cgroup.c 84.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

87
	/* A list running through the active hierarchies */
88 89 90 91
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103 104 105 106 107
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
108
static int root_count;
109 110 111 112 113

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
114 115 116
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
117
 */
118
static int need_forkexit_callback __read_mostly;
119 120

/* convenient tests for these bits */
121
inline int cgroup_is_removed(const struct cgroup *cgrp)
122
{
123
	return test_bit(CGRP_REMOVED, &cgrp->flags);
124 125 126 127 128 129 130
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

131
static int cgroup_is_releasable(const struct cgroup *cgrp)
132 133
{
	const int bits =
134 135 136
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
137 138
}

139
static int notify_on_release(const struct cgroup *cgrp)
140
{
141
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 143
}

144 145 146 147 148 149 150
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

151 152
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
153 154
list_for_each_entry(_root, &roots, root_list)

155 156 157 158 159 160
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161
static void check_for_release(struct cgroup *cgrp);
162

163 164 165 166 167 168
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
169
	struct list_head cgrp_link_list;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

215 216 217 218
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
219
static int use_task_css_set_links __read_mostly;
220 221 222 223 224 225 226

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
227 228 229 230 231 232 233
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
234 235 236 237

/*
 * unlink a css_set from the list and free it
 */
238
static void unlink_css_set(struct css_set *cg)
239
{
K
KOSAKI Motohiro 已提交
240 241 242
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

243
	hlist_del(&cg->hlist);
244
	css_set_count--;
K
KOSAKI Motohiro 已提交
245 246 247

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
248
		list_del(&link->cg_link_list);
249
		list_del(&link->cgrp_link_list);
250 251
		kfree(link);
	}
252 253
}

254
static void __put_css_set(struct css_set *cg, int taskexit)
255 256
{
	int i;
257 258 259 260 261 262 263 264 265 266 267 268
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
269
	unlink_css_set(cg);
270
	write_unlock(&css_set_lock);
271 272 273

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
275 276
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
277
			if (taskexit)
278 279
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
280 281 282
		}
	}
	rcu_read_unlock();
283
	kfree(cg);
284 285
}

286 287 288 289 290
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
291
	atomic_inc(&cg->refcount);
292 293 294 295
}

static inline void put_css_set(struct css_set *cg)
{
296
	__put_css_set(cg, 0);
297 298
}

299 300
static inline void put_css_set_taskexit(struct css_set *cg)
{
301
	__put_css_set(cg, 1);
302 303
}

304 305 306
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
307
 * css_set is suitable.
308 309 310 311
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
312
 * cgrp: the cgroup that we're moving into
313 314 315 316 317 318
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
319
	struct cgroup *cgrp,
320
	struct cgroup_subsys_state *template[])
321 322
{
	int i;
323
	struct cgroupfs_root *root = cgrp->root;
324 325 326
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
327 328 329 330

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
331
		if (root->subsys_bits & (1UL << i)) {
332 333 334
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
335
			template[i] = cgrp->subsys[i];
336 337 338 339 340 341 342
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

343 344
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
345 346 347 348
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
349
	}
350 351 352 353 354

	/* No existing cgroup group matched */
	return NULL;
}

355 356 357 358 359 360 361 362 363 364 365
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

366 367
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 370 371 372 373 374 375 376 377 378
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
379
			free_cg_links(tmp);
380 381
			return -ENOMEM;
		}
382
		list_add(&link->cgrp_link_list, tmp);
383 384 385 386
	}
	return 0;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
	list_add(&link->cg_link_list, &cg->cg_links);
}

406 407 408 409 410 411 412 413
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
414
	struct css_set *oldcg, struct cgroup *cgrp)
415 416 417 418 419 420 421
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

422 423
	struct hlist_head *hhead;

424 425
	/* First see if we already have a cgroup group that matches
	 * the desired set */
426
	read_lock(&css_set_lock);
427
	res = find_existing_css_set(oldcg, cgrp, template);
428 429
	if (res)
		get_css_set(res);
430
	read_unlock(&css_set_lock);
431 432 433 434 435 436 437 438 439 440 441 442 443 444

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

445
	atomic_set(&res->refcount, 1);
446 447
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
448
	INIT_HLIST_NODE(&res->hlist);
449 450 451 452 453 454 455 456

