805
		mem_cgroup_oom_notify(memcg);
1806
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1807

1808 1809
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1810
		mem_cgroup_out_of_memory(memcg, mask);
1811
	} else {
K
KAMEZAWA Hiroyuki 已提交
1812
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1813
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1814
	}
1815
	spin_lock(&memcg_oom_lock);
1816
	if (locked)
1817 1818
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1819
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1820

1821
	mem_cgroup_unmark_under_oom(memcg);
1822

K
KAMEZAWA Hiroyuki 已提交
1823 1824 1825
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1826
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1827
	return true;
1828 1829
}

1830 1831 1832
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1852
 */
1853

1854 1855
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1856
{
1857
	struct mem_cgroup *memcg;
1858 1859
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1860
	unsigned long uninitialized_var(flags);
1861

1862
	if (mem_cgroup_disabled())
1863 1864
		return;

1865
	rcu_read_lock();
1866 1867
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1868 1869
		goto out;
	/* pc->mem_cgroup is unstable ? */
1870
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1871
		/* take a lock against to access pc->mem_cgroup */
1872
		move_lock_page_cgroup(pc, &flags);
1873
		need_unlock = true;
1874 1875
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1876 1877
			goto out;
	}
1878 1879

	switch (idx) {
1880
	case MEMCG_NR_FILE_MAPPED:
1881 1882 1883
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1884
			ClearPageCgroupFileMapped(pc);
1885
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1886 1887 1888
		break;
	default:
		BUG();
1889
	}
1890

1891
	this_cpu_add(memcg->stat->count[idx], val);
1892

1893 1894
out:
	if (unlikely(need_unlock))
1895
		move_unlock_page_cgroup(pc, &flags);
1896 1897
	rcu_read_unlock();
	return;
1898
}
1899
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1900

1901 1902 1903 1904
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1905
#define CHARGE_BATCH	32U
1906 1907
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1908
	unsigned int nr_pages;
1909
	struct work_struct work;
1910 1911
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1912 1913
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1914
static DEFINE_MUTEX(percpu_charge_mutex);
1915 1916

/*
1917
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1918 1919 1920 1921
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1922
static bool consume_stock(struct mem_cgroup *memcg)
1923 1924 1925 1926 1927
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1928
	if (memcg == stock->cached && stock->nr_pages)
1929
		stock->nr_pages--;
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1943 1944 1945 1946
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1947
		if (do_swap_account)
1948 1949
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1962
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1963 1964 1965 1966
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1967
 * This will be consumed by consume_stock() function, later.
1968
 */
1969
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1970 1971 1972
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1973
	if (stock->cached != memcg) { /* reset if necessary */
1974
		drain_stock(stock);
1975
		stock->cached = memcg;
1976
	}
1977
	stock->nr_pages += nr_pages;
1978 1979 1980 1981
	put_cpu_var(memcg_stock);
}

/*
1982
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1983 1984
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
1985
 */
1986
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1987
{
1988
	int cpu, curcpu;
1989

1990 1991
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1992
	curcpu = get_cpu();
1993 1994
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1995
		struct mem_cgroup *memcg;
1996

1997 1998
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1999
			continue;
2000
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2001
			continue;
2002 2003 2004 2005 2006 2007
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2008
	}
2009
	put_cpu();
2010 2011 2012 2013 2014 2015

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2016
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2017 2018 2019
			flush_work(&stock->work);
	}
out:
2020
 	put_online_cpus();
2021 2022 2023 2024 2025 2026 2027 2028
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2029
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2030
{
2031 2032 2033 2034 2035
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2036
	drain_all_stock(root_memcg, false);
2037
	mutex_unlock(&percpu_charge_mutex);
2038 2039 2040
}

/* This is a synchronous drain interface. */
2041
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2042 2043
{
	/* called when force_empty is called */
2044
	mutex_lock(&percpu_charge_mutex);
2045
	drain_all_stock(root_memcg, true);
2046
	mutex_unlock(&percpu_charge_mutex);
2047 2048
}

2049 2050 2051 2052
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2053
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2054 2055 2056
{
	int i;

2057
	spin_lock(&memcg->pcp_counter_lock);
2058
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2059
		long x = per_cpu(memcg->stat->count[i], cpu);
2060

2061 2062
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2063
	}
2064
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2065
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2066

2067 2068
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2069
	}
2070
	/* need to clear ON_MOVE value, works as a kind of lock. */
2071 2072
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2073 2074
}

2075
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2076 2077 2078
{
	int idx = MEM_CGROUP_ON_MOVE;

2079 2080 2081
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2082 2083 2084
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2085 2086 2087 2088 2089
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2090
	struct mem_cgroup *iter;
2091

2092
	if ((action == CPU_ONLINE)) {
2093
		for_each_mem_cgroup(iter)
2094 2095 2096 2097
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2098
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2099
		return NOTIFY_OK;
2100

2101
	for_each_mem_cgroup(iter)
2102 2103
		mem_cgroup_drain_pcp_counter(iter, cpu);

2104 2105 2106 2107 2108
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2119
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2120
				unsigned int nr_pages, bool oom_check)
2121
{
2122
	unsigned long csize = nr_pages * PAGE_SIZE;
2123 2124 2125 2126 2127
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2128
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2129 2130 2131 2132

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2133
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2134 2135 2136
		if (likely(!ret))
			return CHARGE_OK;

2137
		res_counter_uncharge(&memcg->res, csize);
2138 2139 2140 2141
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2142
	/*
2143 2144
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2145 2146 2147 2148
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2149
	if (nr_pages == CHARGE_BATCH)
2150 2151 2152 2153 2154
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2155
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2156
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2157
		return CHARGE_RETRY;
2158
	/*
2159 2160 2161 2162 2163 2164 2165
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2166
	 */
2167
	if (nr_pages == 1 && ret)
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2187
/*
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2207
 */
2208
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2209
				   gfp_t gfp_mask,
2210
				   unsigned int nr_pages,
2211
				   struct mem_cgroup **ptr,
2212
				   bool oom)
2213
{
2214
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2215
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2216
	struct mem_cgroup *memcg = NULL;
2217
	int ret;
2218

K
KAMEZAWA Hiroyuki 已提交
2219 2220 2221 2222 2223 2224 2225 2226
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2227

2228
	/*
2229 2230
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2231 2232 2233
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2234
	if (!*ptr && !mm)
2235
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2236
again:
2237 2238 2239 2240
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2241
			goto done;
2242
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2243
			goto done;
2244
		css_get(&memcg->css);
2245
	} else {
K
KAMEZAWA Hiroyuki 已提交
2246
		struct task_struct *p;
2247

