cgroup.c 93.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

87
	/* A list running through the active hierarchies */
88 89 90 91
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


137 138 139
/* The list of hierarchy roots */

static LIST_HEAD(roots);
140
static int root_count;
141 142 143 144 145

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
146 147 148
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
149
 */
150
static int need_forkexit_callback __read_mostly;
151 152

/* convenient tests for these bits */
153
inline int cgroup_is_removed(const struct cgroup *cgrp)
154
{
155
	return test_bit(CGRP_REMOVED, &cgrp->flags);
156 157 158 159 160 161 162
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

163
static int cgroup_is_releasable(const struct cgroup *cgrp)
164 165
{
	const int bits =
166 167 168
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
169 170
}

171
static int notify_on_release(const struct cgroup *cgrp)
172
{
173
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
174 175
}

176 177 178 179 180 181 182
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

183 184
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
185 186
list_for_each_entry(_root, &roots, root_list)

187 188 189 190 191 192
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
193
static void check_for_release(struct cgroup *cgrp);
194

195 196 197 198 199 200
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
201
	struct list_head cgrp_link_list;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
220 221
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

222 223 224 225 226 227
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

249 250 251 252
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
253
static int use_task_css_set_links __read_mostly;
254 255 256 257 258 259 260

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
261 262 263 264 265 266 267
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
268 269 270 271

/*
 * unlink a css_set from the list and free it
 */
272
static void unlink_css_set(struct css_set *cg)
273
{
K
KOSAKI Motohiro 已提交
274 275 276
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

277
	hlist_del(&cg->hlist);
278
	css_set_count--;
K
KOSAKI Motohiro 已提交
279 280 281

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
282
		list_del(&link->cg_link_list);
283
		list_del(&link->cgrp_link_list);
284 285
		kfree(link);
	}
286 287
}

288
static void __put_css_set(struct css_set *cg, int taskexit)
289 290
{
	int i;
291 292 293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
303
	unlink_css_set(cg);
304
	write_unlock(&css_set_lock);
305 306 307

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
308
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
309 310
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
311
			if (taskexit)
312 313
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
314 315 316
		}
	}
	rcu_read_unlock();
317
	kfree(cg);
318 319
}

320 321 322 323 324
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
325
	atomic_inc(&cg->refcount);
326 327 328 329
}

static inline void put_css_set(struct css_set *cg)
{
330
	__put_css_set(cg, 0);
331 332
}

333 334
static inline void put_css_set_taskexit(struct css_set *cg)
{
335
	__put_css_set(cg, 1);
336 337
}

338 339 340
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
341
 * css_set is suitable.
342 343 344 345
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
346
 * cgrp: the cgroup that we're moving into
347 348 349 350 351 352
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
353
	struct cgroup *cgrp,
354
	struct cgroup_subsys_state *template[])
355 356
{
	int i;
357
	struct cgroupfs_root *root = cgrp->root;
358 359 360
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
361 362 363 364

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
365
		if (root->subsys_bits & (1UL << i)) {
366 367 368
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
369
			template[i] = cgrp->subsys[i];
370 371 372 373 374 375 376
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

377 378
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
379 380 381 382
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
383
	}
384 385 386 387 388

	/* No existing cgroup group matched */
	return NULL;
}

389 390 391 392 393 394 395 396 397 398 399
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

400 401
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
402
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
403 404 405 406 407 408 409 410 411 412
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
413
			free_cg_links(tmp);
414 415
			return -ENOMEM;
		}
416
		list_add(&link->cgrp_link_list, tmp);
417 418 419 420
	}
	return 0;
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
	list_add(&link->cg_link_list, &cg->cg_links);
}

440 441 442 443 444 445 446 447
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
448
	struct css_set *oldcg, struct cgroup *cgrp)
449 450 451 452 453 454 455
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

456 457
	struct hlist_head *hhead;

458 459
	/* First see if we already have a cgroup group that matches
	 * the desired set */
460
	read_lock(&css_set_lock);
461
	res = find_existing_css_set(oldcg, cgrp, template);
462 463
	if (res)
		get_css_set(res);
464
	read_unlock(&css_set_lock);
465 466 467 468 469 470 471 472 473 474 475 476 477 478

