cgroup.c 103.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
26
#include <linux/ctype.h>
27 28 29 30 31 32 33 34
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
35
#include <linux/proc_fs.h>
36 37
#include <linux/rcupdate.h>
#include <linux/sched.h>
38
#include <linux/backing-dev.h>
39 40 41 42 43
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
44
#include <linux/sort.h>
45
#include <linux/kmod.h>
B
Balbir Singh 已提交
46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
48
#include <linux/hash.h>
49
#include <linux/namei.h>
50
#include <linux/smp_lock.h>
L
Li Zefan 已提交
51
#include <linux/pid_namespace.h>
B
Balbir Singh 已提交
52

53 54
#include <asm/atomic.h>

55 56
static DEFINE_MUTEX(cgroup_mutex);

57 58 59 60 61 62 63
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

64 65
#define MAX_CGROUP_ROOT_NAMELEN 64

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

92
	/* A list running through the active hierarchies */
93 94 95 96
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
97

98
	/* The path to use for release notifications. */
99
	char release_agent_path[PATH_MAX];
100 101 102

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
103 104 105 106 107 108 109 110 111
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


145 146 147
/* The list of hierarchy roots */

static LIST_HEAD(roots);
148
static int root_count;
149 150 151 152 153

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
154 155 156
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
157
 */
158
static int need_forkexit_callback __read_mostly;
159 160

/* convenient tests for these bits */
161
inline int cgroup_is_removed(const struct cgroup *cgrp)
162
{
163
	return test_bit(CGRP_REMOVED, &cgrp->flags);
164 165 166 167 168 169 170
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

171
static int cgroup_is_releasable(const struct cgroup *cgrp)
172 173
{
	const int bits =
174 175 176
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
177 178
}

179
static int notify_on_release(const struct cgroup *cgrp)
180
{
181
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
182 183
}

184 185 186 187 188 189 190
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

191 192
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
193 194
list_for_each_entry(_root, &roots, root_list)

195 196 197 198 199 200
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
201
static void check_for_release(struct cgroup *cgrp);
202

203 204 205 206 207 208
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
209
	struct list_head cgrp_link_list;
210
	struct cgroup *cgrp;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
229 230
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

231 232 233 234 235 236
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

237 238 239 240 241
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

261 262 263 264
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
265
static int use_task_css_set_links __read_mostly;
266 267 268 269 270 271 272

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
273 274 275 276 277 278 279
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
280 281 282 283

/*
 * unlink a css_set from the list and free it
 */
284
static void unlink_css_set(struct css_set *cg)
285
{
K
KOSAKI Motohiro 已提交
286 287 288
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

289
	hlist_del(&cg->hlist);
290
	css_set_count--;
K
KOSAKI Motohiro 已提交
291 292 293

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
294
		list_del(&link->cg_link_list);
295
		list_del(&link->cgrp_link_list);
296 297
		kfree(link);
	}
298 299
}

300
static void __put_css_set(struct css_set *cg, int taskexit)
301 302
{
	int i;
303 304 305 306 307 308 309 310 311 312 313 314
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
315
	unlink_css_set(cg);
316
	write_unlock(&css_set_lock);
317 318 319

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
320
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
321 322
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
323
			if (taskexit)
324 325
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
326 327 328
		}
	}
	rcu_read_unlock();
329
	kfree(cg);
330 331
}

332 333 334 335 336
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
337
	atomic_inc(&cg->refcount);
338 339 340 341
}

static inline void put_css_set(struct css_set *cg)
{
342
	__put_css_set(cg, 0);
343 344
}

345 346
static inline void put_css_set_taskexit(struct css_set *cg)
{
347
	__put_css_set(cg, 1);
348 349
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

422 423 424
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
425
 * css_set is suitable.
426 427 428 429
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
430
 * cgrp: the cgroup that we're moving into
431 432 433 434 435 436
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
437
	struct cgroup *cgrp,
438
	struct cgroup_subsys_state *template[])
439 440
{
	int i;
441
	struct cgroupfs_root *root = cgrp->root;
442 443 444
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
445 446 447 448

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
449
		if (root->subsys_bits & (1UL << i)) {
450 451 452
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
453
			template[i] = cgrp->subsys[i];
454 455 456 457 458 459 460
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

461 462
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
463 464 465 466 467
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
468
	}
469 470 471 472 473

	/* No existing cgroup group matched */
	return NULL;
}

474 475 476 477 478 479 480 481 482 483 484
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

485 486
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
487
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
488 489 490 491 492 493 494 495 496 497
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
498
			free_cg_links(tmp);
499 500
			return -ENOMEM;
		}
501
		list_add(&link->cgrp_link_list, tmp);
502 503 504 505
	}
	return 0;
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
521
	link->cgrp = cgrp;
522
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
523 524 525 526 527
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
528 529
}

530 531 532 533 534 535 536 537
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
538
	struct css_set *oldcg, struct cgroup *cgrp)
539 540 541 542 543 544 545
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