K
KAMEZAWA Hiroyuki 已提交
2248 2249 2250
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2251
		 * Because we don't have task_lock(), "p" can exit.
2252
		 * In that case, "memcg" can point to root or p can be NULL with
2253 2254 2255 2256 2257 2258
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2259
		 */
2260
		memcg = mem_cgroup_from_task(p);
2261 2262 2263
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2264 2265 2266
			rcu_read_unlock();
			goto done;
		}
2267
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2280
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2281 2282 2283 2284 2285
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2286

2287 2288
	do {
		bool oom_check;
2289

2290
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2291
		if (fatal_signal_pending(current)) {
2292
			css_put(&memcg->css);
2293
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2294
		}
2295

2296 2297 2298 2299
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2300
		}
2301

2302
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2303 2304 2305 2306
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2307
			batch = nr_pages;
2308 2309
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2310
			goto again;
2311
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2312
			css_put(&memcg->css);
2313 2314
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2315
			if (!oom) {
2316
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2317
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2318
			}
2319 2320 2321 2322
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2323
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2324
			goto bypass;
2325
		}
2326 2327
	} while (ret != CHARGE_OK);

2328
	if (batch > nr_pages)
2329 2330
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2331
done:
2332
	*ptr = memcg;
2333 2334
	return 0;
nomem:
2335
	*ptr = NULL;
2336
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2337
bypass:
2338 2339
	*ptr = root_mem_cgroup;
	return -EINTR;
2340
}
2341

2342 2343 2344 2345 2346
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2347
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2348
				       unsigned int nr_pages)
2349
{
2350
	if (!mem_cgroup_is_root(memcg)) {
2351 2352
		unsigned long bytes = nr_pages * PAGE_SIZE;

2353
		res_counter_uncharge(&memcg->res, bytes);
2354
		if (do_swap_account)
2355
			res_counter_uncharge(&memcg->memsw, bytes);
2356
	}
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2378
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2379
{
2380
	struct mem_cgroup *memcg = NULL;
2381
	struct page_cgroup *pc;
2382
	unsigned short id;
2383 2384
	swp_entry_t ent;

2385 2386 2387
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2388
	lock_page_cgroup(pc);
2389
	if (PageCgroupUsed(pc)) {
2390 2391 2392
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2393
	} else if (PageSwapCache(page)) {
2394
		ent.val = page_private(page);
2395
		id = lookup_swap_cgroup_id(ent);
2396
		rcu_read_lock();
2397 2398 2399
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2400
		rcu_read_unlock();
2401
	}
2402
	unlock_page_cgroup(pc);
2403
	return memcg;
2404 2405
}

2406
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2407
				       struct page *page,
2408
				       unsigned int nr_pages,
2409
				       struct page_cgroup *pc,
2410
				       enum charge_type ctype)
2411
{
2412 2413 2414
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2415
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2416 2417 2418 2419 2420 2421
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2422
	pc->mem_cgroup = memcg;
2423 2424 2425 2426 2427 2428 2429
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2430
	smp_wmb();
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2444

2445
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2446
	unlock_page_cgroup(pc);
2447
	WARN_ON_ONCE(PageLRU(page));
2448 2449 2450 2451 2452
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2453
	memcg_check_events(memcg, page);
2454
}
2455

2456 2457 2458
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2459
			(1 << PCG_MIGRATION))
2460 2461
/*
 * Because tail pages are not marked as "used", set it. We're under
2462 2463 2464
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2465
 */
2466
void mem_cgroup_split_huge_fixup(struct page *head)
2467 2468
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2469 2470
	struct page_cgroup *pc;
	int i;
2471

2472 2473
	if (mem_cgroup_disabled())
		return;
2474 2475 2476 2477 2478 2479
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2480
}
2481
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2482

2483
/**
2484
 * mem_cgroup_move_account - move account of the page
2485
 * @page: the page
2486
 * @nr_pages: number of regular pages (>1 for huge pages)
2487 2488 2489
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2490
 * @uncharge: whether we should call uncharge and css_put against @from.
2491 2492
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2493
 * - page is not on LRU (isolate_page() is useful.)
2494
 * - compound_lock is held when nr_pages > 1
2495
 *
2496
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2497
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2498 2499
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2500
 */
2501 2502 2503 2504 2505 2506
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2507
{
2508 2509
	unsigned long flags;
	int ret;
2510

2511
	VM_BUG_ON(from == to);
2512
	VM_BUG_ON(PageLRU(page));
2513 2514 2515 2516 2517 2518 2519
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2520
	if (nr_pages > 1 && !PageTransHuge(page))
2521 2522 2523 2524 2525 2526 2527 2528 2529
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2530

2531
	if (PageCgroupFileMapped(pc)) {
2532 2533 2534 2535 2536
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2537
	}
2538
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2539 2540
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2541
		__mem_cgroup_cancel_charge(from, nr_pages);
2542

2543
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2544
	pc->mem_cgroup = to;
2545
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2546 2547 2548
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2549
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2550
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2551
	 * status here.
2552
	 */
2553 2554 2555
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2556
	unlock_page_cgroup(pc);
2557 2558 2559
	/*
	 * check events
	 */
2560 2561
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2562
out:
2563 2564 2565 2566 2567 2568 2569
	return ret;
}

/*
 * move charges to its parent.
 */

2570 2571
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2572 2573 2574 2575 2576 2577
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2578
	unsigned int nr_pages;
2579
	unsigned long uninitialized_var(flags);
2580 2581 2582 2583 2584 2585
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2586 2587 2588 2589 2590
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2591

2592
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2593

2594
	parent = mem_cgroup_from_cont(pcg);
2595
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2596
	if (ret)
2597
		goto put_back;
2598

2599
	if (nr_pages > 1)
2600 2601
		flags = compound_lock_irqsave(page);

2602
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2603
	if (ret)
2604
		__mem_cgroup_cancel_charge(parent, nr_pages);
2605

2606
	if (nr_pages > 1)
2607
		compound_unlock_irqrestore(page, flags);
2608
put_back:
K
KAMEZAWA Hiroyuki 已提交
2609
	putback_lru_page(page);
2610
put:
2611
	put_page(page);
2612
out:
2613 2614 2615
	return ret;
}