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

479
	atomic_set(&res->refcount, 1);
480 481
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
482
	INIT_HLIST_NODE(&res->hlist);
483 484 485 486 487 488 489 490

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
491
		struct cgroup *cgrp = res->subsys[i]->cgroup;
492
		struct cgroup_subsys *ss = subsys[i];
493
		atomic_inc(&cgrp->count);
494 495 496 497 498
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
499 500
		if (ss->root->subsys_list.next == &ss->sibling)
			link_css_set(&tmp_cg_links, res, cgrp);
501
	}
502 503
	if (list_empty(&rootnode.subsys_list))
		link_css_set(&tmp_cg_links, res, dummytop);
504 505 506 507

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
508 509 510 511 512

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

513 514 515
	write_unlock(&css_set_lock);

	return res;
516 517
}

518 519 520 521 522 523 524 525 526 527
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
528
 * cgroup_attach_task() can increment it again.  Because a count of zero
529 530 531 532 533 534 535 536 537 538 539 540 541
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
542 543
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
544 545 546 547 548 549 550 551 552 553 554
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
555
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
556
 * another.  It does so using cgroup_mutex, however there are
557 558 559
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
560
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
561 562 563 564
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
565
 * update of a tasks cgroup pointer by cgroup_attach_task()
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
596
static int cgroup_populate_dir(struct cgroup *cgrp);
597
static struct inode_operations cgroup_dir_inode_operations;
598 599 600
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
601
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
602
};
603

K
KAMEZAWA Hiroyuki 已提交
604 605 606
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

607 608 609 610 611 612
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
613 614
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
615 616 617 618 619 620
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

621 622 623 624
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
625
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
626 627
{
	struct cgroup_subsys *ss;
628 629
	int ret = 0;

630
	for_each_subsys(cgrp->root, ss)
631 632 633 634 635 636
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
637 638
}

639 640 641 642 643 644 645
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

646 647 648 649
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
650
		struct cgroup *cgrp = dentry->d_fsdata;
651
		struct cgroup_subsys *ss;
652
		BUG_ON(!(cgroup_is_removed(cgrp)));
653 654 655 656 657 658 659
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
660 661 662 663 664

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
665 666
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
667 668 669 670

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

671 672 673 674
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
675 676
		deactivate_super(cgrp->root->sb);

677
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
{
	if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
		wake_up_all(&cgroup_rmdir_waitq);
}

746 747 748 749
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
750
	struct cgroup *cgrp = &root->top_cgroup;
751 752 753 754 755 756
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
757
		unsigned long bit = 1UL << i;
758 759 760 761 762 763 764 765 766 767 768 769 770
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
771
	if (root->number_of_cgroups > 1)
772 773 774 775 776 777 778 779
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
780
			BUG_ON(cgrp->subsys[i]);
781 782
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
783
			mutex_lock(&ss->hierarchy_mutex);
784 785
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
786
			list_move(&ss->sibling, &root->subsys_list);
787
			ss->root = root;
788
			if (ss->bind)
789
				ss->bind(ss, cgrp);
790
			mutex_unlock(&ss->hierarchy_mutex);
791 792
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
793 794
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
795
			mutex_lock(&ss->hierarchy_mutex);
796 797 798
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
799
			cgrp->subsys[i] = NULL;
800
			subsys[i]->root = &rootnode;
801
			list_move(&ss->sibling, &rootnode.subsys_list);
802
			mutex_unlock(&ss->hierarchy_mutex);
803 804
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
805
			BUG_ON(!cgrp->subsys[i]);
806 807
		} else {
			/* Subsystem state shouldn't exist */
808
			BUG_ON(cgrp->subsys[i]);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
827 828
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
829 830 831 832 833 834 835
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
836
	char *release_agent;
837 838 839 840 841 842 843 844 845 846 847
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
848
	opts->release_agent = NULL;
849 850 851 852 853