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
457
		struct cgroup *cgrp = res->subsys[i]->cgroup;
458
		struct cgroup_subsys *ss = subsys[i];
459
		atomic_inc(&cgrp->count);
460 461 462 463 464
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
465 466
		if (ss->root->subsys_list.next == &ss->sibling)
			link_css_set(&tmp_cg_links, res, cgrp);
467
	}
468 469
	if (list_empty(&rootnode.subsys_list))
		link_css_set(&tmp_cg_links, res, dummytop);
470 471 472 473

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
474 475 476 477 478

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

479 480 481
	write_unlock(&css_set_lock);

	return res;
482 483
}

484 485 486 487 488 489 490 491 492 493
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
494
 * cgroup_attach_task() can increment it again.  Because a count of zero
495 496 497 498 499 500 501 502 503 504 505 506 507
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
508 509
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
510 511 512 513 514 515 516 517 518 519 520
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
521
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
522
 * another.  It does so using cgroup_mutex, however there are
523 524 525
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
526
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
527 528 529 530
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
531
 * update of a tasks cgroup pointer by cgroup_attach_task()
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
562
static int cgroup_populate_dir(struct cgroup *cgrp);
563
static struct inode_operations cgroup_dir_inode_operations;
564 565 566
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
567
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
568
};
569 570 571 572 573 574 575

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
576 577
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
578 579 580 581 582 583
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

584 585 586 587 588 589 590 591
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
592
		if (ss->pre_destroy)
593 594 595 596
			ss->pre_destroy(ss, cgrp);
	return;
}

597 598 599 600 601 602 603
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

604 605 606 607
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
608
		struct cgroup *cgrp = dentry->d_fsdata;
609
		struct cgroup_subsys *ss;
610
		BUG_ON(!(cgroup_is_removed(cgrp)));
611 612 613 614 615 616 617
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
618 619 620 621 622

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
623 624
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
625 626 627 628

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

629 630 631 632
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
633 634
		deactivate_super(cgrp->root->sb);

635
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
692
	struct cgroup *cgrp = &root->top_cgroup;
693 694 695 696 697 698
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
699
		unsigned long bit = 1UL << i;
700 701 702 703 704 705 706 707 708 709 710 711 712
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
713
	if (root->number_of_cgroups > 1)
714 715 716 717 718 719 720 721
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
722
			BUG_ON(cgrp->subsys[i]);
723 724
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
725
			mutex_lock(&ss->hierarchy_mutex);
726 727
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
728
			list_move(&ss->sibling, &root->subsys_list);
729
			ss->root = root;
730
			if (ss->bind)
731
				ss->bind(ss, cgrp);
732
			mutex_unlock(&ss->hierarchy_mutex);
733 734
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
735 736
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
737
			mutex_lock(&ss->hierarchy_mutex);
738 739 740
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
741
			cgrp->subsys[i] = NULL;
742
			subsys[i]->root = &rootnode;
743
			list_move(&ss->sibling, &rootnode.subsys_list);
744
			mutex_unlock(&ss->hierarchy_mutex);
745 746
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
747
			BUG_ON(!cgrp->subsys[i]);
748 749
		} else {
			/* Subsystem state shouldn't exist */
750
			BUG_ON(cgrp->subsys[i]);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
769 770
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
771 772 773 774 775 776 777
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
778
	char *release_agent;
779 780 781 782 783 784 785 786 787 788 789
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
790
	opts->release_agent = NULL;
791 792 793 794 795

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
796 797 798 799 800 801 802 803
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
804 805
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
806 807 808 809 810 811 812 813 814
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
815 816 817 818 819 820
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
821 822
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
842
	struct cgroup *cgrp = &root->top_cgroup;
843 844
	struct cgroup_sb_opts opts;

845
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
863
		cgroup_populate_dir(cgrp);
864

865 866
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
867
 out_unlock:
868 869
	if (opts.release_agent)
		kfree(opts.release_agent);
870
	mutex_unlock(&cgroup_mutex);
871
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
872 873 874 875 876 877 878 879 880 881
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

882 883 884 885 886 887 888 889
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
890 891
static void init_cgroup_root(struct cgroupfs_root *root)
{
892
	struct cgroup *cgrp = &root->top_cgroup;
893 894 895
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
896 897
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
898
	init_cgroup_housekeeping(cgrp);
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
967
	struct list_head tmp_cg_links;
968 969 970

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
971 972 973
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
974
		return ret;
975
	}
976 977

	root = kzalloc(sizeof(*root), GFP_KERNEL);
978 979 980
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
981
		return -ENOMEM;
982
	}
983 984 985 986

