cgroup.c 71.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>

48 49
#include <asm/atomic.h>

50 51
static DEFINE_MUTEX(cgroup_mutex);

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
90 91 92 93 94 95 96

	/* The path to use for release notifications. No locking
	 * between setting and use - so if userspace updates this
	 * while child cgroups exist, you could miss a
	 * notification. We ensure that it's always a valid
	 * NUL-terminated string */
	char release_agent_path[PATH_MAX];
97 98 99 100 101 102 103 104 105 106 107 108 109
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
110
static int root_count;
111 112 113 114 115 116 117 118 119 120 121 122 123

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
 * take callback_mutex and check for fork/exit handlers to call. This
 * avoids us having to do extra work in the fork/exit path if none of the
 * subsystems need to be called.
 */
static int need_forkexit_callback;

/* bits in struct cgroup flags field */
enum {
124
	/* Control Group is dead */
125
	CGRP_REMOVED,
126
	/* Control Group has previously had a child cgroup or a task,
127 128
	 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
	CGRP_RELEASABLE,
129
	/* Control Group requires release notifications to userspace */
130
	CGRP_NOTIFY_ON_RELEASE,
131 132 133
};

/* convenient tests for these bits */
134
inline int cgroup_is_removed(const struct cgroup *cgrp)
135
{
136
	return test_bit(CGRP_REMOVED, &cgrp->flags);
137 138 139 140 141 142 143
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

144
inline int cgroup_is_releasable(const struct cgroup *cgrp)
145 146
{
	const int bits =
147 148 149
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
150 151
}

152
inline int notify_on_release(const struct cgroup *cgrp)
153
{
154
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
155 156
}

157 158 159 160 161 162 163 164 165 166 167
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

168 169 170 171 172 173
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174
static void check_for_release(struct cgroup *cgrp);
175

176 177 178 179 180 181
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
182
	struct list_head cgrp_link_list;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
static int use_task_css_set_links;

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
219 220 221 222 223 224 225
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
226 227 228 229

/*
 * unlink a css_set from the list and free it
 */
230
static void unlink_css_set(struct css_set *cg)
231
{
232 233 234 235 236 237 238 239
	write_lock(&css_set_lock);
	list_del(&cg->list);
	css_set_count--;
	while (!list_empty(&cg->cg_links)) {
		struct cg_cgroup_link *link;
		link = list_entry(cg->cg_links.next,
				  struct cg_cgroup_link, cg_link_list);
		list_del(&link->cg_link_list);
240
		list_del(&link->cgrp_link_list);
241 242 243
		kfree(link);
	}
	write_unlock(&css_set_lock);
244 245 246 247 248 249 250 251 252 253 254
}

static void __release_css_set(struct kref *k, int taskexit)
{
	int i;
	struct css_set *cg = container_of(k, struct css_set, ref);

	unlink_css_set(cg);

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 256 257
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
258
			if (taskexit)
259 260
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
261 262 263
		}
	}
	rcu_read_unlock();
264
	kfree(cg);
265 266
}

267 268 269 270 271 272 273 274 275 276
static void release_css_set(struct kref *k)
{
	__release_css_set(k, 0);
}

static void release_css_set_taskexit(struct kref *k)
{
	__release_css_set(k, 1);
}

277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
	kref_get(&cg->ref);
}

static inline void put_css_set(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set);
}

290 291 292 293 294
static inline void put_css_set_taskexit(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set_taskexit);
}

295 296 297 298 299 300 301 302 303 304
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
 * css_set is suitable. This currently walks a linked-list for
 * simplicity; a later patch will use a hash table for better
 * performance
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
305
 * cgrp: the cgroup that we're moving into
306 307 308 309 310 311 312
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */

static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
313
	struct cgroup *cgrp,
314
	struct cgroup_subsys_state *template[])
315 316
{
	int i;
317
	struct cgroupfs_root *root = cgrp->root;
318 319 320 321 322 323 324 325 326
	struct list_head *l = &init_css_set.list;

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		if (root->subsys_bits & (1ull << i)) {
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
327
			template[i] = cgrp->subsys[i];
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

	/* Look through existing cgroup groups to find one to reuse */
	do {
		struct css_set *cg =
			list_entry(l, struct css_set, list);