2616 2617 2618 2619 2620 2621 2622
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2623
				gfp_t gfp_mask, enum charge_type ctype)
2624
{
2625
	struct mem_cgroup *memcg = NULL;
2626
	unsigned int nr_pages = 1;
2627
	struct page_cgroup *pc;
2628
	bool oom = true;
2629
	int ret;
A
Andrea Arcangeli 已提交
2630

A
Andrea Arcangeli 已提交
2631
	if (PageTransHuge(page)) {
2632
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2633
		VM_BUG_ON(!PageTransHuge(page));
2634 2635 2636 2637 2638
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2639
	}
2640 2641

	pc = lookup_page_cgroup(page);
2642
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2643
	if (ret == -ENOMEM)
2644
		return ret;
2645
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2646 2647 2648
	return 0;
}

2649 2650
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2651
{
2652
	if (mem_cgroup_disabled())
2653
		return 0;
2654 2655 2656
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2657
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2658
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2659 2660
}

D
Daisuke Nishimura 已提交
2661 2662 2663 2664
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2665
static void
2666
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2667 2668 2669
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
2670 2671 2672 2673
	struct zone *zone = page_zone(page);
	unsigned long flags;
	bool removed = false;

2674 2675 2676 2677 2678
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
2679 2680 2681 2682 2683 2684
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(page)) {
		del_page_from_lru_list(zone, page, page_lru(page));
		ClearPageLRU(page);
		removed = true;
	}
2685
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2686 2687 2688 2689 2690
	if (removed) {
		add_page_to_lru_list(zone, page, page_lru(page));
		SetPageLRU(page);
	}
	spin_unlock_irqrestore(&zone->lru_lock, flags);
2691 2692 2693
	return;
}

2694 2695
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2696
{
2697
	struct mem_cgroup *memcg = NULL;
2698
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2699 2700
	int ret;

2701
	if (mem_cgroup_disabled())
2702
		return 0;
2703 2704
	if (PageCompound(page))
		return 0;
2705

2706
	if (unlikely(!mm))
2707
		mm = &init_mm;
2708 2709
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2710

2711
	if (!PageSwapCache(page))
2712
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2713
	else { /* page is swapcache/shmem */
2714
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2715
		if (!ret)
2716 2717
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2718
	return ret;
2719 2720
}

2721 2722 2723
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2724
 * struct page_cgroup is acquired. This refcnt will be consumed by
2725 2726
 * "commit()" or removed by "cancel()"
 */
2727 2728
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2729
				 gfp_t mask, struct mem_cgroup **memcgp)
2730
{
2731
	struct mem_cgroup *memcg;
2732
	int ret;
2733

2734
	*memcgp = NULL;
2735

2736
	if (mem_cgroup_disabled())
2737 2738 2739 2740 2741 2742
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2743 2744 2745
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2746 2747
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2748
		goto charge_cur_mm;
2749 2750
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2751
		goto charge_cur_mm;
2752 2753
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2754
	css_put(&memcg->css);
2755 2756
	if (ret == -EINTR)
		ret = 0;
2757
	return ret;
2758 2759 2760
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2761 2762 2763 2764
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2765 2766
}

D
Daisuke Nishimura 已提交
2767
static void
2768
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2769
					enum charge_type ctype)
2770
{
2771
	if (mem_cgroup_disabled())
2772
		return;
2773
	if (!memcg)
2774
		return;
2775
	cgroup_exclude_rmdir(&memcg->css);
2776

2777
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2778 2779 2780
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2781 2782 2783
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2784
	 */
2785
	if (do_swap_account && PageSwapCache(page)) {
2786
		swp_entry_t ent = {.val = page_private(page)};
2787
		struct mem_cgroup *swap_memcg;
2788 2789 2790 2791
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2792 2793
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2794 2795 2796 2797
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2798 2799 2800 2801 2802
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2803
		}
2804
		rcu_read_unlock();
2805
	}
2806 2807 2808 2809 2810
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2811
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2812 2813
}

2814 2815
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2816
{
2817 2818
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2819 2820
}

2821
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2822
{
2823
	if (mem_cgroup_disabled())
2824
		return;
2825
	if (!memcg)
2826
		return;
2827
	__mem_cgroup_cancel_charge(memcg, 1);
2828 2829
}

2830
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2831 2832
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2833 2834 2835
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2836

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2848
		batch->memcg = memcg;
2849 2850
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2851
	 * In those cases, all pages freed continuously can be expected to be in
2852 2853 2854 2855 2856 2857 2858 2859
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2860
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2861 2862
		goto direct_uncharge;

2863 2864 2865 2866 2867
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2868
	if (batch->memcg != memcg)
2869 2870
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2871
	batch->nr_pages++;
2872
	if (uncharge_memsw)
2873
		batch->memsw_nr_pages++;
2874 2875
	return;
direct_uncharge:
2876
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2877
	if (uncharge_memsw)
2878 2879 2880
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2881 2882
	return;
}
2883

2884
/*
2885
 * uncharge if !page_mapped(page)
2886
 */
2887
static struct mem_cgroup *
2888
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2889
{
2890
	struct mem_cgroup *memcg = NULL;
2891 2892
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2893

2894
	if (mem_cgroup_disabled())
2895
		return NULL;
2896

K
KAMEZAWA Hiroyuki 已提交
2897
	if (PageSwapCache(page))
2898
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2899

A
Andrea Arcangeli 已提交
2900
	if (PageTransHuge(page)) {
2901
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2902 2903
		VM_BUG_ON(!PageTransHuge(page));
	}
2904
	/*
2905
	 * Check if our page_cgroup is valid
2906
	 */
2907
	pc = lookup_page_cgroup(page);
2908
	if (unlikely(!PageCgroupUsed(pc)))
2909
		return NULL;
2910

2911
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2912

2913
	memcg = pc->mem_cgroup;
2914

K
KAMEZAWA Hiroyuki 已提交
2915 2916 2917 2918 2919
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2920
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2921 2922
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2934
	}
K
KAMEZAWA Hiroyuki 已提交
2935

2936
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2937

2938
	ClearPageCgroupUsed(pc);
2939 2940 2941 2942 2943 2944
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2945

2946
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2947
	/*
2948
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2949 2950
	 * will never be freed.
	 */
2951
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2952
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2953 2954
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2955
	}
2956 2957
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2958