546
	struct hlist_head *hhead;
547
	struct cg_cgroup_link *link;
548

549 550
	/* First see if we already have a cgroup group that matches
	 * the desired set */
551
	read_lock(&css_set_lock);
552
	res = find_existing_css_set(oldcg, cgrp, template);
553 554
	if (res)
		get_css_set(res);
555
	read_unlock(&css_set_lock);
556 557 558 559 560 561 562 563 564 565 566 567 568 569

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

570
	atomic_set(&res->refcount, 1);
571 572
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
573
	INIT_HLIST_NODE(&res->hlist);
574 575 576 577 578 579 580 581

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
582 583
		struct cgroup *cgrp = res->subsys[i]->cgroup;
		atomic_inc(&cgrp->count);
584
	}
585 586 587 588 589 590
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
591 592 593 594

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
595 596 597 598 599

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

600 601 602
	write_unlock(&css_set_lock);

	return res;
603 604
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

640 641 642 643 644 645 646 647 648 649
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
650
 * cgroup_attach_task() can increment it again.  Because a count of zero
651 652 653 654 655 656 657 658 659 660 661 662 663
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
664 665
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
666 667 668 669 670 671 672 673 674 675 676
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
677
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
678
 * another.  It does so using cgroup_mutex, however there are
679 680 681
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
682
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
683 684 685 686
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
687
 * update of a tasks cgroup pointer by cgroup_attach_task()
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
718
static int cgroup_populate_dir(struct cgroup *cgrp);
719
static const struct inode_operations cgroup_dir_inode_operations;
720 721 722
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
723
	.name		= "cgroup",
724
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
725
};
726

K
KAMEZAWA Hiroyuki 已提交
727 728 729
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

730 731 732 733 734 735
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
736 737
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
738 739 740 741 742 743
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

744 745 746 747
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
748
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
749 750
{
	struct cgroup_subsys *ss;
751 752
	int ret = 0;

753
	for_each_subsys(cgrp->root, ss)
754 755 756 757 758 759
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
760 761
}

762 763 764 765 766 767 768
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

769 770 771 772
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
773
		struct cgroup *cgrp = dentry->d_fsdata;
774
		struct cgroup_subsys *ss;
775
		BUG_ON(!(cgroup_is_removed(cgrp)));
776 777 778 779 780 781 782
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
783 784 785 786 787

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
788 789
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
790 791 792 793

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

794 795 796 797
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
798 799
		deactivate_super(cgrp->root->sb);

800
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

853 854 855 856 857 858
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
859
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
860 861 862
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

863
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
864
{
865
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
866 867 868
		wake_up_all(&cgroup_rmdir_waitq);
}

869 870 871 872 873 874 875 876 877 878 879 880
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}


881 882 883 884
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
885
	struct cgroup *cgrp = &root->top_cgroup;
886 887 888 889 890 891
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
892
		unsigned long bit = 1UL << i;
893 894 895 896 897 898 899 900 901 902 903 904 905
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
906
	if (root->number_of_cgroups > 1)
907 908 909 910 911 912 913 914
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
915
			BUG_ON(cgrp->subsys[i]);
916 917
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
918
			mutex_lock(&ss->hierarchy_mutex);
919 920
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
921
			list_move(&ss->sibling, &root->subsys_list);
922
			ss->root = root;
923
			if (ss->bind)
924
				ss->bind(ss, cgrp);
925
			mutex_unlock(&ss->hierarchy_mutex);
926 927
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
928 929
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
930
			mutex_lock(&ss->hierarchy_mutex);
931 932 933
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
934
			cgrp->subsys[i] = NULL;
935
			subsys[i]->root = &rootnode;
936
			list_move(&ss->sibling, &rootnode.subsys_list);
937
			mutex_unlock(&ss->hierarchy_mutex);
938 939
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
940
			BUG_ON(!cgrp->subsys[i]);
941 942
		} else {
			/* Subsystem state shouldn't exist */
943
			BUG_ON(cgrp->subsys[i]);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
962 963
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
964 965
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
966 967 968 969 970 971 972
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
973
	char *release_agent;
974 975 976
	char *name;

	struct cgroupfs_root *new_root;
977 978 979 980 981 982 983 984
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
985 986 987 988 989
	unsigned long mask = (unsigned long)-1;

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
990

991
	memset(opts, 0, sizeof(*opts));
992 993 994 995 996

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
997 998 999 1000 1001 1002 1003 1004
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
1005 1006
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
1007 1008 1009 1010
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1011 1012
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
1013 1014
			if (!opts->release_agent)
				return -ENOMEM;
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		} else if (!strncmp(token, "name=", 5)) {
			int i;
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1038 1039 1040 1041 1042 1043
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
1044 1045
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
1046 1047 1048 1049 1050 1051 1052 1053
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