		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
		/* Try the next cgroup group */
		l = l->next;
	} while (l != &init_css_set.list);

	/* No existing cgroup group matched */
	return NULL;
}

/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
354
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
355 356 357 358 359 360 361 362 363 364 365 366 367 368
 * success or a negative error
 */

static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
			while (!list_empty(tmp)) {
				link = list_entry(tmp->next,
						  struct cg_cgroup_link,
369 370
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
371 372 373 374
				kfree(link);
			}
			return -ENOMEM;
		}
375
		list_add(&link->cgrp_link_list, tmp);
376 377 378 379 380 381 382 383 384 385
	}
	return 0;
}

static void free_cg_links(struct list_head *tmp)
{
	while (!list_empty(tmp)) {
		struct cg_cgroup_link *link;
		link = list_entry(tmp->next,
				  struct cg_cgroup_link,
386 387
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
388 389 390 391 392 393 394 395 396 397 398 399 400
		kfree(link);
	}
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */

static struct css_set *find_css_set(
401
	struct css_set *oldcg, struct cgroup *cgrp)
402 403 404 405 406 407 408 409 410 411 412
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

	/* First see if we already have a cgroup group that matches
	 * the desired set */
	write_lock(&css_set_lock);
413
	res = find_existing_css_set(oldcg, cgrp, template);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	if (res)
		get_css_set(res);
	write_unlock(&css_set_lock);

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

	kref_init(&res->ref);
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
442
		struct cgroup *cgrp = res->subsys[i]->cgroup;
443
		struct cgroup_subsys *ss = subsys[i];
444
		atomic_inc(&cgrp->count);
445 446 447 448 449 450 451 452 453
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
454 455 456
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
457 458 459 460 461 462 463
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
464 465 466
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
467 468 469 470 471 472 473 474 475 476 477 478 479
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	/* Link this cgroup group into the list */
	list_add(&res->list, &init_css_set.list);
	css_set_count++;
	INIT_LIST_HEAD(&res->tasks);
	write_unlock(&css_set_lock);

	return res;
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
 * attach_task() can increment it again.  Because a count of zero
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The cgroup_common_file_write handler for operations that modify
 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
 * single threading all such cgroup modifications across the system.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
 * to /sbin/cgroup_release_agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
 * attach_task(), which overwrites one tasks cgroup pointer with
 * another.  It does so using cgroup_mutexe, however there are
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
 * in attach_task(), modifying a task'ss cgroup pointer we use
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cgroup pointer by attach_task()
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */

void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */

void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
566
static int cgroup_populate_dir(struct cgroup *cgrp);
567
static struct inode_operations cgroup_dir_inode_operations;
568 569 570 571 572
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
593 594
		struct cgroup *cgrp = dentry->d_fsdata;
		BUG_ON(!(cgroup_is_removed(cgrp)));
595 596 597 598 599 600 601
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
602
		kfree(cgrp);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
659
	struct cgroup *cgrp = &root->top_cgroup;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long long bit = 1ull << i;
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
680
	if (!list_empty(&cgrp->children))
681 682 683 684 685 686 687 688
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
689
			BUG_ON(cgrp->subsys[i]);
690 691
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
692 693
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
694 695 696
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
697
				ss->bind(ss, cgrp);
698 699 700

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
701 702
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
703 704 705
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
706
			cgrp->subsys[i] = NULL;
707 708 709 710
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
711
			BUG_ON(!cgrp->subsys[i]);
712 713
		} else {
			/* Subsystem state shouldn't exist */
714
			BUG_ON(cgrp->subsys[i]);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
733 734
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
735 736 737 738 739 740 741
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
742
	char *release_agent;
743 744 745 746 747 748 749 750 751 752 753
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
754
	opts->release_agent = NULL;
755 756 757 758 759 760 761 762

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
			opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
763 764 765 766 767 768 769 770 771
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
					set_bit(i, &opts->subsys_bits);
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
798
	struct cgroup *cgrp = &root->top_cgroup;
799 800
	struct cgroup_sb_opts opts;

801
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
819
		cgroup_populate_dir(cgrp);
820