2959
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2960 2961 2962

unlock_out:
	unlock_page_cgroup(pc);
2963
	return NULL;
2964 2965
}

2966 2967
void mem_cgroup_uncharge_page(struct page *page)
{
2968 2969 2970
	/* early check. */
	if (page_mapped(page))
		return;
2971
	VM_BUG_ON(page->mapping && !PageAnon(page));
2972 2973 2974 2975 2976 2977
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2978
	VM_BUG_ON(page->mapping);
2979 2980 2981
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
2996 2997
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3018 3019 3020 3021 3022 3023
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3024
	memcg_oom_recover(batch->memcg);
3025 3026 3027 3028
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
/*
 * A function for resetting pc->mem_cgroup for newly allocated pages.
 * This function should be called if the newpage will be added to LRU
 * before start accounting.
 */
void mem_cgroup_reset_owner(struct page *newpage)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(newpage);
	VM_BUG_ON(PageCgroupUsed(pc));
	pc->mem_cgroup = root_mem_cgroup;
}

3046
#ifdef CONFIG_SWAP
3047
/*
3048
 * called after __delete_from_swap_cache() and drop "page" account.
3049 3050
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3051 3052
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3053 3054
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3055 3056 3057 3058 3059 3060
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3061

K
KAMEZAWA Hiroyuki 已提交
3062 3063 3064 3065 3066
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3067
		swap_cgroup_record(ent, css_id(&memcg->css));
3068
}
3069
#endif
3070 3071 3072 3073 3074 3075 3076

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3077
{
3078
	struct mem_cgroup *memcg;
3079
	unsigned short id;
3080 3081 3082 3083

	if (!do_swap_account)
		return;

3084 3085 3086
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3087
	if (memcg) {
3088 3089 3090 3091
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3092
		if (!mem_cgroup_is_root(memcg))
3093
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3094
		mem_cgroup_swap_statistics(memcg, false);
3095 3096
		mem_cgroup_put(memcg);
	}
3097
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3098
}
3099 3100 3101 3102 3103 3104

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3105
 * @need_fixup: whether we should fixup res_counters and refcounts.
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3116
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3117 3118 3119 3120 3121 3122 3123 3124
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3125
		mem_cgroup_swap_statistics(to, true);
3126
		/*
3127 3128 3129 3130 3131 3132
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3133 3134
		 */
		mem_cgroup_get(to);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3146 3147 3148 3149 3150 3151
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3152
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3153 3154 3155
{
	return -EINVAL;
}
3156
#endif
K
KAMEZAWA Hiroyuki 已提交
3157

3158
/*
3159 3160
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3161
 */
3162
int mem_cgroup_prepare_migration(struct page *page,
3163
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3164
{
3165
	struct mem_cgroup *memcg = NULL;
3166
	struct page_cgroup *pc;
3167
	enum charge_type ctype;
3168
	int ret = 0;
3169

3170
	*memcgp = NULL;
3171

A
Andrea Arcangeli 已提交
3172
	VM_BUG_ON(PageTransHuge(page));
3173
	if (mem_cgroup_disabled())
3174 3175
		return 0;

3176 3177 3178
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3179 3180
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3212
	}
3213
	unlock_page_cgroup(pc);
3214 3215 3216 3217
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3218
	if (!memcg)
3219
		return 0;
3220

3221 3222
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3223
	css_put(&memcg->css);/* drop extra refcnt */
3224
	if (ret) {
3225 3226 3227 3228 3229 3230 3231 3232 3233
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3234
		/* we'll need to revisit this error code (we have -EINTR) */
3235
		return -ENOMEM;
3236
	}
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3250
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3251
	return ret;
3252
}
3253

3254
/* remove redundant charge if migration failed*/
3255
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3256
	struct page *oldpage, struct page *newpage, bool migration_ok)
3257
{
3258
	struct page *used, *unused;
3259 3260
	struct page_cgroup *pc;

3261
	if (!memcg)
3262
		return;
3263
	/* blocks rmdir() */
3264
	cgroup_exclude_rmdir(&memcg->css);
3265
	if (!migration_ok) {
3266 3267
		used = oldpage;
		unused = newpage;
3268
	} else {
3269
		used = newpage;
3270 3271
		unused = oldpage;
	}
3272
	/*
3273 3274 3275
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3276
	 */
3277 3278 3279 3280
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3281

3282 3283
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3284
	/*
3285 3286 3287 3288 3289 3290
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3291
	 */
3292 3293
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3294
	/*
3295 3296
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3297 3298 3299
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3300
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3301
}
3302

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3334
	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3335 3336
}

3337 3338 3339 3340 3341 3342
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3343 3344 3345 3346 3347
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3388 3389
static DEFINE_MUTEX(set_limit_mutex);

3390
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3391
				unsigned long long val)
3392
{
3393
	int retry_count;
3394
	u64 memswlimit, memlimit;
3395
	int ret = 0;
3396 3397
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3398
	int enlarge;
3399 3400 3401 3402 3403 3404 3405 3406 3407

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3408

3409
	enlarge = 0;
3410
	while (retry_count) {
3411 3412 3413 3414
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3415 3416 3417
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3418
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3419 3420 3421 3422 3423 3424
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3425 3426
			break;
		}
3427 3428 3429 3430 3431

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3432
		ret = res_counter_set_limit(&memcg->res, val);
3433 3434 3435 3436 3437 3438
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3439 3440 3441 3442 3443
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3444 3445
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3446 3447 3448 3449 3450 3451
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3452
	}
3453 3454
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3455

3456 3457 3458
	return ret;
}

L
Li Zefan 已提交
3459 3460
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3461
{
3462
	int retry_count;
3463
	u64 memlimit, memswlimit, oldusage, curusage;
3464 3465
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3466
	int enlarge = 0;
3467

3468 3469 3470
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3471 3472 3473 3474 3475 3476 3477 3478
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3479
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3480 3481 3482 3483 3484 3485 3486 3487
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3488 3489 3490
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3491
		ret = res_counter_set_limit(&memcg->memsw, val);
3492 3493 3494 3495 3496 3497
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3498 3499 3500 3501 3502
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3503 3504 3505
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3506
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3507
		/* Usage is reduced ? */
3508
		if (curusage >= oldusage)
3509
			retry_count--;
3510 3511
		else
			oldusage = curusage;
3512
	}
3513 3514
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3515 3516 3517
	return ret;
}

3518
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3519 3520
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3521 3522 3523 3524 3525 3526
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3527
	unsigned long long excess;
3528
	unsigned long nr_scanned;
3529 3530 3531 3532

	if (order > 0)
		return 0;