1054 1055 1056 1057 1058 1059 1060 1061 1062
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1063
	/* We can't have an empty hierarchy */
1064
	if (!opts->subsys_bits && !opts->name)
1065 1066 1067 1068 1069 1070 1071 1072 1073
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1074
	struct cgroup *cgrp = &root->top_cgroup;
1075 1076
	struct cgroup_sb_opts opts;

1077
	lock_kernel();
1078
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

1092 1093 1094 1095 1096 1097
	/* Don't allow name to change at remount */
	if (opts.name && strcmp(opts.name, root->name)) {
		ret = -EINVAL;
		goto out_unlock;
	}

1098
	ret = rebind_subsystems(root, opts.subsys_bits);
1099 1100
	if (ret)
		goto out_unlock;
1101 1102

	/* (re)populate subsystem files */
1103
	cgroup_populate_dir(cgrp);
1104

1105 1106
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1107
 out_unlock:
1108
	kfree(opts.release_agent);
1109
	kfree(opts.name);
1110
	mutex_unlock(&cgroup_mutex);
1111
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1112
	unlock_kernel();
1113 1114 1115
	return ret;
}

1116
static const struct super_operations cgroup_ops = {
1117 1118 1119 1120 1121 1122
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1123 1124 1125 1126 1127 1128
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
L
Li Zefan 已提交
1129
	INIT_LIST_HEAD(&cgrp->pids_list);
1130 1131
	init_rwsem(&cgrp->pids_mutex);
}
1132

1133 1134
static void init_cgroup_root(struct cgroupfs_root *root)
{
1135
	struct cgroup *cgrp = &root->top_cgroup;
1136 1137 1138
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1139 1140
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1141
	init_cgroup_housekeeping(cgrp);
1142 1143 1144 1145
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
1146
	struct cgroup_sb_opts *opts = data;
1147 1148
	struct cgroupfs_root *root = sb->s_fs_info;

1149 1150 1151
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1152

1153 1154
	/* If we asked for subsystems then they must match */
	if (opts->subsys_bits && (opts->subsys_bits != root->subsys_bits))
1155 1156 1157 1158 1159
		return 0;

	return 1;
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

	/* Empty hierarchies aren't supported */
	if (!opts->subsys_bits)
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1182 1183 1184
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1185 1186 1187 1188 1189 1190 1191
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

	BUG_ON(!opts->subsys_bits);
1192 1193 1194 1195 1196

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1197 1198
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1235
	struct cgroupfs_root *root;
1236 1237
	int ret = 0;
	struct super_block *sb;
1238
	struct cgroupfs_root *new_root;
1239 1240 1241

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1242 1243
	if (ret)
		goto out_err;
1244

1245 1246 1247 1248 1249 1250 1251 1252
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto out_err;
1253
	}
1254
	opts.new_root = new_root;
1255

1256 1257
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1258
	if (IS_ERR(sb)) {
1259 1260 1261
		ret = PTR_ERR(sb);
		kfree(opts.new_root);
		goto out_err;
1262 1263
	}

1264 1265 1266 1267 1268
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1269
		struct cgroup *root_cgrp = &root->top_cgroup;
1270
		struct inode *inode;
1271
		struct cgroupfs_root *existing_root;
1272
		int i;
1273 1274 1275 1276 1277 1278

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1279
		inode = sb->s_root->d_inode;
1280

1281
		mutex_lock(&inode->i_mutex);
1282 1283
		mutex_lock(&cgroup_mutex);

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1310 1311 1312
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1313
			mutex_unlock(&inode->i_mutex);
1314 1315
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1316 1317 1318 1319 1320 1321
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1322
		root_count++;
1323

1324
		sb->s_root->d_fsdata = root_cgrp;
1325 1326
		root->top_cgroup.dentry = sb->s_root;

1327 1328 1329
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1330 1331 1332
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1333
			struct css_set *cg;
1334

1335 1336
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1337
		}
1338 1339 1340 1341
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1342 1343
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1344 1345
		BUG_ON(root->number_of_cgroups != 1);

1346
		cgroup_populate_dir(root_cgrp);
1347
		mutex_unlock(&cgroup_mutex);
1348
		mutex_unlock(&inode->i_mutex);
1349 1350 1351 1352 1353 1354
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
		kfree(opts.new_root);
1355 1356
	}

1357
	simple_set_mnt(mnt, sb);
1358 1359
	kfree(opts.release_agent);
	kfree(opts.name);
1360
	return 0;
1361 1362

 drop_new_super:
1363
	deactivate_locked_super(sb);
1364 1365 1366 1367
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1368 1369 1370 1371 1372
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1373
	struct cgroup *cgrp = &root->top_cgroup;
1374
	int ret;
K
KOSAKI Motohiro 已提交
1375 1376
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1377 1378 1379 1380

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1381 1382
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1383 1384 1385 1386 1387 1388 1389 1390

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1391 1392 1393 1394 1395
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1396 1397 1398

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1399
		list_del(&link->cg_link_list);
1400
		list_del(&link->cgrp_link_list);
1401 1402 1403 1404
		kfree(link);
	}
	write_unlock(&css_set_lock);