821 822
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
823
 out_unlock:
824 825
	if (opts.release_agent)
		kfree(opts.release_agent);
826
	mutex_unlock(&cgroup_mutex);
827
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
828 829 830 831 832 833 834 835 836 837 838 839
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

static void init_cgroup_root(struct cgroupfs_root *root)
{
840
	struct cgroup *cgrp = &root->top_cgroup;
841 842 843
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
844 845 846 847 848 849
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_op = &simple_dir_inode_operations;
	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
919 920
	struct list_head tmp_cg_links, *l;
	INIT_LIST_HEAD(&tmp_cg_links);
921 922 923

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
924 925 926
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
927
		return ret;
928
	}
929 930 931 932 933 934 935 936

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return -ENOMEM;

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
937 938 939 940
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
956
		struct cgroup *cgrp = &root->top_cgroup;
957
		struct inode *inode;
958 959 960 961 962 963

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
964
		inode = sb->s_root->d_inode;
965

966
		mutex_lock(&inode->i_mutex);
967 968
		mutex_lock(&cgroup_mutex);

969 970 971 972 973 974 975 976 977 978 979 980 981 982
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

983 984 985
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
986
			mutex_unlock(&inode->i_mutex);
987 988 989 990 991 992 993
			goto drop_new_super;
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
994
		root_count++;
995 996 997 998

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
		l = &init_css_set.list;
		do {
			struct css_set *cg;
			struct cg_cgroup_link *link;
			cg = list_entry(l, struct css_set, list);
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
1010 1011
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
1012
			link->cg = cg;
1013
			list_add(&link->cgrp_link_list,
1014 1015 1016 1017 1018 1019 1020 1021
				 &root->top_cgroup.css_sets);
			list_add(&link->cg_link_list, &cg->cg_links);
			l = l->next;
		} while (l != &init_css_set.list);
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1022 1023
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1024 1025
		BUG_ON(root->number_of_cgroups != 1);

1026
		cgroup_populate_dir(cgrp);
1027
		mutex_unlock(&inode->i_mutex);
1028 1029 1030 1031 1032 1033 1034 1035
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
1036
	free_cg_links(&tmp_cg_links);
1037 1038 1039 1040 1041
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1042
	struct cgroup *cgrp = &root->top_cgroup;
1043 1044 1045 1046 1047
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1048 1049
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1050 1051 1052 1053 1054 1055 1056 1057

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1058 1059 1060 1061 1062
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
1063
	while (!list_empty(&cgrp->css_sets)) {
1064
		struct cg_cgroup_link *link;
1065 1066
		link = list_entry(cgrp->css_sets.next,
				  struct cg_cgroup_link, cgrp_link_list);
1067
		list_del(&link->cg_link_list);
1068
		list_del(&link->cgrp_link_list);
1069 1070 1071 1072 1073
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1074
		list_del(&root->root_list);
1075 1076
		root_count--;
	}
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1089
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
 * Called with cgroup_mutex held.  Writes path of cgroup into buf.
 * Returns 0 on success, -errno on error.
 */
1103
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1104 1105 1106
{
	char *start;

1107
	if (cgrp == dummytop) {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1120
		int len = cgrp->dentry->d_name.len;
1121 1122
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1123 1124 1125
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1126
			break;
1127
		if (!cgrp->parent)
1128 1129 1130 1131 1132 1133 1134 1135 1136
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1137 1138 1139 1140 1141
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1142
static void get_first_subsys(const struct cgroup *cgrp,
1143 1144
			struct cgroup_subsys_state **css, int *subsys_id)
{
1145
	const struct cgroupfs_root *root = cgrp->root;
1146 1147 1148 1149 1150
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1151
		*css = cgrp->subsys[test_ss->subsys_id];
1152 1153 1154 1155 1156 1157 1158
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

/*
1159
 * Attach task 'tsk' to cgroup 'cgrp'
1160 1161 1162 1163
 *
 * Call holding cgroup_mutex.  May take task_lock of
 * the task 'pid' during call.
 */
1164
static int attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1165 1166 1167
{
	int retval = 0;
	struct cgroup_subsys *ss;
1168
	struct cgroup *oldcgrp;
1169 1170
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1171
	struct cgroupfs_root *root = cgrp->root;
1172 1173
	int subsys_id;