3533
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3547
		nr_scanned = 0;
3548 3549
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3550
		nr_reclaimed += reclaimed;
3551
		*total_scanned += nr_scanned;
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3574
				if (next_mz == mz)
3575
					css_put(&next_mz->mem->css);
3576
				else /* next_mz == NULL or other memcg */
3577 3578 3579 3580
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3581
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3582 3583 3584 3585 3586 3587 3588 3589
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3590 3591
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3610 3611 3612 3613
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3614
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3615
				int node, int zid, enum lru_list lru)
3616
{
K
KAMEZAWA Hiroyuki 已提交
3617 3618
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3619
	struct list_head *list;
3620 3621
	struct page *busy;
	struct zone *zone;
3622
	int ret = 0;
3623

K
KAMEZAWA Hiroyuki 已提交
3624
	zone = &NODE_DATA(node)->node_zones[zid];
3625
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3626
	list = &mz->lruvec.lists[lru];
3627

3628 3629 3630 3631 3632
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3633
		struct page_cgroup *pc;
3634 3635
		struct page *page;

3636
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3637
		spin_lock_irqsave(&zone->lru_lock, flags);
3638
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3639
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3640
			break;
3641
		}
3642 3643 3644
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3645
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3646
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3647 3648
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3649
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3650

3651
		pc = lookup_page_cgroup(page);
3652

3653
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3654
		if (ret == -ENOMEM || ret == -EINTR)
3655
			break;
3656 3657 3658

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3659
			busy = page;
3660 3661 3662
			cond_resched();
		} else
			busy = NULL;
3663
	}
K
KAMEZAWA Hiroyuki 已提交
3664

3665 3666 3667
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3668 3669 3670 3671 3672 3673
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3674
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3675
{
3676 3677 3678
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3679
	struct cgroup *cgrp = memcg->css.cgroup;
3680

3681
	css_get(&memcg->css);
3682 3683

	shrink = 0;
3684 3685 3686
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3687
move_account:
3688
	do {
3689
		ret = -EBUSY;
3690 3691 3692 3693
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3694
			goto out;
3695 3696
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3697
		drain_all_stock_sync(memcg);
3698
		ret = 0;
3699
		mem_cgroup_start_move(memcg);
3700
		for_each_node_state(node, N_HIGH_MEMORY) {
3701
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3702
				enum lru_list l;
3703
				for_each_lru(l) {
3704
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3705
							node, zid, l);
3706 3707 3708
					if (ret)
						break;
				}
3709
			}
3710 3711 3712
			if (ret)
				break;
		}
3713 3714
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3715 3716 3717
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3718
		cond_resched();
3719
	/* "ret" should also be checked to ensure all lists are empty. */
3720
	} while (memcg->res.usage > 0 || ret);
3721
out:
3722
	css_put(&memcg->css);
3723
	return ret;
3724 3725

try_to_free:
3726 3727
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3728 3729 3730
		ret = -EBUSY;
		goto out;
	}
3731 3732
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3733 3734
	/* try to free all pages in this cgroup */
	shrink = 1;
3735
	while (nr_retries && memcg->res.usage > 0) {
3736
		int progress;
3737 3738 3739 3740 3741

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3742
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3743
						false);
3744
		if (!progress) {
3745
			nr_retries--;
3746
			/* maybe some writeback is necessary */
3747
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3748
		}
3749 3750

	}
K
KAMEZAWA Hiroyuki 已提交
3751
	lru_add_drain();
3752
	/* try move_account...there may be some *locked* pages. */
3753
	goto move_account;
3754 3755
}

3756 3757 3758 3759 3760 3761
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3762 3763 3764 3765 3766 3767 3768 3769 3770
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3771
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3772
	struct cgroup *parent = cont->parent;
3773
	struct mem_cgroup *parent_memcg = NULL;
3774 3775

	if (parent)
3776
		parent_memcg = mem_cgroup_from_cont(parent);
3777 3778 3779

	cgroup_lock();
	/*
3780
	 * If parent's use_hierarchy is set, we can't make any modifications
3781 3782 3783 3784 3785 3786
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3787
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3788 3789
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3790
			memcg->use_hierarchy = val;
3791 3792 3793 3794 3795 3796 3797 3798 3799
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3800

3801
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3802
					       enum mem_cgroup_stat_index idx)
3803
{
K
KAMEZAWA Hiroyuki 已提交
3804
	struct mem_cgroup *iter;
3805
	long val = 0;
3806

3807
	/* Per-cpu values can be negative, use a signed accumulator */
3808
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3809 3810 3811 3812 3813
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3814 3815
}

3816
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3817
{
K
KAMEZAWA Hiroyuki 已提交
3818
	u64 val;
3819

3820
	if (!mem_cgroup_is_root(memcg)) {
3821
		if (!swap)
3822
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3823
		else
3824
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3825 3826
	}

3827 3828
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3829

K
KAMEZAWA Hiroyuki 已提交
3830
	if (swap)
3831
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3832 3833 3834 3835

	return val << PAGE_SHIFT;
}

3836
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3837
{
3838
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3839
	u64 val;
3840 3841 3842 3843 3844 3845
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3846
		if (name == RES_USAGE)
3847
			val = mem_cgroup_usage(memcg, false);
3848
		else
3849
			val = res_counter_read_u64(&memcg->res, name);
3850 3851
		break;
	case _MEMSWAP:
3852
		if (name == RES_USAGE)
3853
			val = mem_cgroup_usage(memcg, true);
3854
		else
3855
			val = res_counter_read_u64(&memcg->memsw, name);
3856 3857 3858 3859 3860 3861
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3862
}
3863 3864 3865 3866
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3867 3868
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3869
{
3870
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3871
	int type, name;
3872 3873 3874
	unsigned long long val;
	int ret;

3875 3876 3877
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3878
	case RES_LIMIT:
3879 3880 3881 3882
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3883 3884
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3885 3886 3887
		if (ret)
			break;
		if (type == _MEM)
3888
			ret = mem_cgroup_resize_limit(memcg, val);
3889 3890
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3891
		break;
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3906 3907 3908 3909 3910
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3911 3912
}

3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3941
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3942
{
3943
	struct mem_cgroup *memcg;
3944
	int type, name;
3945

3946
	memcg = mem_cgroup_from_cont(cont);
3947 3948 3949
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3950
	case RES_MAX_USAGE:
3951
		if (type == _MEM)
3952
			res_counter_reset_max(&memcg->res);
3953
		else
3954
			res_counter_reset_max(&memcg->memsw);
3955 3956
		break;
	case RES_FAILCNT:
3957
		if (type == _MEM)
3958
			res_counter_reset_failcnt(&memcg->res);
3959
		else
3960
			res_counter_reset_failcnt(&memcg->memsw);
3961 3962
		break;
	}
3963