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
987 988 989 990
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1006
		struct cgroup *root_cgrp = &root->top_cgroup;
1007
		struct inode *inode;
1008
		int i;
1009 1010 1011 1012 1013 1014

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1015
		inode = sb->s_root->d_inode;
1016

1017
		mutex_lock(&inode->i_mutex);
1018 1019
		mutex_lock(&cgroup_mutex);

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1034 1035 1036
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1037
			mutex_unlock(&inode->i_mutex);
1038
			goto free_cg_links;
1039 1040 1041 1042 1043 1044
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1045
		root_count++;
1046

1047
		sb->s_root->d_fsdata = root_cgrp;
1048 1049
		root->top_cgroup.dentry = sb->s_root;

1050 1051 1052
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1053 1054 1055
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1056
			struct css_set *cg;
1057

1058 1059
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1060
		}
1061 1062 1063 1064
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1065 1066
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1067 1068
		BUG_ON(root->number_of_cgroups != 1);

1069
		cgroup_populate_dir(root_cgrp);
1070
		mutex_unlock(&inode->i_mutex);
1071 1072 1073 1074 1075
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

1076 1077
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1078 1079 1080 1081 1082 1083 1084 1085
 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1086
	struct cgroup *cgrp = &root->top_cgroup;
1087
	int ret;
K
KOSAKI Motohiro 已提交
1088 1089
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1090 1091 1092 1093

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1094 1095
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1096 1097 1098 1099 1100 1101 1102 1103

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1104 1105 1106 1107 1108
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1109 1110 1111

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1112
		list_del(&link->cg_link_list);
1113
		list_del(&link->cgrp_link_list);
1114 1115 1116 1117
		kfree(link);
	}
	write_unlock(&css_set_lock);

1118 1119 1120
	list_del(&root->root_list);
	root_count--;

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1133
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1134 1135 1136 1137 1138 1139 1140 1141 1142
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1143 1144 1145 1146 1147 1148
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1149 1150 1151
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1152
 */
1153
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1154 1155
{
	char *start;
1156
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1157

1158
	if (!dentry || cgrp == dummytop) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1171
		int len = dentry->d_name.len;
1172 1173
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1174 1175 1176
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1177
			break;
1178
		dentry = rcu_dereference(cgrp->dentry);
1179
		if (!cgrp->parent)
1180 1181 1182 1183 1184 1185 1186 1187 1188
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1189 1190 1191 1192 1193
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1194
static void get_first_subsys(const struct cgroup *cgrp,
1195 1196
			struct cgroup_subsys_state **css, int *subsys_id)
{
1197
	const struct cgroupfs_root *root = cgrp->root;
1198 1199 1200 1201 1202
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1203
		*css = cgrp->subsys[test_ss->subsys_id];
1204 1205 1206 1207 1208 1209
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1210 1211 1212 1213
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1214
 *
L
Li Zefan 已提交
1215 1216
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1217
 */
1218
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1219 1220 1221
{
	int retval = 0;
	struct cgroup_subsys *ss;
1222
	struct cgroup *oldcgrp;
1223
	struct css_set *cg;
1224
	struct css_set *newcg;
1225
	struct cgroupfs_root *root = cgrp->root;
1226 1227
	int subsys_id;

1228
	get_first_subsys(cgrp, NULL, &subsys_id);
1229 1230

	/* Nothing to do if the task is already in that cgroup */
1231 1232
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1233 1234 1235 1236
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1237
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1238
			if (retval)
1239 1240 1241 1242
				return retval;
		}
	}

1243 1244 1245 1246
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1247 1248 1249 1250
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1251
	newcg = find_css_set(cg, cgrp);
1252
	put_css_set(cg);
P
Paul Jackson 已提交
1253
	if (!newcg)
1254 1255
		return -ENOMEM;

1256 1257 1258
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1259
		put_css_set(newcg);
1260 1261
		return -ESRCH;
	}
1262
	rcu_assign_pointer(tsk->cgroups, newcg);
1263 1264
	task_unlock(tsk);

1265 1266 1267 1268 1269 1270 1271 1272
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1273
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1274
		if (ss->attach)
1275
			ss->attach(ss, cgrp, oldcgrp, tsk);
1276
	}
1277
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1278
	synchronize_rcu();
1279
	put_css_set(cg);
1280 1281 1282 1283
	return 0;
}