1174
	get_first_subsys(cgrp, NULL, &subsys_id);
1175 1176

	/* Nothing to do if the task is already in that cgroup */
1177 1178
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1179 1180 1181 1182
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1183
			retval = ss->can_attach(ss, cgrp, tsk);
1184 1185 1186 1187 1188 1189
			if (retval) {
				return retval;
			}
		}
	}

1190 1191 1192 1193
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1194
	newcg = find_css_set(cg, cgrp);
1195 1196 1197 1198
	if (!newcg) {
		return -ENOMEM;
	}

1199 1200 1201
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1202
		put_css_set(newcg);
1203 1204
		return -ESRCH;
	}
1205
	rcu_assign_pointer(tsk->cgroups, newcg);
1206 1207
	task_unlock(tsk);

1208 1209 1210 1211 1212 1213 1214 1215
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1216 1217
	for_each_subsys(root, ss) {
		if (ss->attach) {
1218
			ss->attach(ss, cgrp, oldcgrp, tsk);
1219 1220
		}
	}
1221
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1222
	synchronize_rcu();
1223
	put_css_set(cg);
1224 1225 1226 1227
	return 0;
}

/*
1228
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1229 1230
 * cgroup_mutex, may take task_lock of task
 */
1231
static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
{
	pid_t pid;
	struct task_struct *tsk;
	int ret;

	if (sscanf(pidbuf, "%d", &pid) != 1)
		return -EIO;

	if (pid) {
		rcu_read_lock();
		tsk = find_task_by_pid(pid);
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}
		get_task_struct(tsk);
		rcu_read_unlock();

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1260
	ret = attach_task(cgrp, tsk);
1261 1262 1263 1264
	put_task_struct(tsk);
	return ret;
}

1265 1266 1267 1268 1269 1270
/* The various types of files and directories in a cgroup file system */

enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1271 1272 1273
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASABLE,
	FILE_RELEASE_AGENT,
1274 1275
};

1276
static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
				 struct file *file,
				 const char __user *userbuf,
				 size_t nbytes, loff_t *unused_ppos)
{
	char buffer[64];
	int retval = 0;
	u64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoull(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
1303
	retval = cft->write_uint(cgrp, cft, val);
1304 1305 1306 1307 1308
	if (!retval)
		retval = nbytes;
	return retval;
}

1309
static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
					   struct cftype *cft,
					   struct file *file,
					   const char __user *userbuf,
					   size_t nbytes, loff_t *unused_ppos)
{
	enum cgroup_filetype type = cft->private;
	char *buffer;
	int retval = 0;

	if (nbytes >= PATH_MAX)
		return -E2BIG;

	/* +1 for nul-terminator */
	buffer = kmalloc(nbytes + 1, GFP_KERNEL);
	if (buffer == NULL)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

	mutex_lock(&cgroup_mutex);

1335
	if (cgroup_is_removed(cgrp)) {
1336 1337 1338 1339 1340 1341
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_TASKLIST:
1342
		retval = attach_task_by_pid(cgrp, buffer);
1343
		break;
1344
	case FILE_NOTIFY_ON_RELEASE:
1345
		clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1346
		if (simple_strtoul(buffer, NULL, 10) != 0)
1347
			set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1348
		else
1349
			clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1350 1351 1352
		break;
	case FILE_RELEASE_AGENT:
	{
1353
		struct cgroupfs_root *root = cgrp->root;
1354 1355 1356 1357
		/* Strip trailing newline */
		if (nbytes && (buffer[nbytes-1] == '\n')) {
			buffer[nbytes-1] = 0;
		}
A
Adrian Bunk 已提交
1358 1359 1360 1361 1362 1363 1364 1365

		/* We never write anything other than '\0'
		 * into the last char of release_agent_path,
		 * so it always remains a NUL-terminated
		 * string */
		strncpy(root->release_agent_path, buffer, nbytes);
		root->release_agent_path[nbytes] = 0;

1366 1367
		break;
	}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
	mutex_unlock(&cgroup_mutex);
out1:
	kfree(buffer);
	return retval;
}

1382 1383 1384 1385
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1386
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1387 1388 1389

	if (!cft)
		return -ENODEV;
1390
	if (cft->write)
1391
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1392
	if (cft->write_uint)
1393
		return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1394
	return -EINVAL;
1395 1396
}