3964
	return 0;
3965 3966
}

3967 3968 3969 3970 3971 3972
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3973
#ifdef CONFIG_MMU
3974 3975 3976
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3977
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3978 3979 3980 3981 3982 3983 3984 3985 3986

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3987
	memcg->move_charge_at_immigrate = val;
3988 3989 3990 3991
	cgroup_unlock();

	return 0;
}
3992 3993 3994 3995 3996 3997 3998
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3999

K
KAMEZAWA Hiroyuki 已提交
4000 4001 4002 4003 4004

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4005
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4006 4007
	MCS_PGPGIN,
	MCS_PGPGOUT,
4008
	MCS_SWAP,
4009 4010
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4021 4022
};

K
KAMEZAWA Hiroyuki 已提交
4023 4024 4025 4026 4027 4028
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4029
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4030 4031
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4032
	{"swap", "total_swap"},
4033 4034
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4035 4036 4037 4038 4039 4040 4041 4042
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4043
static void
4044
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4045 4046 4047 4048
{
	s64 val;

	/* per cpu stat */
4049
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4050
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4051
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4052
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4053
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4054
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4055
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4056
	s->stat[MCS_PGPGIN] += val;
4057
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4058
	s->stat[MCS_PGPGOUT] += val;
4059
	if (do_swap_account) {
4060
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4061 4062
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4063
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4064
	s->stat[MCS_PGFAULT] += val;
4065
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4066
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4067 4068

	/* per zone stat */
4069
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4070
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4071
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4072
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4073
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4074
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4075
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4076
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4077
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4078 4079 4080 4081
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4082
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4083
{
K
KAMEZAWA Hiroyuki 已提交
4084 4085
	struct mem_cgroup *iter;

4086
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4087
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4088 4089
}

4090 4091 4092 4093 4094 4095 4096 4097 4098
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4099
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4100 4101
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4102
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4103 4104 4105 4106
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4107
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4108 4109
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4110 4111
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4112 4113 4114 4115
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4116
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4117 4118
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4119 4120
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4121 4122 4123 4124
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4125
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4126 4127
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4128 4129
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4130 4131 4132 4133 4134 4135 4136
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4137 4138
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4139 4140
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4141
	struct mcs_total_stat mystat;
4142 4143
	int i;

K
KAMEZAWA Hiroyuki 已提交
4144 4145
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4146

4147

4148 4149 4150
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4151
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4152
	}
L
Lee Schermerhorn 已提交
4153

K
KAMEZAWA Hiroyuki 已提交
4154
	/* Hierarchical information */
4155 4156 4157 4158 4159 4160 4161
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4162

K
KAMEZAWA Hiroyuki 已提交
4163 4164
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4165 4166 4167
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4168
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4169
	}
K
KAMEZAWA Hiroyuki 已提交
4170

K
KOSAKI Motohiro 已提交
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4198 4199 4200
	return 0;
}

K
KOSAKI Motohiro 已提交
4201 4202 4203 4204
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4205
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4206 4207 4208 4209 4210 4211 4212
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4213

K
KOSAKI Motohiro 已提交
4214 4215 4216 4217 4218 4219 4220
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4221 4222 4223

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4224 4225
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4226 4227
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4228
		return -EINVAL;
4229
	}
K
KOSAKI Motohiro 已提交
4230 4231 4232

	memcg->swappiness = val;

4233 4234
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4235 4236 4237
	return 0;
}

4238 4239 4240 4241 4242 4243 4244 4245
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4246
		t = rcu_dereference(memcg->thresholds.primary);
4247
	else
4248
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4260
	i = t->current_threshold;
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4284
	t->current_threshold = i - 1;
4285 4286 4287 4288 4289 4290
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4291 4292 4293 4294 4295 4296 4297
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4308
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4309 4310 4311
{
	struct mem_cgroup_eventfd_list *ev;

4312
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4313 4314 4315 4316
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4317
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4318
{
K
KAMEZAWA Hiroyuki 已提交
4319 4320
	struct mem_cgroup *iter;

4321
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4322
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4323 4324 4325 4326
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4327 4328
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4329 4330
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4331 4332
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4333
	int i, size, ret;
4334 4335 4336 4337 4338 4339

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4340

4341
	if (type == _MEM)
4342
		thresholds = &memcg->thresholds;
4343
	else if (type == _MEMSWAP)
4344
		thresholds = &memcg->memsw_thresholds;
4345 4346 4347 4348 4349 4350
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4351
	if (thresholds->primary)
4352 4353
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4354
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4355 4356

	/* Allocate memory for new array of thresholds */
4357
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4358
			GFP_KERNEL);
4359
	if (!new) {
4360 4361 4362
		ret = -ENOMEM;
		goto unlock;
	}
4363
	new->size = size;
4364 4365

	/* Copy thresholds (if any) to new array */
4366 4367
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4368
				sizeof(struct mem_cgroup_threshold));
4369 4370
	}

4371
	/* Add new threshold */
4372 4373
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4374 4375

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4376
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4377 4378 4379
			compare_thresholds, NULL);

	/* Find current threshold */
4380
	new->current_threshold = -1;
4381
	for (i = 0; i < size; i++) {
4382
		if (new->entries[i].threshold < usage) {
4383
			/*
4384 4385
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4386 4387
			 * it here.
			 */
4388
			++new->current_threshold;
4389 4390 4391
		}
	}

4392 4393 4394 4395 4396
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4397

4398
	/* To be sure that nobody uses thresholds */
4399 4400 4401 4402 4403 4404 4405 4406
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4407
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4408
	struct cftype *cft, struct eventfd_ctx *eventfd)
4409 4410
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4411 4412
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4413 4414
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4415
	int i, j, size;
4416 4417 4418

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4419
		thresholds = &memcg->thresholds;
4420
	else if (type == _MEMSWAP)
4421
		thresholds = &memcg->memsw_thresholds;
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4437 4438 4439
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4440 4441 4442
			size++;
	}

4443
	new = thresholds->spare;
4444

4445 4446
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4447 4448
		kfree(new);
		new = NULL;
4449
		goto swap_buffers;
4450 4451
	}

4452
	new->size = size;
4453 4454

	/* Copy thresholds and find current threshold */
4455 4456 4457
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4458 4459
			continue;

4460 4461
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4462
			/*
4463
			 * new->current_threshold will not be used
4464 4465 4466
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4467
			++new->current_threshold;
4468 4469 4470 4471
		}
		j++;
	}

4472
swap_buffers:
4473 4474 4475
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4476