/*
1284 1285
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1286
 */
1287
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1288 1289
{
	struct task_struct *tsk;
1290
	const struct cred *cred = current_cred(), *tcred;
1291 1292 1293 1294
	int ret;

	if (pid) {
		rcu_read_lock();
1295
		tsk = find_task_by_vpid(pid);
1296 1297 1298 1299 1300
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1301 1302 1303 1304 1305
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1306 1307
			return -EACCES;
		}
1308 1309
		get_task_struct(tsk);
		rcu_read_unlock();
1310 1311 1312 1313 1314
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1315
	ret = cgroup_attach_task(cgrp, tsk);
1316 1317 1318 1319
	put_task_struct(tsk);
	return ret;
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1330 1331 1332 1333 1334
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1335 1336
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1337 1338
};

1339 1340 1341 1342
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1343 1344
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1345
 */
1346
bool cgroup_lock_live_group(struct cgroup *cgrp)
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1363
	cgroup_unlock();
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1374
	cgroup_unlock();
1375 1376 1377
	return 0;
}

1378 1379 1380
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1381
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1382 1383 1384
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1385
{
1386
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1398
	strstrip(buffer);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1410 1411 1412 1413 1414
	if (!retval)
		retval = nbytes;
	return retval;
}

1415 1416 1417 1418 1419
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1420
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1435 1436 1437 1438
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1439 1440 1441 1442 1443 1444

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1445
out:
1446 1447 1448 1449 1450
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1451 1452 1453 1454
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1455
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1456

1457
	if (cgroup_is_removed(cgrp))
1458
		return -ENODEV;
1459
	if (cft->write)
1460
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1461 1462
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1463 1464
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1465 1466 1467 1468
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1469
	return -EINVAL;
1470 1471
}

1472 1473 1474 1475
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1476
{
1477
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1478
	u64 val = cft->read_u64(cgrp, cft);
1479 1480 1481 1482 1483
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1484 1485 1486 1487 1488
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1489
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1490 1491 1492 1493 1494 1495
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1496 1497 1498 1499
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1500
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1501

1502
	if (cgroup_is_removed(cgrp))
1503 1504 1505
		return -ENODEV;

	if (cft->read)
1506
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1507 1508
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1509 1510
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1511 1512 1513
	return -EINVAL;
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1534 1535 1536 1537 1538 1539 1540 1541
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1542 1543
}

1544
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1545 1546 1547 1548 1549 1550 1551 1552
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1553
	.write = cgroup_file_write,
1554 1555 1556 1557
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1558 1559 1560 1561 1562 1563 1564 1565 1566
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1567

1568
	if (cft->read_map || cft->read_seq_string) {
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1652
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1664 1665 1666 1667 1668
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1669
 */
1670
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1671 1672 1673 1674 1675
				int mode)
{
	struct dentry *parent;
	int error = 0;

1676 1677
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1678
	if (!error) {
1679
		dentry->d_fsdata = cgrp;
1680
		inc_nlink(parent->d_inode);
1681
		rcu_assign_pointer(cgrp->dentry, dentry);
1682 1683 1684 1685 1686 1687 1688
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1689
int cgroup_add_file(struct cgroup *cgrp,
1690 1691 1692
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1693
	struct dentry *dir = cgrp->dentry;
1694 1695 1696 1697
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1698
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1699 1700 1701 1702 1703 1704 1705 1706
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1707
						cgrp->root->sb);
1708 1709 1710 1711 1712 1713 1714 1715
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1716
int cgroup_add_files(struct cgroup *cgrp,
1717 1718 1719 1720 1721 1722
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1723
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1724 1725 1726 1727 1728 1729
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1730 1731 1732 1733 1734 1735
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1736
int cgroup_task_count(const struct cgroup *cgrp)
1737 1738
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1739
	struct cg_cgroup_link *link;
1740 1741

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1742
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1743
		count += atomic_read(&link->cg->refcount);
1744 1745
	}
	read_unlock(&css_set_lock);
1746 1747 1748
	return count;
}

1749 1750 1751 1752
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1753
static void cgroup_advance_iter(struct cgroup *cgrp,
1754 1755 1756 1757 1758 1759 1760 1761 1762
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1763
		if (l == &cgrp->css_sets) {
1764 1765 1766
			it->cg_link = NULL;
			return;
		}
1767
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1768 1769 1770 1771 1772 1773
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1774 1775 1776 1777 1778 1779 1780 1781 1782
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1783
static void cgroup_enable_task_cg_lists(void)
1784 1785 1786 1787 1788 1789
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1790 1791 1792 1793 1794 1795
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1796 1797 1798 1799 1800 1801
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1802
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1803 1804 1805 1806 1807 1808
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1809 1810 1811
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1812
	read_lock(&css_set_lock);
1813 1814
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1815 1816
}