1405 1406 1407 1408
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1409

1410 1411 1412
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
L
Li Zefan 已提交
1413
	kfree(root);
1414 1415 1416 1417 1418 1419 1420 1421
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1422
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1432 1433 1434 1435 1436 1437
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1438 1439 1440
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1441
 */
1442
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1443 1444
{
	char *start;
1445
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1446

1447
	if (!dentry || cgrp == dummytop) {
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1460
		int len = dentry->d_name.len;
1461 1462
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1463 1464 1465
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1466
			break;
1467
		dentry = rcu_dereference(cgrp->dentry);
1468
		if (!cgrp->parent)
1469 1470 1471 1472 1473 1474 1475 1476 1477
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

L
Li Zefan 已提交
1478 1479 1480 1481
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1482
 *
L
Li Zefan 已提交
1483 1484
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1485
 */
1486
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1487 1488 1489
{
	int retval = 0;
	struct cgroup_subsys *ss;
1490
	struct cgroup *oldcgrp;
1491
	struct css_set *cg;
1492
	struct css_set *newcg;
1493
	struct cgroupfs_root *root = cgrp->root;
1494 1495

	/* Nothing to do if the task is already in that cgroup */
1496
	oldcgrp = task_cgroup_from_root(tsk, root);
1497
	if (cgrp == oldcgrp)
1498 1499 1500 1501
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1502
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1503
			if (retval)
1504 1505 1506 1507
				return retval;
		}
	}

1508 1509 1510 1511
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1512 1513 1514 1515
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1516
	newcg = find_css_set(cg, cgrp);
1517
	put_css_set(cg);
P
Paul Jackson 已提交
1518
	if (!newcg)
1519 1520
		return -ENOMEM;

1521 1522 1523
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1524
		put_css_set(newcg);
1525 1526
		return -ESRCH;
	}
1527
	rcu_assign_pointer(tsk->cgroups, newcg);
1528 1529
	task_unlock(tsk);

1530 1531 1532 1533 1534 1535 1536 1537
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1538
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1539
		if (ss->attach)
1540
			ss->attach(ss, cgrp, oldcgrp, tsk);
1541
	}
1542
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1543
	synchronize_rcu();
1544
	put_css_set(cg);
1545 1546 1547 1548 1549

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1550
	cgroup_wakeup_rmdir_waiter(cgrp);
1551 1552 1553 1554
	return 0;
}

/*
1555 1556
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1557
 */
1558
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1559 1560
{
	struct task_struct *tsk;
1561
	const struct cred *cred = current_cred(), *tcred;
1562 1563 1564 1565
	int ret;

	if (pid) {
		rcu_read_lock();
1566
		tsk = find_task_by_vpid(pid);
1567 1568 1569 1570 1571
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1572 1573 1574 1575 1576
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1577 1578
			return -EACCES;
		}
1579 1580
		get_task_struct(tsk);
		rcu_read_unlock();
1581 1582 1583 1584 1585
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1586
	ret = cgroup_attach_task(cgrp, tsk);
1587 1588 1589 1590
	put_task_struct(tsk);
	return ret;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1601 1602 1603 1604 1605
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1606 1607
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1608 1609
};

1610 1611 1612 1613
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1614 1615
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1616
 */
1617
bool cgroup_lock_live_group(struct cgroup *cgrp)
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1634
	cgroup_unlock();
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1645
	cgroup_unlock();
1646 1647 1648
	return 0;
}

1649 1650 1651
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1652
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1653 1654 1655
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1656
{
1657
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1669
	strstrip(buffer);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1681 1682 1683 1684 1685
	if (!retval)
		retval = nbytes;
	return retval;
}

1686 1687 1688 1689 1690
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1691
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1706 1707 1708 1709
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1710 1711 1712 1713 1714 1715

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1716
out:
1717 1718 1719 1720 1721
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1722 1723 1724 1725
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1726
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1727

1728
	if (cgroup_is_removed(cgrp))
1729
		return -ENODEV;
1730
	if (cft->write)
1731
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1732 1733
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1734 1735
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1736 1737 1738 1739
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1740
	return -EINVAL;
1741 1742
}

1743 1744 1745 1746
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1747
{
1748
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1749
	u64 val = cft->read_u64(cgrp, cft);
1750 1751 1752 1753 1754
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1755 1756 1757 1758 1759
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1760
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1761 1762 1763 1764 1765 1766
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1767 1768 1769 1770
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1771
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1772

1773
	if (cgroup_is_removed(cgrp))
1774 1775 1776
		return -ENODEV;

	if (cft->read)
1777
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1778 1779
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1780 1781
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1782 1783 1784
	return -EINVAL;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1805 1806 1807 1808 1809 1810 1811 1812
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1813 1814
}

1815
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1816 1817 1818 1819 1820 1821 1822 1823
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1824
	.write = cgroup_file_write,
1825 1826 1827 1828
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1829 1830 1831 1832 1833 1834 1835 1836 1837
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1838