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
854 855 856 857 858 859 860 861
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
862 863
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
864 865 866 867 868 869 870 871 872
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
873 874 875 876 877 878
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
879 880
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
900
	struct cgroup *cgrp = &root->top_cgroup;
901 902
	struct cgroup_sb_opts opts;

903
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
904 905 906 907 908 909 910 911 912 913 914 915 916 917
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);
918 919
	if (ret)
		goto out_unlock;
920 921

	/* (re)populate subsystem files */
922
	cgroup_populate_dir(cgrp);
923

924 925
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
926
 out_unlock:
927
	kfree(opts.release_agent);
928
	mutex_unlock(&cgroup_mutex);
929
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
930 931 932 933 934 935 936 937 938 939
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

940 941 942 943 944 945 946 947
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
948 949
static void init_cgroup_root(struct cgroupfs_root *root)
{
950
	struct cgroup *cgrp = &root->top_cgroup;
951 952 953
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
954 955
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
956
	init_cgroup_housekeeping(cgrp);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
1025
	struct list_head tmp_cg_links;
1026 1027 1028

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1029
	if (ret) {
1030
		kfree(opts.release_agent);
1031
		return ret;
1032
	}
1033 1034

	root = kzalloc(sizeof(*root), GFP_KERNEL);
1035
	if (!root) {
1036
		kfree(opts.release_agent);
1037
		return -ENOMEM;
1038
	}
1039 1040 1041 1042

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
1043 1044 1045 1046
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1062
		struct cgroup *root_cgrp = &root->top_cgroup;
1063
		struct inode *inode;
1064
		int i;
1065 1066 1067 1068 1069 1070

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1071
		inode = sb->s_root->d_inode;
1072

1073
		mutex_lock(&inode->i_mutex);
1074 1075
		mutex_lock(&cgroup_mutex);

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1090 1091 1092
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1093
			mutex_unlock(&inode->i_mutex);
1094
			goto free_cg_links;
1095 1096 1097 1098 1099 1100
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1101
		root_count++;
1102

1103
		sb->s_root->d_fsdata = root_cgrp;
1104 1105
		root->top_cgroup.dentry = sb->s_root;

1106 1107 1108
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1109 1110 1111
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1112
			struct css_set *cg;
1113

1114 1115
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1116
		}
1117 1118 1119 1120
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1121 1122
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1123 1124
		BUG_ON(root->number_of_cgroups != 1);

1125
		cgroup_populate_dir(root_cgrp);
1126
		mutex_unlock(&inode->i_mutex);
1127 1128 1129
		mutex_unlock(&cgroup_mutex);
	}

1130 1131
	simple_set_mnt(mnt, sb);
	return 0;
1132

1133 1134
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1135
 drop_new_super:
1136
	deactivate_locked_super(sb);
1137 1138 1139 1140 1141
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1142
	struct cgroup *cgrp = &root->top_cgroup;
1143
	int ret;
K
KOSAKI Motohiro 已提交
1144 1145
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1146 1147 1148 1149

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1150 1151
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1152 1153 1154 1155 1156 1157 1158 1159

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1160 1161 1162 1163 1164
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1165 1166 1167

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1168
		list_del(&link->cg_link_list);
1169
		list_del(&link->cgrp_link_list);
1170 1171 1172 1173
		kfree(link);
	}
	write_unlock(&css_set_lock);

1174 1175 1176 1177
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1178

1179 1180 1181
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
L
Li Zefan 已提交
1182
	kfree(root);
1183 1184 1185 1186 1187 1188 1189 1190
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1191
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1201 1202 1203 1204 1205 1206
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1207 1208 1209
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1210
 */
1211
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1212 1213
{
	char *start;
1214
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1215