1817
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1818 1819 1820 1821
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1822
	struct cg_cgroup_link *link;
1823 1824 1825 1826 1827 1828 1829

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1830 1831
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1832 1833
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1834
		cgroup_advance_iter(cgrp, it);
1835 1836 1837 1838 1839 1840
	} else {
		it->task = l;
	}
	return res;
}

1841
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1842 1843 1844 1845
{
	read_unlock(&css_set_lock);
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
1983
			struct task_struct *q = heap->ptrs[i];
1984
			if (i == 0) {
1985 1986
				latest_time = q->start_time;
				latest_task = q;
1987 1988
			}
			/* Process the task per the caller's callback */
1989 1990
			scan->process_task(q, scan);
			put_task_struct(q);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2018
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2019 2020 2021 2022
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2023
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2024
{
2025
	int n = 0, pid;
2026 2027
	struct cgroup_iter it;
	struct task_struct *tsk;
2028 2029
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2030 2031
		if (unlikely(n == npids))
			break;
2032 2033 2034
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2035
	}
2036
	cgroup_iter_end(cgrp, &it);
2037 2038 2039
	return n;
}

B
Balbir Singh 已提交
2040
/**
L
Li Zefan 已提交
2041
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2042 2043 2044
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2045 2046 2047
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2048 2049 2050 2051
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2052
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2053 2054
	struct cgroup_iter it;
	struct task_struct *tsk;
2055

B
Balbir Singh 已提交
2056
	/*
2057 2058
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2059
	 */
2060 2061
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2062 2063 2064
		 goto err;

	ret = 0;
2065
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2066

2067 2068
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2088
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2089 2090 2091 2092 2093

err:
	return ret;
}

2094 2095 2096 2097 2098
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2099

2100
/*
2101 2102 2103
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2104
 */
2105 2106

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2107
{
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2171

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2209
/*
2210
 * Handle an open on 'tasks' file.  Prepare an array containing the
2211 2212
 * process id's of tasks currently attached to the cgroup being opened.
 */
2213

2214 2215
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2216
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2217 2218
	pid_t *pidarray;
	int npids;
2219
	int retval;
2220

2221
	/* Nothing to do for write-only files */
2222 2223 2224 2225 2226 2227 2228 2229 2230
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2231
	npids = cgroup_task_count(cgrp);
2232 2233 2234 2235 2236
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2237

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2255
	}
2256
	((struct seq_file *)file->private_data)->private = cgrp;
2257 2258 2259
	return 0;
}

2260
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2261 2262
					    struct cftype *cft)
{
2263
	return notify_on_release(cgrp);
2264 2265
}

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2278 2279 2280
/*
 * for the common functions, 'private' gives the type of file
 */
2281 2282 2283 2284
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2285
		.write_u64 = cgroup_tasks_write,
2286 2287 2288 2289 2290 2291
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2292
		.read_u64 = cgroup_read_notify_on_release,
2293
		.write_u64 = cgroup_write_notify_on_release,
2294 2295 2296 2297 2298 2299
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2300 2301 2302
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2303
	.private = FILE_RELEASE_AGENT,
2304 2305
};

2306
static int cgroup_populate_dir(struct cgroup *cgrp)
2307 2308 2309 2310 2311
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2312
	cgroup_clear_directory(cgrp->dentry);
2313

2314
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2315 2316 2317
	if (err < 0)
		return err;

2318 2319
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2320 2321 2322
			return err;
	}

2323 2324
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2325 2326 2327 2328 2329 2330 2331 2332
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2333
			       struct cgroup *cgrp)
2334
{
2335
	css->cgroup = cgrp;
P
Paul Menage 已提交
2336
	atomic_set(&css->refcnt, 1);
2337
	css->flags = 0;
2338
	if (cgrp == dummytop)
2339
		set_bit(CSS_ROOT, &css->flags);
2340 2341
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2342 2343
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_lock_nested(&ss->hierarchy_mutex, i);
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2367
/*
L
Li Zefan 已提交
2368 2369 2370 2371
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2372
 *
L
Li Zefan 已提交
2373
 * Must be called with the mutex on the parent inode held
2374 2375 2376 2377
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2378
	struct cgroup *cgrp;
2379 2380 2381 2382 2383
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2384 2385
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2397
	init_cgroup_housekeeping(cgrp);
2398