4477
	/* To be sure that nobody uses thresholds */
4478 4479 4480 4481
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4482

K
KAMEZAWA Hiroyuki 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4495
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4496 4497 4498 4499 4500

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4501
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4502
		eventfd_signal(eventfd, 1);
4503
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4504 4505 4506 4507

	return 0;
}

4508
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4509 4510
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4511
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4512 4513 4514 4515 4516
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4517
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4518

4519
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4520 4521 4522 4523 4524 4525
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4526
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4527 4528
}

4529 4530 4531
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4532
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4533

4534
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4535

4536
	if (atomic_read(&memcg->under_oom))
4537 4538 4539 4540 4541 4542 4543 4544 4545
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4546
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4558
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4559 4560 4561
		cgroup_unlock();
		return -EINVAL;
	}
4562
	memcg->oom_kill_disable = val;
4563
	if (!val)
4564
		memcg_oom_recover(memcg);
4565 4566 4567 4568
	cgroup_unlock();
	return 0;
}

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4585 4586 4587
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4588 4589 4590 4591 4592 4593 4594
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4595
	return mem_cgroup_sockets_init(cont, ss);
4596 4597
};

G
Glauber Costa 已提交
4598 4599 4600 4601 4602
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4603 4604 4605 4606 4607
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4608 4609 4610 4611 4612

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4613 4614
#endif

B
Balbir Singh 已提交
4615 4616
static struct cftype mem_cgroup_files[] = {
	{
4617
		.name = "usage_in_bytes",
4618
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4619
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4620 4621
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4622
	},
4623 4624
	{
		.name = "max_usage_in_bytes",
4625
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4626
		.trigger = mem_cgroup_reset,
4627 4628
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4629
	{
4630
		.name = "limit_in_bytes",
4631
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4632
		.write_string = mem_cgroup_write,
4633
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4634
	},
4635 4636 4637 4638 4639 4640
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4641 4642
	{
		.name = "failcnt",
4643
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4644
		.trigger = mem_cgroup_reset,
4645
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4646
	},
4647 4648
	{
		.name = "stat",
4649
		.read_map = mem_control_stat_show,
4650
	},
4651 4652 4653 4654
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4655 4656 4657 4658 4659
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4660 4661 4662 4663 4664
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4665 4666 4667 4668 4669
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4670 4671
	{
		.name = "oom_control",
4672 4673
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4674 4675 4676 4677
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4678 4679 4680 4681
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4682
		.mode = S_IRUGO,
4683 4684
	},
#endif
B
Balbir Singh 已提交
4685 4686
};

4687 4688 4689 4690 4691 4692
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4693 4694
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4730
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4731 4732
{
	struct mem_cgroup_per_node *pn;
4733
	struct mem_cgroup_per_zone *mz;
4734
	enum lru_list l;
4735
	int zone, tmp = node;
4736 4737 4738 4739 4740 4741 4742 4743
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4744 4745
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4746
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4747 4748
	if (!pn)
		return 1;
4749 4750 4751

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4752
		for_each_lru(l)
4753
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4754
		mz->usage_in_excess = 0;
4755
		mz->on_tree = false;
4756
		mz->mem = memcg;
4757
	}
4758
	memcg->info.nodeinfo[node] = pn;
4759 4760 4761
	return 0;
}

4762
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4763
{
4764
	kfree(memcg->info.nodeinfo[node]);
4765 4766
}

4767 4768 4769
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4770
	int size = sizeof(struct mem_cgroup);
4771

4772
	/* Can be very big if MAX_NUMNODES is very big */
4773
	if (size < PAGE_SIZE)
4774
		mem = kzalloc(size, GFP_KERNEL);
4775
	else
4776
		mem = vzalloc(size);
4777

4778 4779 4780
	if (!mem)
		return NULL;

4781
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4782 4783
	if (!mem->stat)
		goto out_free;
4784
	spin_lock_init(&mem->pcp_counter_lock);
4785
	return mem;
4786 4787 4788 4789 4790 4791 4792

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4793 4794
}

4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4806
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4807
{
K
KAMEZAWA Hiroyuki 已提交
4808 4809
	int node;

4810 4811
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4812

B
Bob Liu 已提交
4813
	for_each_node(node)
4814
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4815

4816
	free_percpu(memcg->stat);
4817
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4818
		kfree(memcg);
4819
	else
4820
		vfree(memcg);
4821 4822
}

4823
static void mem_cgroup_get(struct mem_cgroup *memcg)
4824
{
4825
	atomic_inc(&memcg->refcnt);
4826 4827
}

4828
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4829
{
4830 4831 4832
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4833 4834 4835
		if (parent)
			mem_cgroup_put(parent);
	}
4836 4837
}

4838
static void mem_cgroup_put(struct mem_cgroup *memcg)
4839
{
4840
	__mem_cgroup_put(memcg, 1);
4841 4842
}

4843 4844 4845
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4846
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4847
{
4848
	if (!memcg->res.parent)
4849
		return NULL;
4850
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4851
}
G
Glauber Costa 已提交
4852
EXPORT_SYMBOL(parent_mem_cgroup);
4853

4854 4855 4856
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4857
	if (!mem_cgroup_disabled() && really_do_swap_account)
4858 4859 4860 4861 4862 4863 4864 4865
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4866 4867 4868 4869 4870 4871
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4872
	for_each_node(node) {
4873 4874 4875 4876 4877
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4878
			goto err_cleanup;
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4889 4890

err_cleanup:
B
Bob Liu 已提交
4891
	for_each_node(node) {
4892 4893 4894 4895 4896 4897 4898
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4899 4900
}

L
Li Zefan 已提交
4901
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4902 4903
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4904
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4905
	long error = -ENOMEM;
4906
	int node;
B
Balbir Singh 已提交
4907

4908 4909
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4910
		return ERR_PTR(error);
4911

B
Bob Liu 已提交
4912
	for_each_node(node)
4913
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4914
			goto free_out;
4915

4916
	/* root ? */
4917
	if (cont->parent == NULL) {
4918
		int cpu;
4919
		enable_swap_cgroup();
4920
		parent = NULL;
4921 4922
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4923
		root_mem_cgroup = memcg;
4924 4925 4926 4927 4928
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4929
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4930
	} else {
4931
		parent = mem_cgroup_from_cont(cont->parent);
4932 4933
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4934
	}
4935

4936
	if (parent && parent->use_hierarchy) {
4937 4938
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4939 4940 4941 4942 4943 4944 4945
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4946
	} else {
4947 4948
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4949
	}
4950 4951
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4952