1397
static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1398 1399 1400 1401 1402
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
{
	char tmp[64];
1403
	u64 val = cft->read_uint(cgrp, cft);
1404 1405 1406 1407 1408
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1409
static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
					  struct cftype *cft,
					  struct file *file,
					  char __user *buf,
					  size_t nbytes, loff_t *ppos)
{
	enum cgroup_filetype type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_RELEASE_AGENT:
	{
		struct cgroupfs_root *root;
		size_t n;
		mutex_lock(&cgroup_mutex);
1431
		root = cgrp->root;
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
		n = strnlen(root->release_agent_path,
			    sizeof(root->release_agent_path));
		n = min(n, (size_t) PAGE_SIZE);
		strncpy(s, root->release_agent_path, n);
		mutex_unlock(&cgroup_mutex);
		s += n;
		break;
	}
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
out:
	free_page((unsigned long)page);
	return retval;
}

1452 1453 1454 1455
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1456
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1457 1458 1459 1460 1461

	if (!cft)
		return -ENODEV;

	if (cft->read)
1462
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1463
	if (cft->read_uint)
1464
		return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	return -EINVAL;
}

static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1553
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cgroup_create_dir - create a directory for an object.
1566
 *	cgrp:	the cgroup we create the directory for.
1567 1568
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
1569
 *	dentry: dentry of the new cgroup
1570 1571
 *	mode:	mode to set on new directory.
 */
1572
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1573 1574 1575 1576 1577
				int mode)
{
	struct dentry *parent;
	int error = 0;

1578 1579
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1580
	if (!error) {
1581
		dentry->d_fsdata = cgrp;
1582
		inc_nlink(parent->d_inode);
1583
		cgrp->dentry = dentry;
1584 1585 1586 1587 1588 1589 1590
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1591
int cgroup_add_file(struct cgroup *cgrp,
1592 1593 1594
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1595
	struct dentry *dir = cgrp->dentry;
1596 1597 1598 1599
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1600
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1601 1602 1603 1604 1605 1606 1607 1608
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1609
						cgrp->root->sb);
1610 1611 1612 1613 1614 1615 1616 1617
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1618
int cgroup_add_files(struct cgroup *cgrp,
1619 1620 1621 1622 1623 1624
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1625
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1626 1627 1628 1629 1630 1631
		if (err)
			return err;
	}
	return 0;
}

1632 1633
/* Count the number of tasks in a cgroup. */

1634
int cgroup_task_count(const struct cgroup *cgrp)
1635 1636
{
	int count = 0;
1637 1638 1639
	struct list_head *l;

	read_lock(&css_set_lock);
1640 1641
	l = cgrp->css_sets.next;
	while (l != &cgrp->css_sets) {
1642
		struct cg_cgroup_link *link =
1643
			list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1644 1645 1646 1647
		count += atomic_read(&link->cg->ref.refcount);
		l = l->next;
	}
	read_unlock(&css_set_lock);
1648 1649 1650
	return count;
}

1651 1652 1653 1654
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1655
static void cgroup_advance_iter(struct cgroup *cgrp,
1656 1657 1658 1659 1660 1661 1662 1663 1664
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1665
		if (l == &cgrp->css_sets) {
1666 1667 1668
			it->cg_link = NULL;
			return;
		}
1669
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1670 1671 1672 1673 1674 1675
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1676
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
	if (!use_task_css_set_links) {
		struct task_struct *p, *g;
		write_lock(&css_set_lock);
		use_task_css_set_links = 1;
 		do_each_thread(g, p) {
			task_lock(p);
			if (list_empty(&p->cg_list))
				list_add(&p->cg_list, &p->cgroups->tasks);
			task_unlock(p);
 		} while_each_thread(g, p);
		write_unlock(&css_set_lock);
	}
	read_lock(&css_set_lock);
1696 1697
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1698 1699
}

1700
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1715
		cgroup_advance_iter(cgrp, it);
1716 1717 1718 1719 1720 1721
	} else {
		it->task = l;
	}
	return res;
}