1839
	if (cft->read_map || cft->read_seq_string) {
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

1889
static const struct inode_operations cgroup_dir_inode_operations = {
1890 1891 1892 1893 1894 1895
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1896
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1897 1898
				struct super_block *sb)
{
A
Al Viro 已提交
1899
	static const struct dentry_operations cgroup_dops = {
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1923
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1935 1936 1937 1938 1939
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1940
 */
1941
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1942
				mode_t mode)
1943 1944 1945 1946
{
	struct dentry *parent;
	int error = 0;

1947 1948
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1949
	if (!error) {
1950
		dentry->d_fsdata = cgrp;
1951
		inc_nlink(parent->d_inode);
1952
		rcu_assign_pointer(cgrp->dentry, dentry);
1953 1954 1955 1956 1957 1958 1959
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

1987
int cgroup_add_file(struct cgroup *cgrp,
1988 1989 1990
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1991
	struct dentry *dir = cgrp->dentry;
1992 1993
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
1994
	mode_t mode;
1995 1996

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1997
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1998 1999 2000 2001 2002 2003 2004
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2005 2006
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2007
						cgrp->root->sb);
2008 2009 2010 2011 2012 2013 2014 2015
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

2016
int cgroup_add_files(struct cgroup *cgrp,
2017 2018 2019 2020 2021 2022
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2023
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2024 2025 2026 2027 2028 2029
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
2030 2031 2032 2033 2034 2035
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2036
int cgroup_task_count(const struct cgroup *cgrp)
2037 2038
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2039
	struct cg_cgroup_link *link;
2040 2041

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2042
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2043
		count += atomic_read(&link->cg->refcount);
2044 2045
	}
	read_unlock(&css_set_lock);
2046 2047 2048
	return count;
}

2049 2050 2051 2052
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2053
static void cgroup_advance_iter(struct cgroup *cgrp,
2054
				struct cgroup_iter *it)
2055 2056 2057 2058 2059 2060 2061 2062
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2063
		if (l == &cgrp->css_sets) {
2064 2065 2066
			it->cg_link = NULL;
			return;
		}
2067
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2068 2069 2070 2071 2072 2073
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2074 2075 2076 2077 2078 2079 2080 2081 2082
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2083
static void cgroup_enable_task_cg_lists(void)
2084 2085 2086 2087 2088 2089
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2090 2091 2092 2093 2094 2095
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2096 2097 2098 2099 2100 2101
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2102
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2103 2104 2105 2106 2107 2108
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2109 2110 2111
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2112
	read_lock(&css_set_lock);
2113 2114
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2115 2116
}

2117
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2118 2119 2120 2121
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2122
	struct cg_cgroup_link *link;
2123 2124 2125 2126 2127 2128 2129

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2130 2131
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2132 2133
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2134
		cgroup_advance_iter(cgrp, it);
2135 2136 2137 2138 2139 2140
	} else {
		it->task = l;
	}
	return res;
}

2141
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2142 2143 2144 2145
{
	read_unlock(&css_set_lock);
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2283
			struct task_struct *q = heap->ptrs[i];
2284
			if (i == 0) {
2285 2286
				latest_time = q->start_time;
				latest_task = q;
2287 2288
			}
			/* Process the task per the caller's callback */
2289 2290
			scan->process_task(q, scan);
			put_task_struct(q);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2318
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2319 2320 2321 2322
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2323
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2324
{
2325
	int n = 0, pid;
2326 2327
	struct cgroup_iter it;
	struct task_struct *tsk;
2328 2329
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2330 2331
		if (unlikely(n == npids))
			break;
2332 2333 2334
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2335
	}
2336
	cgroup_iter_end(cgrp, &it);
2337 2338 2339
	return n;
}

B
Balbir Singh 已提交
2340
/**
L
Li Zefan 已提交
2341
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2342 2343 2344
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2345 2346 2347
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2348 2349 2350 2351
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2352
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2353 2354
	struct cgroup_iter it;
	struct task_struct *tsk;
2355

B
Balbir Singh 已提交
2356
	/*
2357 2358
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2359
	 */
2360 2361
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2362 2363 2364
		 goto err;

	ret = 0;
2365
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2366

2367 2368
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2388
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2389 2390 2391 2392 2393

err:
	return ret;
}

L
Li Zefan 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
/*
 * Cache pids for all threads in the same pid namespace that are
 * opening the same "tasks" file.
 */
struct cgroup_pids {
	/* The node in cgrp->pids_list */
	struct list_head list;
	/* The cgroup those pids belong to */
	struct cgroup *cgrp;
	/* The namepsace those pids belong to */
	struct pid_namespace *ns;
	/* Array of process ids in the cgroup */
	pid_t *tasks_pids;
	/* How many files are using the this tasks_pids array */
	int use_count;
	/* Length of the current tasks_pids array */
	int length;
};

2413 2414 2415 2416 2417 2418
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
2419 2420 2421
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2422
 */
2423 2424