K
KOSAKI Motohiro 已提交
4953
	if (parent)
4954 4955 4956 4957 4958
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4959
free_out:
4960
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4961
	return ERR_PTR(error);
B
Balbir Singh 已提交
4962 4963
}

4964
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4965 4966
					struct cgroup *cont)
{
4967
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4968

4969
	return mem_cgroup_force_empty(memcg, false);
4970 4971
}

B
Balbir Singh 已提交
4972 4973 4974
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4975
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4976

G
Glauber Costa 已提交
4977 4978
	kmem_cgroup_destroy(ss, cont);

4979
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4980 4981 4982 4983 4984
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4985 4986 4987 4988 4989 4990 4991
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
4992 4993 4994 4995

	if (!ret)
		ret = register_kmem_files(cont, ss);

4996
	return ret;
B
Balbir Singh 已提交
4997 4998
}

4999
#ifdef CONFIG_MMU
5000
/* Handlers for move charge at task migration. */
5001 5002
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5003
{
5004 5005
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5006
	struct mem_cgroup *memcg = mc.to;
5007

5008
	if (mem_cgroup_is_root(memcg)) {
5009 5010 5011 5012 5013 5014 5015 5016
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5017
		 * "memcg" cannot be under rmdir() because we've already checked
5018 5019 5020 5021
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5022
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5023
			goto one_by_one;
5024
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5025
						PAGE_SIZE * count, &dummy)) {
5026
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5043 5044
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5045
		if (ret)
5046
			/* mem_cgroup_clear_mc() will do uncharge later */
5047
			return ret;
5048 5049
		mc.precharge++;
	}
5050 5051 5052 5053 5054 5055 5056 5057
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5058
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5059 5060 5061 5062 5063 5064
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5065 5066 5067
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5068 5069 5070 5071 5072
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5073
	swp_entry_t	ent;
5074 5075 5076 5077 5078
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5079
	MC_TARGET_SWAP,
5080 5081
};

D
Daisuke Nishimura 已提交
5082 5083
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5084
{
D
Daisuke Nishimura 已提交
5085
	struct page *page = vm_normal_page(vma, addr, ptent);
5086

D
Daisuke Nishimura 已提交
5087 5088 5089 5090 5091 5092
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5093 5094
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5113 5114
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5115
		return NULL;
5116
	}
D
Daisuke Nishimura 已提交
5117 5118 5119 5120 5121 5122
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5144 5145 5146 5147 5148 5149
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5150
		if (do_swap_account)
5151 5152
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5153
	}
5154
#endif
5155 5156 5157
	return page;
}

D
Daisuke Nishimura 已提交
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5170 5171
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5172 5173 5174

	if (!page && !ent.val)
		return 0;
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5190 5191
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5192
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5193 5194 5195
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5208 5209
	split_huge_page_pmd(walk->mm, pmd);

5210 5211 5212 5213 5214 5215 5216
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5217 5218 5219
	return 0;
}

5220 5221 5222 5223 5224
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5225
	down_read(&mm->mmap_sem);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5237
	up_read(&mm->mmap_sem);
5238 5239 5240 5241 5242 5243 5244 5245 5246

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5247 5248 5249 5250 5251
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5252 5253
}

5254 5255
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5256
{
5257 5258 5259
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5260
	/* we must uncharge all the leftover precharges from mc.to */
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5272
	}
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5307
	spin_lock(&mc.lock);
5308 5309
	mc.from = NULL;
	mc.to = NULL;
5310
	spin_unlock(&mc.lock);
5311
	mem_cgroup_end_move(from);
5312 5313
}

5314 5315
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5316
				struct cgroup_taskset *tset)
5317
{
5318
	struct task_struct *p = cgroup_taskset_first(tset);
5319
	int ret = 0;
5320
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5321

5322
	if (memcg->move_charge_at_immigrate) {
5323 5324 5325
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5326
		VM_BUG_ON(from == memcg);
5327 5328 5329 5330 5331

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5332 5333 5334 5335
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5336
			VM_BUG_ON(mc.moved_charge);
5337
			VM_BUG_ON(mc.moved_swap);
5338
			mem_cgroup_start_move(from);
5339
			spin_lock(&mc.lock);
5340
			mc.from = from;
5341
			mc.to = memcg;
5342
			spin_unlock(&mc.lock);
5343
			/* We set mc.moving_task later */
5344 5345 5346 5347

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5348 5349
		}
		mmput(mm);
5350 5351 5352 5353 5354 5355
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5356
				struct cgroup_taskset *tset)
5357
{
5358
	mem_cgroup_clear_mc();
5359 5360
}

5361 5362 5363
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5364
{
5365 5366 5367 5368 5369
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5370
	split_huge_page_pmd(walk->mm, pmd);
5371 5372 5373 5374 5375 5376 5377 5378
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5379
		swp_entry_t ent;
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5391 5392
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5393
				mc.precharge--;
5394 5395
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5396 5397 5398 5399 5400
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5401 5402
		case MC_TARGET_SWAP:
			ent = target.ent;
5403 5404
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5405
				mc.precharge--;
5406 5407 5408
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5409
			break;
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5424
		ret = mem_cgroup_do_precharge(1);
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5468
	up_read(&mm->mmap_sem);
5469 5470
}

B
Balbir Singh 已提交
5471 5472
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5473
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5474
{
5475
	struct task_struct *p = cgroup_taskset_first(tset);
5476
	struct mm_struct *mm = get_task_mm(p);
5477 5478

	if (mm) {
5479 5480 5481
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5482 5483
		mmput(mm);
	}
5484 5485
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5486
}
5487 5488 5489
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5490
				struct cgroup_taskset *tset)
5491 5492 5493 5494 5495
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5496
				struct cgroup_taskset *tset)
5497 5498 5499 5500
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5501
				struct cgroup_taskset *tset)
5502 5503 5504
{
}
#endif
B
Balbir Singh 已提交
5505

B
Balbir Singh 已提交
5506 5507 5508 5509
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5510
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5511 5512
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5513 5514
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5515
	.attach = mem_cgroup_move_task,
5516
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5517
	.use_id = 1,
B
Balbir Singh 已提交
5518
};
5519 5520

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5521 5522 5523
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5524
	if (!strcmp(s, "1"))
5525
		really_do_swap_account = 1;
5526
	else if (!strcmp(s, "0"))
5527 5528 5529
		really_do_swap_account = 0;
	return 1;
}
5530
__setup("swapaccount=", enable_swap_account);
5531 5532

#endif