1722
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1723 1724 1725 1726
{
	read_unlock(&css_set_lock);
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */
struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1748
 * 'cgrp'.  Return actual number of pids loaded.  No need to
1749 1750 1751 1752
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
1753
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1754 1755
{
	int n = 0;
1756 1757
	struct cgroup_iter it;
	struct task_struct *tsk;
1758 1759
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
1760 1761
		if (unlikely(n == npids))
			break;
1762
		pidarray[n++] = task_pid_nr(tsk);
1763
	}
1764
	cgroup_iter_end(cgrp, &it);
1765 1766 1767
	return n;
}

B
Balbir Singh 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
/**
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
 *
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
1779
	struct cgroup *cgrp;
B
Balbir Singh 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788
	struct cgroup_iter it;
	struct task_struct *tsk;
	/*
	 * Validate dentry by checking the superblock operations
	 */
	if (dentry->d_sb->s_op != &cgroup_ops)
		 goto err;

	ret = 0;
1789
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
1790 1791
	rcu_read_lock();

1792 1793
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
1813
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
1814 1815 1816 1817 1818 1819

	rcu_read_unlock();
err:
	return ret;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cgroup being opened.
 *
 * Does not require any specific cgroup mutexes, and does not take any.
 */
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
1848
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
1867
	npids = cgroup_task_count(cgrp);
1868 1869 1870 1871 1872
	if (npids) {
		pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
		if (!pidarray)
			goto err1;

1873
		npids = pid_array_load(pidarray, npids, cgrp);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

		/* Call pid_array_to_buf() twice, first just to get bufsz */
		ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
		ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
		if (!ctr->buf)
			goto err2;
		ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

		kfree(pidarray);
	} else {
		ctr->buf = 0;
		ctr->bufsz = 0;
	}
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

1899
static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
				    struct cftype *cft,
				    struct file *file, char __user *buf,
				    size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
}

static int cgroup_tasks_release(struct inode *unused_inode,
					struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

1922
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
1923 1924
					    struct cftype *cft)
{
1925
	return notify_on_release(cgrp);
1926 1927
}

1928
static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
1929
{
1930
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
1931 1932
}

1933 1934 1935
/*
 * for the common functions, 'private' gives the type of file
 */
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
		.read = cgroup_tasks_read,
		.write = cgroup_common_file_write,
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
		.read_uint = cgroup_read_notify_on_release,
		.write = cgroup_common_file_write,
		.private = FILE_NOTIFY_ON_RELEASE,
	},

	{
		.name = "releasable",
		.read_uint = cgroup_read_releasable,
		.private = FILE_RELEASABLE,
	}
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
	.read = cgroup_common_file_read,
1963
	.write = cgroup_common_file_write,
1964
	.private = FILE_RELEASE_AGENT,
1965 1966
};

1967
static int cgroup_populate_dir(struct cgroup *cgrp)
1968 1969 1970 1971 1972
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
1973
	cgroup_clear_directory(cgrp->dentry);
1974

1975
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
1976 1977 1978
	if (err < 0)
		return err;

1979 1980
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
1981 1982 1983
			return err;
	}

1984 1985
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
1986 1987 1988 1989 1990 1991 1992 1993
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
1994
			       struct cgroup *cgrp)
1995
{
1996
	css->cgroup = cgrp;
1997 1998
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
1999
	if (cgrp == dummytop)
2000
		set_bit(CSS_ROOT, &css->flags);
2001 2002
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
}

/*
 *	cgroup_create - create a cgroup
 *	parent:	cgroup that will be parent of the new cgroup.
 *	name:		name of the new cgroup. Will be strcpy'ed.
 *	mode:		mode to set on new inode
 *
 *	Must be called with the mutex on the parent inode held
 */

static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2017
	struct cgroup *cgrp;
2018 2019 2020 2021 2022
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2023 2024
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2036 2037 2038 2039 2040
	cgrp->flags = 0;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
2041

2042 2043 2044
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2045 2046

	for_each_subsys(root, ss) {
2047
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2048 2049 2050 2051
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2052
		init_cgroup_css(css, ss, cgrp);
2053 2054
	}

2055
	list_add(&cgrp->sibling, &cgrp->parent->children);
2056 2057
	root->number_of_cgroups++;

2058
	err = cgroup_create_dir(cgrp, dentry, mode);
2059 2060 2061 2062
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2063
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2064

2065
	err = cgroup_populate_dir(cgrp);
2066 2067 2068
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2069
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2070 2071 2072 2073 2074

	return 0;

 err_remove:

2075
	list_del(&cgrp->sibling);
2076 2077 2078 2079 2080
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2081 2082
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2083 2084 2085 2086 2087 2088 2089
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2090
	kfree(cgrp);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2102
static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2118
		if (ss->root != cgrp->root)
2119
			continue;
2120
		css = cgrp->subsys[ss->subsys_id];
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
		if (css && atomic_read(&css->refcnt)) {
			return 1;
		}
	}
	return 0;
}

2134 2135
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2136
	struct cgroup *cgrp = dentry->d_fsdata;
2137 2138 2139 2140 2141 2142 2143 2144 2145
	struct dentry *d;
	struct cgroup *parent;
	struct cgroup_subsys *ss;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2146
	if (atomic_read(&cgrp->count) != 0) {
2147 2148 2149
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2150
	if (!list_empty(&cgrp->children)) {
2151 2152 2153 2154
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2155 2156
	parent = cgrp->parent;
	root = cgrp->root;
2157 2158
	sb = root->sb;

2159
	if (cgroup_has_css_refs(cgrp)) {
2160 2161 2162 2163 2164
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

	for_each_subsys(root, ss) {
2165 2166
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2167 2168
	}

2169
	spin_lock(&release_list_lock);
2170 2171 2172
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2173
	spin_unlock(&release_list_lock);
2174
	/* delete my sibling from parent->children */
2175 2176 2177 2178
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
	cgrp->dentry = NULL;
2179 2180 2181 2182 2183 2184
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);
	root->number_of_cgroups--;

2185
	set_bit(CGRP_RELEASABLE, &parent->flags);
2186 2187
	check_for_release(parent);

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	mutex_unlock(&cgroup_mutex);
	/* Drop the active superblock reference that we took when we
	 * created the cgroup */
	deactivate_super(sb);
	return 0;
}

static void cgroup_init_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;
2198
	struct list_head *l;
D
Diego Calleja 已提交
2199 2200

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2201 2202 2203 2204 2205 2206 2207 2208

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/* Update all cgroup groups to contain a subsys
	 * pointer to this state - since the subsystem is
	 * newly registered, all tasks and hence all cgroup
	 * groups are in the subsystem's top cgroup. */
	write_lock(&css_set_lock);
	l = &init_css_set.list;
	do {
		struct css_set *cg =
			list_entry(l, struct css_set, list);
		cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
		l = l->next;
	} while (l != &init_css_set.list);
	write_unlock(&css_set_lock);
2222 2223 2224 2225

 	/* If this subsystem requested that it be notified with fork
 	 * events, we should send it one now for every process in the
 	 * system */
2226 2227 2228 2229 2230 2231 2232 2233 2234
	if (ss->fork) {
		struct task_struct *g, *p;

		read_lock(&tasklist_lock);
		do_each_thread(g, p) {
			ss->fork(ss, p);
		} while_each_thread(g, p);
		read_unlock(&tasklist_lock);
	}
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	need_forkexit_callback |= ss->fork || ss->exit;

	ss->active = 1;
}

/**
 * cgroup_init_early - initialize cgroups at system boot, and
 * initialize any subsystems that request early init.
 */
int __init cgroup_init_early(void)
{
	int i;
2248 2249 2250 2251 2252 2253
	kref_init(&init_css_set.ref);
	kref_get(&init_css_set.ref);
	INIT_LIST_HEAD(&init_css_set.list);
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
	css_set_count = 1;
2254 2255
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2256 2257 2258 2259
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2260
	list_add(&init_css_set_link.cgrp_link_list,
2261 2262 2263
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2264 2265 2266 2267 2268 2269 2270 2271 2272

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2273
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
 * cgroup_init - register cgroup filesystem and /proc file, and
 * initialize any subsystems that didn't request early init.
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2292 2293 2294 2295 2296
	struct proc_dir_entry *entry;

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

2308 2309 2310 2311
	entry = create_proc_entry("cgroups", 0, NULL);
	if (entry)
		entry->proc_fops = &proc_cgroupstats_operations;

2312
out:
2313 2314 2315
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2316 2317
	return err;
}
2318