1216
	if (!dentry || cgrp == dummytop) {
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1229
		int len = dentry->d_name.len;
1230 1231
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1232 1233 1234
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1235
			break;
1236
		dentry = rcu_dereference(cgrp->dentry);
1237
		if (!cgrp->parent)
1238 1239 1240 1241 1242 1243 1244 1245 1246
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1247 1248 1249 1250 1251
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1252
static void get_first_subsys(const struct cgroup *cgrp,
1253 1254
			struct cgroup_subsys_state **css, int *subsys_id)
{
1255
	const struct cgroupfs_root *root = cgrp->root;
1256 1257 1258 1259 1260
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1261
		*css = cgrp->subsys[test_ss->subsys_id];
1262 1263 1264 1265 1266 1267
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1268 1269 1270 1271
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1272
 *
L
Li Zefan 已提交
1273 1274
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1275
 */
1276
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1277 1278 1279
{
	int retval = 0;
	struct cgroup_subsys *ss;
1280
	struct cgroup *oldcgrp;
1281
	struct css_set *cg;
1282
	struct css_set *newcg;
1283
	struct cgroupfs_root *root = cgrp->root;
1284 1285
	int subsys_id;

1286
	get_first_subsys(cgrp, NULL, &subsys_id);
1287 1288

	/* Nothing to do if the task is already in that cgroup */
1289 1290
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1291 1292 1293 1294
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1295
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1296
			if (retval)
1297 1298 1299 1300
				return retval;
		}
	}

1301 1302 1303 1304
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1305 1306 1307 1308
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1309
	newcg = find_css_set(cg, cgrp);
1310
	put_css_set(cg);
P
Paul Jackson 已提交
1311
	if (!newcg)
1312 1313
		return -ENOMEM;

1314 1315 1316
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1317
		put_css_set(newcg);
1318 1319
		return -ESRCH;
	}
1320
	rcu_assign_pointer(tsk->cgroups, newcg);
1321 1322
	task_unlock(tsk);

1323 1324 1325 1326 1327 1328 1329 1330
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1331
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1332
		if (ss->attach)
1333
			ss->attach(ss, cgrp, oldcgrp, tsk);
1334
	}
1335
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1336
	synchronize_rcu();
1337
	put_css_set(cg);
1338 1339 1340 1341 1342 1343

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
	cgroup_wakeup_rmdir_waiters(cgrp);
1344 1345 1346 1347
	return 0;
}

/*
1348 1349
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1350
 */
1351
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1352 1353
{
	struct task_struct *tsk;
1354
	const struct cred *cred = current_cred(), *tcred;
1355 1356 1357 1358
	int ret;

	if (pid) {
		rcu_read_lock();
1359
		tsk = find_task_by_vpid(pid);
1360 1361 1362 1363 1364
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1365 1366 1367 1368 1369
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1370 1371
			return -EACCES;
		}
1372 1373
		get_task_struct(tsk);
		rcu_read_unlock();
1374 1375 1376 1377 1378
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1379
	ret = cgroup_attach_task(cgrp, tsk);
1380 1381 1382 1383
	put_task_struct(tsk);
	return ret;
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1394 1395 1396 1397 1398
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1399 1400
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1401 1402
};

1403 1404 1405 1406
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1407 1408
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1409
 */
1410
bool cgroup_lock_live_group(struct cgroup *cgrp)
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1427
	cgroup_unlock();
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1438
	cgroup_unlock();
1439 1440 1441
	return 0;
}

1442 1443 1444
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1445
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1446 1447 1448
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1449
{
1450
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1462
	strstrip(buffer);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1474 1475 1476 1477 1478
	if (!retval)
		retval = nbytes;
	return retval;
}

1479 1480 1481 1482 1483
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1484
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1499 1500 1501 1502
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1503 1504 1505 1506 1507 1508

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1509
out:
1510 1511 1512 1513 1514
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1515 1516 1517 1518
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1519
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1520

1521
	if (cgroup_is_removed(cgrp))
1522
		return -ENODEV;
1523
	if (cft->write)
1524
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1525 1526
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1527 1528
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1529 1530 1531 1532
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1533
	return -EINVAL;
1534 1535
}

1536 1537 1538 1539
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1540
{
1541
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1542
	u64 val = cft->read_u64(cgrp, cft);
1543 1544 1545 1546 1547
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1548 1549 1550 1551 1552
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1553
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1554 1555 1556 1557 1558 1559
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1560 1561 1562 1563
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1564
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1565

1566
	if (cgroup_is_removed(cgrp))
1567 1568 1569
		return -ENODEV;

	if (cft->read)
1570
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1571 1572
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1573 1574
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1575 1576 1577
	return -EINVAL;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1598 1599 1600 1601 1602 1603 1604 1605
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1606 1607
}

1608
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1609 1610 1611 1612 1613 1614 1615 1616
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1617
	.write = cgroup_file_write,
1618 1619 1620 1621
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1622 1623 1624 1625 1626 1627 1628 1629 1630
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1631

1632
	if (cft->read_map || cft->read_seq_string) {
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1689
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1690 1691
				struct super_block *sb)
{
A
Al Viro 已提交
1692
	static const struct dentry_operations cgroup_dops = {
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1716
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1728 1729 1730 1731 1732
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1733
 */
1734
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1735
				mode_t mode)
1736 1737 1738 1739
{
	struct dentry *parent;
	int error = 0;

1740 1741
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1742
	if (!error) {
1743
		dentry->d_fsdata = cgrp;
1744
		inc_nlink(parent->d_inode);
1745
		rcu_assign_pointer(cgrp->dentry, dentry);
1746 1747 1748 1749 1750 1751 1752
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

1780
int cgroup_add_file(struct cgroup *cgrp,
1781 1782 1783
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1784
	struct dentry *dir = cgrp->dentry;
1785 1786
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
1787
	mode_t mode;
1788 1789

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1790
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1791 1792 1793 1794 1795 1796 1797
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
1798 1799
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
1800
						cgrp->root->sb);
1801 1802 1803 1804 1805 1806 1807 1808
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1809
int cgroup_add_files(struct cgroup *cgrp,
1810 1811 1812 1813 1814 1815
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1816
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1817 1818 1819 1820 1821 1822
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1823 1824 1825 1826 1827 1828
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1829
int cgroup_task_count(const struct cgroup *cgrp)
1830 1831
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1832
	struct cg_cgroup_link *link;
1833 1834

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1835
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1836
		count += atomic_read(&link->cg->refcount);
1837 1838
	}
	read_unlock(&css_set_lock);
1839 1840 1841
	return count;
}

1842 1843 1844 1845
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1846
static void cgroup_advance_iter(struct cgroup *cgrp,
1847 1848 1849 1850 1851 1852 1853 1854 1855
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1856
		if (l == &cgrp->css_sets) {
1857 1858 1859
			it->cg_link = NULL;
			return;
		}
1860
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1861 1862 1863 1864 1865 1866
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1876
static void cgroup_enable_task_cg_lists(void)
1877 1878 1879 1880 1881 1882
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1883 1884 1885 1886 1887 1888
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1889 1890 1891 1892 1893 1894
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1895
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1896 1897 1898 1899 1900 1901
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1902 1903 1904
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1905
	read_lock(&css_set_lock);
1906 1907
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1908 1909
}

1910
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1911 1912 1913 1914
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1915
	struct cg_cgroup_link *link;
1916 1917 1918 1919 1920 1921 1922

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1923 1924
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1925 1926
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1927
		cgroup_advance_iter(cgrp, it);
1928 1929 1930 1931 1932 1933
	} else {
		it->task = l;
	}
	return res;
}

1934
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1935 1936 1937 1938
{
	read_unlock(&css_set_lock);
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2076
			struct task_struct *q = heap->ptrs[i];
2077
			if (i == 0) {
2078 2079
				latest_time = q->start_time;
				latest_task = q;
2080 2081
			}
			/* Process the task per the caller's callback */
2082 2083
			scan->process_task(q, scan);
			put_task_struct(q);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2111
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2112 2113 2114 2115
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2116
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2117
{
2118
	int n = 0, pid;
2119 2120
	struct cgroup_iter it;
	struct task_struct *tsk;
2121 2122
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2123 2124
		if (unlikely(n == npids))
			break;
2125 2126 2127
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2128
	}
2129
	cgroup_iter_end(cgrp, &it);
2130 2131 2132
	return n;
}