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2425
{
2426 2427 2428 2429 2430 2431
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
L
Li Zefan 已提交
2432 2433
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2434 2435 2436 2437 2438
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
L
Li Zefan 已提交
2439
		int end = cp->length;
S
Stephen Rothwell 已提交
2440

2441 2442
		while (index < end) {
			int mid = (index + end) / 2;
L
Li Zefan 已提交
2443
			if (cp->tasks_pids[mid] == pid) {
2444 2445
				index = mid;
				break;
L
Li Zefan 已提交
2446
			} else if (cp->tasks_pids[mid] <= pid)
2447 2448 2449 2450 2451 2452
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
L
Li Zefan 已提交
2453
	if (index >= cp->length)
2454 2455
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
L
Li Zefan 已提交
2456
	iter = cp->tasks_pids + index;
2457 2458 2459 2460 2461 2462
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
L
Li Zefan 已提交
2463 2464
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2465 2466 2467 2468 2469
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
L
Li Zefan 已提交
2470
	struct cgroup_pids *cp = s->private;
2471
	int *p = v;
L
Li Zefan 已提交
2472
	int *end = cp->tasks_pids + cp->length;
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2491

J
James Morris 已提交
2492
static const struct seq_operations cgroup_tasks_seq_operations = {
2493 2494 2495 2496 2497 2498
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

L
Li Zefan 已提交
2499
static void release_cgroup_pid_array(struct cgroup_pids *cp)
2500
{
L
Li Zefan 已提交
2501 2502
	struct cgroup *cgrp = cp->cgrp;

2503
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2504 2505 2506 2507 2508 2509
	BUG_ON(!cp->use_count);
	if (!--cp->use_count) {
		list_del(&cp->list);
		put_pid_ns(cp->ns);
		kfree(cp->tasks_pids);
		kfree(cp);
2510 2511
	}
	up_write(&cgrp->pids_mutex);
2512 2513
}

2514 2515
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
L
Li Zefan 已提交
2516 2517
	struct seq_file *seq;
	struct cgroup_pids *cp;
2518 2519 2520 2521

	if (!(file->f_mode & FMODE_READ))
		return 0;

L
Li Zefan 已提交
2522 2523 2524 2525
	seq = file->private_data;
	cp = seq->private;

	release_cgroup_pid_array(cp);
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2536
/*
2537
 * Handle an open on 'tasks' file.  Prepare an array containing the
2538 2539
 * process id's of tasks currently attached to the cgroup being opened.
 */
2540

2541 2542
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2543
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
L
Li Zefan 已提交
2544 2545
	struct pid_namespace *ns = current->nsproxy->pid_ns;
	struct cgroup_pids *cp;
2546 2547
	pid_t *pidarray;
	int npids;
2548
	int retval;
2549

2550
	/* Nothing to do for write-only files */
2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2560
	npids = cgroup_task_count(cgrp);
2561 2562 2563 2564 2565
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2566

2567 2568 2569 2570 2571
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	list_for_each_entry(cp, &cgrp->pids_list, list) {
		if (ns == cp->ns)
			goto found;
	}

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp) {
		up_write(&cgrp->pids_mutex);
		kfree(pidarray);
		return -ENOMEM;
	}
	cp->cgrp = cgrp;
	cp->ns = ns;
	get_pid_ns(ns);
	list_add(&cp->list, &cgrp->pids_list);
found:
	kfree(cp->tasks_pids);
	cp->tasks_pids = pidarray;
	cp->length = npids;
	cp->use_count++;
2593 2594 2595 2596 2597 2598
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
L
Li Zefan 已提交
2599
		release_cgroup_pid_array(cp);
2600
		return retval;
2601
	}
L
Li Zefan 已提交
2602
	((struct seq_file *)file->private_data)->private = cp;
2603 2604 2605
	return 0;
}

2606
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2607 2608
					    struct cftype *cft)
{
2609
	return notify_on_release(cgrp);
2610 2611
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2624 2625 2626
/*
 * for the common functions, 'private' gives the type of file
 */
2627 2628 2629 2630
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2631
		.write_u64 = cgroup_tasks_write,
2632 2633
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2634
		.mode = S_IRUGO | S_IWUSR,
2635 2636 2637 2638
	},

	{
		.name = "notify_on_release",
2639
		.read_u64 = cgroup_read_notify_on_release,
2640
		.write_u64 = cgroup_write_notify_on_release,
2641 2642 2643 2644 2645 2646
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2647 2648 2649
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2650
	.private = FILE_RELEASE_AGENT,
2651 2652
};

2653
static int cgroup_populate_dir(struct cgroup *cgrp)
2654 2655 2656 2657 2658
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2659
	cgroup_clear_directory(cgrp->dentry);
2660

2661
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2662 2663 2664
	if (err < 0)
		return err;

2665 2666
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2667 2668 2669
			return err;
	}

2670 2671
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2672 2673
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2685 2686 2687 2688 2689 2690