2399 2400 2401
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2402

2403 2404 2405
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2406
	for_each_subsys(root, ss) {
2407
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2408 2409 2410 2411
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2412
		init_cgroup_css(css, ss, cgrp);
2413 2414
	}

2415
	cgroup_lock_hierarchy(root);
2416
	list_add(&cgrp->sibling, &cgrp->parent->children);
2417
	cgroup_unlock_hierarchy(root);
2418 2419
	root->number_of_cgroups++;

2420
	err = cgroup_create_dir(cgrp, dentry, mode);
2421 2422 2423 2424
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2425
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2426

2427
	err = cgroup_populate_dir(cgrp);
2428 2429 2430
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2431
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2432 2433 2434 2435 2436

	return 0;

 err_remove:

2437
	list_del(&cgrp->sibling);
2438 2439 2440 2441 2442
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2443 2444
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2445 2446 2447 2448 2449 2450 2451
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2452
	kfree(cgrp);
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2464
static int cgroup_has_css_refs(struct cgroup *cgrp)
2465 2466 2467
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2468
	 * cgroup, if the css refcount is also 1, then there should
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2480
		if (ss->root != cgrp->root)
2481
			continue;
2482
		css = cgrp->subsys[ss->subsys_id];
2483 2484 2485 2486 2487 2488
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2489
		if (css && (atomic_read(&css->refcnt) > 1))
2490 2491 2492 2493 2494
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
		do {
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
		} while (atomic_cmpxchg(&css->refcnt, refcnt, 0) != refcnt);
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2545 2546
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2547
	struct cgroup *cgrp = dentry->d_fsdata;
2548 2549 2550 2551 2552 2553
	struct dentry *d;
	struct cgroup *parent;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2554
	if (atomic_read(&cgrp->count) != 0) {
2555 2556 2557
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2558
	if (!list_empty(&cgrp->children)) {
2559 2560 2561
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2562
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2563

2564
	/*
L
Li Zefan 已提交
2565 2566
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2567 2568
	 */
	cgroup_call_pre_destroy(cgrp);
2569

2570 2571 2572 2573 2574
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;

	if (atomic_read(&cgrp->count)
	    || !list_empty(&cgrp->children)
P
Paul Menage 已提交
2575
	    || !cgroup_clear_css_refs(cgrp)) {
2576 2577 2578 2579
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2580
	spin_lock(&release_list_lock);
2581 2582 2583
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2584
	spin_unlock(&release_list_lock);
2585 2586 2587

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2588
	list_del(&cgrp->sibling);
2589 2590
	cgroup_unlock_hierarchy(cgrp->root);

2591 2592
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2593 2594 2595 2596 2597
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2598
	set_bit(CGRP_RELEASABLE, &parent->flags);
2599 2600
	check_for_release(parent);

2601 2602 2603 2604
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2605
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2606 2607
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2608 2609

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2610 2611

	/* Create the top cgroup state for this subsystem */
2612
	list_add(&ss->sibling, &rootnode.subsys_list);
2613 2614 2615 2616 2617 2618
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2619
	/* Update the init_css_set to contain a subsys
2620
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2621 2622 2623
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2624 2625 2626

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2627 2628 2629 2630 2631
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2632
	mutex_init(&ss->hierarchy_mutex);
2633 2634 2635 2636
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2637 2638 2639 2640
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2641 2642 2643 2644
 */
int __init cgroup_init_early(void)
{
	int i;
2645
	atomic_set(&init_css_set.refcount, 1);
2646 2647
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2648
	INIT_HLIST_NODE(&init_css_set.hlist);
2649
	css_set_count = 1;
2650
	init_cgroup_root(&rootnode);
2651 2652 2653 2654
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2655
	list_add(&init_css_set_link.cgrp_link_list,
2656 2657 2658
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2659

2660 2661 2662
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2663 2664 2665 2666 2667 2668 2669 2670
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2671
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2683 2684 2685 2686
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2687 2688 2689 2690 2691
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2692
	struct hlist_head *hhead;
2693 2694 2695 2696

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2697 2698 2699 2700 2701 2702 2703