B
Balbir Singh 已提交
2133
/**
L
Li Zefan 已提交
2134
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2135 2136 2137
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2138 2139 2140
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2141 2142 2143 2144
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2145
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2146 2147
	struct cgroup_iter it;
	struct task_struct *tsk;
2148

B
Balbir Singh 已提交
2149
	/*
2150 2151
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2152
	 */
2153 2154
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2155 2156 2157
		 goto err;

	ret = 0;
2158
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2159

2160 2161
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2181
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2182 2183 2184 2185 2186

err:
	return ret;
}

2187 2188 2189 2190 2191
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2192

2193
/*
2194 2195 2196
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2197
 */
2198 2199

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2200
{
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2214

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2302
/*
2303
 * Handle an open on 'tasks' file.  Prepare an array containing the
2304 2305
 * process id's of tasks currently attached to the cgroup being opened.
 */
2306

2307 2308
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2309
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2310 2311
	pid_t *pidarray;
	int npids;
2312
	int retval;
2313

2314
	/* Nothing to do for write-only files */
2315 2316 2317 2318 2319 2320 2321 2322 2323
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2324
	npids = cgroup_task_count(cgrp);
2325 2326 2327 2328 2329
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2330

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2348
	}
2349
	((struct seq_file *)file->private_data)->private = cgrp;
2350 2351 2352
	return 0;
}

2353
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2354 2355
					    struct cftype *cft)
{
2356
	return notify_on_release(cgrp);
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2371 2372 2373
/*
 * for the common functions, 'private' gives the type of file
 */
2374 2375 2376 2377
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2378
		.write_u64 = cgroup_tasks_write,
2379 2380
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2381
		.mode = S_IRUGO | S_IWUSR,
2382 2383 2384 2385
	},

	{
		.name = "notify_on_release",
2386
		.read_u64 = cgroup_read_notify_on_release,
2387
		.write_u64 = cgroup_write_notify_on_release,
2388 2389 2390 2391 2392 2393
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2394 2395 2396
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2397
	.private = FILE_RELEASE_AGENT,
2398 2399
};

2400
static int cgroup_populate_dir(struct cgroup *cgrp)
2401 2402 2403 2404 2405
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2406
	cgroup_clear_directory(cgrp->dentry);
2407

2408
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2409 2410 2411
	if (err < 0)
		return err;

2412 2413
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2414 2415 2416
			return err;
	}

2417 2418
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2419 2420
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2432 2433 2434 2435 2436 2437

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2438
			       struct cgroup *cgrp)
2439
{
2440
	css->cgroup = cgrp;
P
Paul Menage 已提交
2441
	atomic_set(&css->refcnt, 1);
2442
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2443
	css->id = NULL;
2444
	if (cgrp == dummytop)
2445
		set_bit(CSS_ROOT, &css->flags);
2446 2447
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2458
			mutex_lock(&ss->hierarchy_mutex);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2473
/*
L
Li Zefan 已提交
2474 2475 2476 2477
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2478
 *
L
Li Zefan 已提交
2479
 * Must be called with the mutex on the parent inode held
2480 2481
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2482
			     mode_t mode)
2483
{
2484
	struct cgroup *cgrp;
2485 2486 2487 2488 2489
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2490 2491
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2503
	init_cgroup_housekeeping(cgrp);
2504

2505 2506 2507
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2508

2509 2510 2511
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2512
	for_each_subsys(root, ss) {
2513
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2514 2515 2516 2517
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2518
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2519 2520 2521 2522
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2523 2524
	}

2525
	cgroup_lock_hierarchy(root);
2526
	list_add(&cgrp->sibling, &cgrp->parent->children);
2527
	cgroup_unlock_hierarchy(root);
2528 2529
	root->number_of_cgroups++;

2530
	err = cgroup_create_dir(cgrp, dentry, mode);
2531 2532 2533 2534
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2535
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2536

2537
	err = cgroup_populate_dir(cgrp);
2538 2539 2540
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2541
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2542 2543 2544 2545 2546

	return 0;

 err_remove:

2547
	cgroup_lock_hierarchy(root);
2548
	list_del(&cgrp->sibling);
2549
	cgroup_unlock_hierarchy(root);
2550 2551 2552 2553 2554
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2555 2556
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2557 2558 2559 2560 2561 2562 2563
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2564
	kfree(cgrp);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2576
static int cgroup_has_css_refs(struct cgroup *cgrp)
2577 2578 2579
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2580
	 * cgroup, if the css refcount is also 1, then there should
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2592
		if (ss->root != cgrp->root)
2593
			continue;
2594
		css = cgrp->subsys[ss->subsys_id];
2595 2596 2597 2598 2599 2600
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2601
		if (css && (atomic_read(&css->refcnt) > 1))
2602 2603 2604 2605 2606
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2622
		while (1) {
P
Paul Menage 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2636 2637 2638 2639
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2660 2661
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2662
	struct cgroup *cgrp = dentry->d_fsdata;
2663 2664
	struct dentry *d;
	struct cgroup *parent;
2665 2666
	DEFINE_WAIT(wait);
	int ret;
2667 2668

	/* the vfs holds both inode->i_mutex already */
2669
again:
2670
	mutex_lock(&cgroup_mutex);
2671
	if (atomic_read(&cgrp->count) != 0) {
2672 2673 2674
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2675
	if (!list_empty(&cgrp->children)) {
2676 2677 2678
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2679
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2680

2681
	/*
L
Li Zefan 已提交
2682 2683
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2684
	 */
2685 2686 2687
	ret = cgroup_call_pre_destroy(cgrp);
	if (ret)
		return ret;
2688

2689 2690
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2691
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2692 2693 2694
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	/*
	 * css_put/get is provided for subsys to grab refcnt to css. In typical
	 * case, subsystem has no reference after pre_destroy(). But, under
	 * hierarchy management, some *temporal* refcnt can be hold.
	 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
	 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
	 * is called when css_put() is called and refcnt goes down to 0.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);

	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		schedule();
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2718

2719
	spin_lock(&release_list_lock);
2720 2721 2722
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2723
	spin_unlock(&release_list_lock);
2724 2725 2726

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2727
	list_del(&cgrp->sibling);
2728 2729
	cgroup_unlock_hierarchy(cgrp->root);

2730 2731
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2732 2733 2734 2735 2736
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2737
	set_bit(CGRP_RELEASABLE, &parent->flags);
2738 2739
	check_for_release(parent);

2740 2741 2742 2743
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2744
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2745 2746
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2747 2748

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2749 2750

	/* Create the top cgroup state for this subsystem */
2751
	list_add(&ss->sibling, &rootnode.subsys_list);
2752 2753 2754 2755 2756 2757
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2758
	/* Update the init_css_set to contain a subsys
2759
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2760 2761 2762
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2763 2764 2765

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2766 2767 2768 2769 2770
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2771
	mutex_init(&ss->hierarchy_mutex);
2772
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2773 2774 2775 2776
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2777 2778 2779 2780
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2781 2782 2783 2784
 */
int __init cgroup_init_early(void)
{
	int i;
2785
	atomic_set(&init_css_set.refcount, 1);
2786 2787
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2788
	INIT_HLIST_NODE(&init_css_set.hlist);
2789
	css_set_count = 1;
2790
	init_cgroup_root(&rootnode);
2791 2792 2793 2794
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2795
	list_add(&init_css_set_link.cgrp_link_list,
2796 2797 2798
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2799

2800 2801 2802
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2803 2804 2805 2806 2807 2808 2809 2810
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2811
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2823 2824 2825 2826
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2827 2828 2829 2830 2831
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2832
	struct hlist_head *hhead;
2833 2834 2835 2836

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2837 2838 2839 2840 2841

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
2842 2843
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
2844 2845
	}

2846 2847 2848 2849
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2850 2851 2852 2853
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2854
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2855

2856
out:
2857 2858 2859
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2860 2861
	return err;
}
2862

2863 2864 2865 2866 2867 2868
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2869
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

2899
	for_each_active_root(root) {
2900
		struct cgroup_subsys *ss;
2901
		struct cgroup *cgrp;
2902 2903 2904
		int subsys_id;
		int count = 0;

2905
		seq_printf(m, "%lu:", root->subsys_bits);
2906 2907 2908 2909
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2910 2911
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2945
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2946 2947 2948
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2949
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2950
			   ss->name, ss->root->subsys_bits,
2951
			   ss->root->number_of_cgroups, !ss->disabled);
2952 2953 2954 2955 2956 2957 2958
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2959
	return single_open(file, proc_cgroupstats_show, NULL);
2960 2961 2962 2963 2964 2965 2966 2967 2968
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2969 2970
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2971
 * @child: pointer to task_struct of forking parent process.
2972 2973 2974 2975 2976 2977
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2978
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2979 2980
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2981 2982 2983 2984 2985 2986
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2987 2988 2989 2990 2991
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2992 2993 2994
}

/**
L
Li Zefan 已提交
2995 2996 2997 2998 2999 3000
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3014
/**
L
Li Zefan 已提交
3015 3016 3017 3018 3019 3020 3021 3022
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3023 3024 3025 3026
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3027
		task_lock(child);
3028 3029
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3030
		task_unlock(child);
3031 3032 3033
		write_unlock(&css_set_lock);
	}
}
3034 3035 3036
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3037
 * @run_callback: run exit callbacks?
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3066 3067
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3068 3069 3070 3071
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3072
	struct css_set *cg;
3073 3074 3075 3076 3077 3078 3079 3080

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3094 3095
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3096 3097
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3098
	task_unlock(tsk);
3099
	if (cg)
3100
		put_css_set_taskexit(cg);
3101
}
3102 3103

/**
L
Li Zefan 已提交
3104 3105 3106
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3107
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3108 3109 3110 3111
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3112
 */
3113 3114
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3138
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3139 3140 3141 3142
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3143

3144
	/* Keep the cgroup alive */
3145 3146 3147
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3148
	get_css_set(cg);
3149
	task_unlock(tsk);
3150

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3162
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3163 3164 3165 3166 3167 3168
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3169
	ret = vfs_mkdir(inode, dentry, 0755);
3170
	child = __d_cgrp(dentry);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3187
		put_css_set(cg);
3188

3189
		deactivate_super(root->sb);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3206
	ret = cgroup_attach_task(child, tsk);
3207 3208 3209 3210
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3211 3212

	mutex_lock(&cgroup_mutex);
3213
	put_css_set(cg);
3214
	mutex_unlock(&cgroup_mutex);
3215
	deactivate_super(root->sb);
3216 3217 3218
	return ret;
}

L
Li Zefan 已提交
3219
/**
3220
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3221
 * @cgrp: the cgroup in question
3222
 * @task: the task in question
L
Li Zefan 已提交
3223
 *
3224 3225
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3226 3227 3228 3229 3230 3231
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3232
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3233 3234 3235 3236 3237
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3238
	if (cgrp == dummytop)
3239 3240
		return 1;

3241
	get_first_subsys(cgrp, NULL, &subsys_id);
3242
	target = task_cgroup(task, subsys_id);
3243 3244 3245
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3246 3247
	return ret;
}
3248

3249
static void check_for_release(struct cgroup *cgrp)
3250 3251 3252
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3253 3254
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3255 3256 3257 3258 3259
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3260 3261 3262
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3273
	struct cgroup *cgrp = css->cgroup;
3274
	rcu_read_lock();
3275 3276 3277 3278 3279 3280
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
		cgroup_wakeup_rmdir_waiters(cgrp);
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3316
		char *pathbuf = NULL, *agentbuf = NULL;
3317
		struct cgroup *cgrp = list_entry(release_list.next,
3318 3319
						    struct cgroup,
						    release_list);
3320
		list_del_init(&cgrp->release_list);
3321 3322
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3323 3324 3325 3326 3327 3328 3329
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3330 3331

		i = 0;
3332 3333
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3348 3349 3350
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3351 3352 3353 3354 3355
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3407
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}