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2691
			       struct cgroup *cgrp)
2692
{
2693
	css->cgroup = cgrp;
P
Paul Menage 已提交
2694
	atomic_set(&css->refcnt, 1);
2695
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2696
	css->id = NULL;
2697
	if (cgrp == dummytop)
2698
		set_bit(CSS_ROOT, &css->flags);
2699 2700
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2701 2702
}

2703 2704 2705 2706 2707 2708 2709 2710
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2711
			mutex_lock(&ss->hierarchy_mutex);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2726
/*
L
Li Zefan 已提交
2727 2728 2729 2730
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2731
 *
L
Li Zefan 已提交
2732
 * Must be called with the mutex on the parent inode held
2733 2734
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2735
			     mode_t mode)
2736
{
2737
	struct cgroup *cgrp;
2738 2739 2740 2741 2742
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2743 2744
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2756
	init_cgroup_housekeeping(cgrp);
2757

2758 2759 2760
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2761

2762 2763 2764
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2765
	for_each_subsys(root, ss) {
2766
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2767 2768 2769 2770
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2771
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2772 2773 2774 2775
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2776 2777
	}

2778
	cgroup_lock_hierarchy(root);
2779
	list_add(&cgrp->sibling, &cgrp->parent->children);
2780
	cgroup_unlock_hierarchy(root);
2781 2782
	root->number_of_cgroups++;

2783
	err = cgroup_create_dir(cgrp, dentry, mode);
2784 2785 2786 2787
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2788
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2789

2790
	err = cgroup_populate_dir(cgrp);
2791 2792 2793
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2794
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2795 2796 2797 2798 2799

	return 0;

 err_remove:

2800
	cgroup_lock_hierarchy(root);
2801
	list_del(&cgrp->sibling);
2802
	cgroup_unlock_hierarchy(root);
2803 2804 2805 2806 2807
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2808 2809
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2810 2811 2812 2813 2814 2815 2816
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2817
	kfree(cgrp);
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2829
static int cgroup_has_css_refs(struct cgroup *cgrp)
2830 2831 2832
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2833
	 * cgroup, if the css refcount is also 1, then there should
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2845
		if (ss->root != cgrp->root)
2846
			continue;
2847
		css = cgrp->subsys[ss->subsys_id];
2848 2849 2850 2851 2852 2853
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2854
		if (css && (atomic_read(&css->refcnt) > 1))
2855 2856 2857 2858 2859
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2875
		while (1) {
P
Paul Menage 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2889 2890 2891 2892
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2913 2914
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2915
	struct cgroup *cgrp = dentry->d_fsdata;
2916 2917
	struct dentry *d;
	struct cgroup *parent;
2918 2919
	DEFINE_WAIT(wait);
	int ret;
2920 2921

	/* the vfs holds both inode->i_mutex already */
2922
again:
2923
	mutex_lock(&cgroup_mutex);
2924
	if (atomic_read(&cgrp->count) != 0) {
2925 2926 2927
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2928
	if (!list_empty(&cgrp->children)) {
2929 2930 2931
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2932
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

2945
	/*
L
Li Zefan 已提交
2946 2947
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2948
	 */
2949
	ret = cgroup_call_pre_destroy(cgrp);
2950 2951
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2952
		return ret;
2953
	}
2954

2955 2956
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2957
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2958
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2959 2960 2961
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2962 2963 2964
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
2965 2966 2967 2968 2969 2970
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
2971 2972 2973 2974 2975 2976 2977 2978 2979
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2980

2981
	spin_lock(&release_list_lock);
2982 2983 2984
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2985
	spin_unlock(&release_list_lock);
2986 2987 2988

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2989
	list_del(&cgrp->sibling);
2990 2991
	cgroup_unlock_hierarchy(cgrp->root);

2992 2993
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2994 2995 2996 2997 2998
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2999
	set_bit(CGRP_RELEASABLE, &parent->flags);
3000 3001
	check_for_release(parent);

3002 3003 3004 3005
	mutex_unlock(&cgroup_mutex);
	return 0;
}

3006
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3007 3008
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
3009 3010

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3011 3012

	/* Create the top cgroup state for this subsystem */
3013
	list_add(&ss->sibling, &rootnode.subsys_list);
3014 3015 3016 3017 3018 3019
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
3020
	/* Update the init_css_set to contain a subsys
3021
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
3022 3023 3024
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3025 3026 3027

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
3028 3029 3030 3031 3032
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

3033
	mutex_init(&ss->hierarchy_mutex);
3034
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3035 3036 3037 3038
	ss->active = 1;
}

/**
L
Li Zefan 已提交
3039 3040 3041 3042
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
3043 3044 3045 3046
 */
int __init cgroup_init_early(void)
{
	int i;
3047
	atomic_set(&init_css_set.refcount, 1);
3048 3049
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
3050
	INIT_HLIST_NODE(&init_css_set.hlist);
3051
	css_set_count = 1;
3052
	init_cgroup_root(&rootnode);
3053 3054 3055 3056
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
3057
	init_css_set_link.cgrp = dummytop;
3058
	list_add(&init_css_set_link.cgrp_link_list,
3059 3060 3061
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
3062