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2704 2705 2706 2707
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2708 2709 2710 2711
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2712
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2713

2714
out:
2715 2716 2717
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2718 2719
	return err;
}
2720

2721 2722 2723 2724 2725 2726
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2727
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

2757
	for_each_active_root(root) {
2758
		struct cgroup_subsys *ss;
2759
		struct cgroup *cgrp;
2760 2761 2762
		int subsys_id;
		int count = 0;

2763
		seq_printf(m, "%lu:", root->subsys_bits);
2764 2765 2766 2767
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2768 2769
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2803
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2804 2805 2806
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2807
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2808
			   ss->name, ss->root->subsys_bits,
2809
			   ss->root->number_of_cgroups, !ss->disabled);
2810 2811 2812 2813 2814 2815 2816
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2817
	return single_open(file, proc_cgroupstats_show, NULL);
2818 2819 2820 2821 2822 2823 2824 2825 2826
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2827 2828
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2829
 * @child: pointer to task_struct of forking parent process.
2830 2831 2832 2833 2834 2835
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2836
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2837 2838
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2839 2840 2841 2842 2843 2844
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2845 2846 2847 2848 2849
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2850 2851 2852
}

/**
L
Li Zefan 已提交
2853 2854 2855 2856 2857 2858
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2872
/**
L
Li Zefan 已提交
2873 2874 2875 2876 2877 2878 2879 2880
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2881 2882 2883 2884
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
2885
		task_lock(child);
2886 2887
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
2888
		task_unlock(child);
2889 2890 2891
		write_unlock(&css_set_lock);
	}
}
2892 2893 2894
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2895
 * @run_callback: run exit callbacks?
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2924 2925
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2926 2927 2928 2929
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2930
	struct css_set *cg;
2931 2932 2933 2934 2935 2936 2937 2938

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2952 2953
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2954 2955
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2956
	task_unlock(tsk);
2957
	if (cg)
2958
		put_css_set_taskexit(cg);
2959
}
2960 2961

/**
L
Li Zefan 已提交
2962 2963 2964
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
2965
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
2966 2967 2968 2969
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2970
 */
2971 2972
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2994
	task_lock(tsk);
2995
	cg = tsk->cgroups;
2996 2997 2998
	parent = task_cgroup(tsk, subsys->subsys_id);

	/* Pin the hierarchy */
2999 3000 3001 3002 3003
	if (!atomic_inc_not_zero(&parent->root->sb->s_active)) {
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3004

3005 3006
	/* Keep the cgroup alive */
	get_css_set(cg);
3007
	task_unlock(tsk);
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3019
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3020 3021 3022 3023 3024 3025
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3026
	ret = vfs_mkdir(inode, dentry, 0755);
3027
	child = __d_cgrp(dentry);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3044
		put_css_set(cg);
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3063
	ret = cgroup_attach_task(child, tsk);
3064 3065 3066 3067
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3068 3069

	mutex_lock(&cgroup_mutex);
3070
	put_css_set(cg);
3071
	mutex_unlock(&cgroup_mutex);
3072 3073 3074 3075
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
3076 3077 3078 3079 3080 3081
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
3082 3083 3084 3085 3086 3087
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3088
int cgroup_is_descendant(const struct cgroup *cgrp)
3089 3090 3091 3092 3093
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3094
	if (cgrp == dummytop)
3095 3096
		return 1;

3097
	get_first_subsys(cgrp, NULL, &subsys_id);
3098
	target = task_cgroup(current, subsys_id);
3099 3100 3101
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3102 3103
	return ret;
}
3104

3105
static void check_for_release(struct cgroup *cgrp)
3106 3107 3108
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3109 3110
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3111 3112 3113 3114 3115
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3116 3117 3118
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3129
	struct cgroup *cgrp = css->cgroup;
3130
	rcu_read_lock();
P
Paul Menage 已提交
3131 3132
	if ((atomic_dec_return(&css->refcnt) == 1) &&
	    notify_on_release(cgrp)) {
3133 3134
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3170
		char *pathbuf = NULL, *agentbuf = NULL;
3171
		struct cgroup *cgrp = list_entry(release_list.next,
3172 3173
						    struct cgroup,
						    release_list);
3174
		list_del_init(&cgrp->release_list);
3175 3176
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3177 3178 3179 3180 3181 3182 3183
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3184 3185

		i = 0;
3186 3187
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3202 3203 3204
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3205 3206 3207 3208 3209
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);