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
 *    and we take cgroup_mutex, keeping attach_task() from changing it
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2357
		struct cgroup *cgrp;
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2368 2369
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2403
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2404 2405 2406
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2407 2408 2409
		seq_printf(m, "%s\t%lu\t%d\n",
			   ss->name, ss->root->subsys_bits,
			   ss->root->number_of_cgroups);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_cgroupstats_show, 0);
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
 * @tsk: pointer to task_struct of forking parent process.
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
 * might no longer be a valid cgroup pointer.  attach_task() might
2437 2438
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2439 2440 2441 2442 2443 2444
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2445 2446 2447 2448 2449
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
}

/**
 * cgroup_fork_callbacks - called on a new task very soon before
 * adding it to the tasklist. No need to take any locks since no-one
 * can be operating on this task
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/**
 * cgroup_post_fork - called on a new task after adding it to the
 * task list. Adds the task to the list running through its css_set
 * if necessary. Has to be after the task is visible on the task list
 * in case we race with the first call to cgroup_iter_start() - to
 * guarantee that the new task ends up on its list. */
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
 *    which wards off any attach_task() attempts, or task is a failed
 *    fork, never visible to attach_task.
 *
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2522
	struct css_set *cg;
2523 2524 2525 2526 2527 2528 2529 2530

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2544 2545
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2546 2547
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2548
	task_unlock(tsk);
2549
	if (cg)
2550
		put_css_set_taskexit(cg);
2551
}
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

/**
 * cgroup_clone - duplicate the current cgroup in the hierarchy
 * that the given subsystem is attached to, and move this task into
 * the new child
 */
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
{
	struct dentry *dentry;
	int ret = 0;
	char nodename[MAX_CGROUP_TYPE_NAMELEN];
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		printk(KERN_INFO
		       "Not cloning cgroup for unused subsystem %s\n",
		       subsys->name);
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2584
	cg = tsk->cgroups;
2585 2586 2587 2588 2589 2590 2591
	parent = task_cgroup(tsk, subsys->subsys_id);

	snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);

	/* Pin the hierarchy */
	atomic_inc(&parent->root->sb->s_active);

2592 2593
	/* Keep the cgroup alive */
	get_css_set(cg);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2605
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2606 2607 2608 2609 2610 2611 2612
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2613
	child = __d_cgrp(dentry);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2637
		put_css_set(cg);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
	ret = attach_task(child, tsk);
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
2661 2662

	mutex_lock(&cgroup_mutex);
2663
	put_css_set(cg);
2664
	mutex_unlock(&cgroup_mutex);
2665 2666 2667 2668 2669
	deactivate_super(parent->root->sb);
	return ret;
}

/*
2670
 * See if "cgrp" is a descendant of the current task's cgroup in
2671 2672 2673 2674 2675 2676 2677
 * the appropriate hierarchy
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
2678
int cgroup_is_descendant(const struct cgroup *cgrp)
2679 2680 2681 2682 2683
{
	int ret;
	struct cgroup *target;
	int subsys_id;

2684
	if (cgrp == dummytop)
2685 2686
		return 1;

2687
	get_first_subsys(cgrp, NULL, &subsys_id);
2688
	target = task_cgroup(current, subsys_id);
2689 2690 2691
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
2692 2693
	return ret;
}
2694

2695
static void check_for_release(struct cgroup *cgrp)
2696 2697 2698
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
2699 2700
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2701 2702 2703 2704 2705
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
2706 2707 2708
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
2719
	struct cgroup *cgrp = css->cgroup;
2720
	rcu_read_lock();
2721 2722 2723
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 *
 */

static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
		char *pathbuf;
2762
		struct cgroup *cgrp = list_entry(release_list.next,
2763 2764
						    struct cgroup,
						    release_list);
2765
		list_del_init(&cgrp->release_list);
2766 2767 2768 2769 2770 2771 2772
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!pathbuf) {
			spin_lock(&release_list_lock);
			continue;
		}

2773
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2774 2775 2776 2777 2778 2779
			kfree(pathbuf);
			spin_lock(&release_list_lock);
			continue;
		}

		i = 0;
2780
		argv[i++] = cgrp->root->release_agent_path;
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		argv[i++] = (char *)pathbuf;
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		kfree(pathbuf);
		mutex_lock(&cgroup_mutex);
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}