3063 3064 3065
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

3066 3067 3068 3069 3070 3071 3072 3073
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
3074
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
3086 3087 3088 3089
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
3090 3091 3092 3093 3094
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3095
	struct hlist_head *hhead;
3096 3097 3098 3099

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3100 3101 3102 3103 3104

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3105 3106
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
3107 3108
	}

3109 3110 3111 3112
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

3113 3114 3115 3116
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3117
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3118

3119
out:
3120 3121 3122
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3123 3124
	return err;
}
3125

3126 3127 3128 3129 3130 3131
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3132
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3162
	for_each_active_root(root) {
3163
		struct cgroup_subsys *ss;
3164
		struct cgroup *cgrp;
3165 3166
		int count = 0;

3167
		seq_printf(m, "%lu:", root->subsys_bits);
3168 3169
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3170 3171 3172
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3173
		seq_putc(m, ':');
3174
		cgrp = task_cgroup_from_root(tsk, root);
3175
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3209
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3210 3211 3212
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
3213
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
3214
			   ss->name, ss->root->subsys_bits,
3215
			   ss->root->number_of_cgroups, !ss->disabled);
3216 3217 3218 3219 3220 3221 3222
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3223
	return single_open(file, proc_cgroupstats_show, NULL);
3224 3225 3226 3227 3228 3229 3230 3231 3232
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3233 3234
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3235
 * @child: pointer to task_struct of forking parent process.
3236 3237 3238 3239 3240 3241
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3242
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3243 3244
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3245 3246 3247 3248 3249 3250
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3251 3252 3253 3254 3255
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3256 3257 3258
}

/**
L
Li Zefan 已提交
3259 3260 3261 3262 3263 3264
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3278
/**
L
Li Zefan 已提交
3279 3280 3281 3282 3283 3284 3285 3286
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3287 3288 3289 3290
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3291
		task_lock(child);
3292 3293
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3294
		task_unlock(child);
3295 3296 3297
		write_unlock(&css_set_lock);
	}
}
3298 3299 3300
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3301
 * @run_callback: run exit callbacks?
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3330 3331
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3332 3333 3334 3335
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3336
	struct css_set *cg;
3337 3338 3339 3340 3341 3342 3343 3344

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3358 3359
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3360 3361
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3362
	task_unlock(tsk);
3363
	if (cg)
3364
		put_css_set_taskexit(cg);
3365
}
3366 3367

/**
L
Li Zefan 已提交
3368 3369 3370
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3371
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3372 3373 3374 3375
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3376
 */
3377 3378
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3402
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3403 3404 3405 3406
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3407

3408
	/* Keep the cgroup alive */
3409 3410 3411
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3412
	get_css_set(cg);
3413
	task_unlock(tsk);
3414

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3426
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3427 3428 3429 3430 3431 3432
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3433
	ret = vfs_mkdir(inode, dentry, 0755);
3434
	child = __d_cgrp(dentry);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3451
		put_css_set(cg);
3452

3453
		deactivate_super(root->sb);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3470
	ret = cgroup_attach_task(child, tsk);
3471 3472 3473 3474
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3475 3476

	mutex_lock(&cgroup_mutex);
3477
	put_css_set(cg);
3478
	mutex_unlock(&cgroup_mutex);
3479
	deactivate_super(root->sb);
3480 3481 3482
	return ret;
}

L
Li Zefan 已提交
3483
/**
3484
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3485
 * @cgrp: the cgroup in question
3486
 * @task: the task in question
L
Li Zefan 已提交
3487
 *
3488 3489
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3490 3491 3492 3493 3494 3495
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3496
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3497 3498 3499 3500
{
	int ret;
	struct cgroup *target;

3501
	if (cgrp == dummytop)
3502 3503
		return 1;

3504
	target = task_cgroup_from_root(task, cgrp->root);
3505 3506 3507
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3508 3509
	return ret;
}
3510

3511
static void check_for_release(struct cgroup *cgrp)
3512 3513 3514
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3515 3516
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3517 3518 3519 3520 3521
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3522 3523 3524
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3535
	struct cgroup *cgrp = css->cgroup;
3536
	rcu_read_lock();
3537 3538 3539 3540 3541
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3542
		cgroup_wakeup_rmdir_waiter(cgrp);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3578
		char *pathbuf = NULL, *agentbuf = NULL;
3579
		struct cgroup *cgrp = list_entry(release_list.next,
3580 3581
						    struct cgroup,
						    release_list);
3582
		list_del_init(&cgrp->release_list);
3583 3584
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3585 3586 3587 3588 3589 3590 3591
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3592 3593

		i = 0;
3594 3595
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3610 3611 3612
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3613 3614 3615 3616 3617
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3669
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
		seq_printf(seq, "Root %lu group %s\n",
			   c->root->subsys_bits, name);
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */