cgroup.c 77.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>

48 49
#include <asm/atomic.h>

50 51
static DEFINE_MUTEX(cgroup_mutex);

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
90 91 92 93 94 95 96

	/* The path to use for release notifications. No locking
	 * between setting and use - so if userspace updates this
	 * while child cgroups exist, you could miss a
	 * notification. We ensure that it's always a valid
	 * NUL-terminated string */
	char release_agent_path[PATH_MAX];
97 98 99 100 101 102 103 104 105 106 107 108 109
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
110
static int root_count;
111 112 113 114 115 116 117 118 119 120 121 122 123

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
 * take callback_mutex and check for fork/exit handlers to call. This
 * avoids us having to do extra work in the fork/exit path if none of the
 * subsystems need to be called.
 */
static int need_forkexit_callback;

/* bits in struct cgroup flags field */
enum {
124
	/* Control Group is dead */
125
	CGRP_REMOVED,
126
	/* Control Group has previously had a child cgroup or a task,
127 128
	 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
	CGRP_RELEASABLE,
129
	/* Control Group requires release notifications to userspace */
130
	CGRP_NOTIFY_ON_RELEASE,
131 132 133
};

/* convenient tests for these bits */
134
inline int cgroup_is_removed(const struct cgroup *cgrp)
135
{
136
	return test_bit(CGRP_REMOVED, &cgrp->flags);
137 138 139 140 141 142 143
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

144
static int cgroup_is_releasable(const struct cgroup *cgrp)
145 146
{
	const int bits =
147 148 149
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
150 151
}

152
static int notify_on_release(const struct cgroup *cgrp)
153
{
154
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
155 156
}

157 158 159 160 161 162 163 164 165 166 167
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

168 169 170 171 172 173
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174
static void check_for_release(struct cgroup *cgrp);
175

176 177 178 179 180 181
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
182
	struct list_head cgrp_link_list;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
static int use_task_css_set_links;

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
219 220 221 222 223 224 225
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
226 227 228 229

/*
 * unlink a css_set from the list and free it
 */
230
static void unlink_css_set(struct css_set *cg)
231
{
232 233 234 235 236 237 238 239
	write_lock(&css_set_lock);
	list_del(&cg->list);
	css_set_count--;
	while (!list_empty(&cg->cg_links)) {
		struct cg_cgroup_link *link;
		link = list_entry(cg->cg_links.next,
				  struct cg_cgroup_link, cg_link_list);
		list_del(&link->cg_link_list);
240
		list_del(&link->cgrp_link_list);
241 242 243
		kfree(link);
	}
	write_unlock(&css_set_lock);
244 245 246 247 248 249 250 251 252 253 254
}

static void __release_css_set(struct kref *k, int taskexit)
{
	int i;
	struct css_set *cg = container_of(k, struct css_set, ref);

	unlink_css_set(cg);

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 256 257
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
258
			if (taskexit)
259 260
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
261 262 263
		}
	}
	rcu_read_unlock();
264
	kfree(cg);
265 266
}

267 268 269 270 271 272 273 274 275 276
static void release_css_set(struct kref *k)
{
	__release_css_set(k, 0);
}

static void release_css_set_taskexit(struct kref *k)
{
	__release_css_set(k, 1);
}

277 278 279 280 281 282 283 284 285 286 287 288 289
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
	kref_get(&cg->ref);
}

static inline void put_css_set(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set);
}

290 291 292 293 294
static inline void put_css_set_taskexit(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set_taskexit);
}

295 296 297 298 299 300 301 302 303 304
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
 * css_set is suitable. This currently walks a linked-list for
 * simplicity; a later patch will use a hash table for better
 * performance
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
305
 * cgrp: the cgroup that we're moving into
306 307 308 309 310 311 312
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */

static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
313
	struct cgroup *cgrp,
314
	struct cgroup_subsys_state *template[])
315 316
{
	int i;
317
	struct cgroupfs_root *root = cgrp->root;
318 319 320 321 322 323 324 325 326
	struct list_head *l = &init_css_set.list;

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		if (root->subsys_bits & (1ull << i)) {
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
327
			template[i] = cgrp->subsys[i];
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

	/* Look through existing cgroup groups to find one to reuse */
	do {
		struct css_set *cg =
			list_entry(l, struct css_set, list);

		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
		/* Try the next cgroup group */
		l = l->next;
	} while (l != &init_css_set.list);

	/* No existing cgroup group matched */
	return NULL;
}

/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
354
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
355 356 357 358 359 360 361 362 363 364 365 366 367 368
 * success or a negative error
 */

static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
			while (!list_empty(tmp)) {
				link = list_entry(tmp->next,
						  struct cg_cgroup_link,
369 370
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
371 372 373 374
				kfree(link);
			}
			return -ENOMEM;
		}
375
		list_add(&link->cgrp_link_list, tmp);
376 377 378 379 380 381 382 383 384 385
	}
	return 0;
}

static void free_cg_links(struct list_head *tmp)
{
	while (!list_empty(tmp)) {
		struct cg_cgroup_link *link;
		link = list_entry(tmp->next,
				  struct cg_cgroup_link,
386 387
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
388 389 390 391 392 393 394 395 396 397 398 399 400
		kfree(link);
	}
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */

static struct css_set *find_css_set(
401
	struct css_set *oldcg, struct cgroup *cgrp)
402 403 404 405 406 407 408 409 410 411 412
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

	/* First see if we already have a cgroup group that matches
	 * the desired set */
	write_lock(&css_set_lock);
413
	res = find_existing_css_set(oldcg, cgrp, template);
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
	if (res)
		get_css_set(res);
	write_unlock(&css_set_lock);

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

	kref_init(&res->ref);
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
442
		struct cgroup *cgrp = res->subsys[i]->cgroup;
443
		struct cgroup_subsys *ss = subsys[i];
444
		atomic_inc(&cgrp->count);
445 446 447 448 449 450 451 452 453
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
454 455 456
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
457 458 459 460 461 462 463
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
464 465 466
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
467 468 469 470 471 472 473 474 475 476 477 478 479
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	/* Link this cgroup group into the list */
	list_add(&res->list, &init_css_set.list);
	css_set_count++;
	INIT_LIST_HEAD(&res->tasks);
	write_unlock(&css_set_lock);

	return res;
480 481
}

482 483 484 485 486 487 488 489 490 491
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
492
 * cgroup_attach_task() can increment it again.  Because a count of zero
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The cgroup_common_file_write handler for operations that modify
 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
 * single threading all such cgroup modifications across the system.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
 * to /sbin/cgroup_release_agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
523
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
524 525 526 527
 * another.  It does so using cgroup_mutexe, however there are
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
528
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
529 530 531 532
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
533
 * update of a tasks cgroup pointer by cgroup_attach_task()
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */

void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */

void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
566
static int cgroup_populate_dir(struct cgroup *cgrp);
567
static struct inode_operations cgroup_dir_inode_operations;
568 569 570 571 572
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */

static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
			ss->pre_destroy(ss, cgrp);
	return;
}


604 605 606 607
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
608
		struct cgroup *cgrp = dentry->d_fsdata;
609
		struct cgroup_subsys *ss;
610
		BUG_ON(!(cgroup_is_removed(cgrp)));
611 612 613 614 615 616 617
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
		for_each_subsys(cgrp->root, ss) {
			if (cgrp->subsys[ss->subsys_id])
				ss->destroy(ss, cgrp);
		}

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

635
		kfree(cgrp);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
692
	struct cgroup *cgrp = &root->top_cgroup;
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long long bit = 1ull << i;
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
713
	if (!list_empty(&cgrp->children))
714 715 716 717 718 719 720 721
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
722
			BUG_ON(cgrp->subsys[i]);
723 724
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
725 726
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
727 728 729
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
730
				ss->bind(ss, cgrp);
731 732 733

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
734 735
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
736 737 738
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
739
			cgrp->subsys[i] = NULL;
740 741 742 743
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
744
			BUG_ON(!cgrp->subsys[i]);
745 746
		} else {
			/* Subsystem state shouldn't exist */
747
			BUG_ON(cgrp->subsys[i]);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
766 767
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
768 769 770 771 772 773 774
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
775
	char *release_agent;
776 777 778 779 780 781 782 783 784 785 786
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
787
	opts->release_agent = NULL;
788 789 790 791 792 793 794 795

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
			opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
796 797 798 799 800 801 802 803 804
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
					set_bit(i, &opts->subsys_bits);
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
831
	struct cgroup *cgrp = &root->top_cgroup;
832 833
	struct cgroup_sb_opts opts;

834
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
852
		cgroup_populate_dir(cgrp);
853

854 855
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
856
 out_unlock:
857 858
	if (opts.release_agent)
		kfree(opts.release_agent);
859
	mutex_unlock(&cgroup_mutex);
860
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
861 862 863 864 865 866 867 868 869 870 871 872
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

static void init_cgroup_root(struct cgroupfs_root *root)
{
873
	struct cgroup *cgrp = &root->top_cgroup;
874 875 876
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
877 878 879 880 881 882
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_op = &simple_dir_inode_operations;
	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
952 953
	struct list_head tmp_cg_links, *l;
	INIT_LIST_HEAD(&tmp_cg_links);
954 955 956

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
957 958 959
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
960
		return ret;
961
	}
962 963 964 965 966 967 968 969

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return -ENOMEM;

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
970 971 972 973
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
989
		struct cgroup *cgrp = &root->top_cgroup;
990
		struct inode *inode;
991 992 993 994 995 996

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
997
		inode = sb->s_root->d_inode;
998

999
		mutex_lock(&inode->i_mutex);
1000 1001
		mutex_lock(&cgroup_mutex);

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1016 1017 1018
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1019
			mutex_unlock(&inode->i_mutex);
1020 1021 1022 1023 1024 1025 1026
			goto drop_new_super;
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1027
		root_count++;
1028 1029 1030 1031

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
		l = &init_css_set.list;
		do {
			struct css_set *cg;
			struct cg_cgroup_link *link;
			cg = list_entry(l, struct css_set, list);
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
1043 1044
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
1045
			link->cg = cg;
1046
			list_add(&link->cgrp_link_list,
1047 1048 1049 1050 1051 1052 1053 1054
				 &root->top_cgroup.css_sets);
			list_add(&link->cg_link_list, &cg->cg_links);
			l = l->next;
		} while (l != &init_css_set.list);
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1055 1056
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1057 1058
		BUG_ON(root->number_of_cgroups != 1);

1059
		cgroup_populate_dir(cgrp);
1060
		mutex_unlock(&inode->i_mutex);
1061 1062 1063 1064 1065 1066 1067 1068
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
1069
	free_cg_links(&tmp_cg_links);
1070 1071 1072 1073 1074
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1075
	struct cgroup *cgrp = &root->top_cgroup;
1076 1077 1078 1079 1080
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1081 1082
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1083 1084 1085 1086 1087 1088 1089 1090

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1091 1092 1093 1094 1095
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
1096
	while (!list_empty(&cgrp->css_sets)) {
1097
		struct cg_cgroup_link *link;
1098 1099
		link = list_entry(cgrp->css_sets.next,
				  struct cg_cgroup_link, cgrp_link_list);
1100
		list_del(&link->cg_link_list);
1101
		list_del(&link->cgrp_link_list);
1102 1103 1104 1105 1106
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1107
		list_del(&root->root_list);
1108 1109
		root_count--;
	}
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1122
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
 * Called with cgroup_mutex held.  Writes path of cgroup into buf.
 * Returns 0 on success, -errno on error.
 */
1136
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1137 1138 1139
{
	char *start;

1140
	if (cgrp == dummytop) {
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1153
		int len = cgrp->dentry->d_name.len;
1154 1155
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1156 1157 1158
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1159
			break;
1160
		if (!cgrp->parent)
1161 1162 1163 1164 1165 1166 1167 1168 1169
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1170 1171 1172 1173 1174
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1175
static void get_first_subsys(const struct cgroup *cgrp,
1176 1177
			struct cgroup_subsys_state **css, int *subsys_id)
{
1178
	const struct cgroupfs_root *root = cgrp->root;
1179 1180 1181 1182 1183
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1184
		*css = cgrp->subsys[test_ss->subsys_id];
1185 1186 1187 1188 1189 1190 1191
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

/*
1192
 * Attach task 'tsk' to cgroup 'cgrp'
1193 1194 1195 1196
 *
 * Call holding cgroup_mutex.  May take task_lock of
 * the task 'pid' during call.
 */
1197
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1198 1199 1200
{
	int retval = 0;
	struct cgroup_subsys *ss;
1201
	struct cgroup *oldcgrp;
1202 1203
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1204
	struct cgroupfs_root *root = cgrp->root;
1205 1206
	int subsys_id;

1207
	get_first_subsys(cgrp, NULL, &subsys_id);
1208 1209

	/* Nothing to do if the task is already in that cgroup */
1210 1211
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1212 1213 1214 1215
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1216
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1217
			if (retval)
1218 1219 1220 1221
				return retval;
		}
	}

1222 1223 1224 1225
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1226
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1227
	if (!newcg)
1228 1229
		return -ENOMEM;

1230 1231 1232
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1233
		put_css_set(newcg);
1234 1235
		return -ESRCH;
	}
1236
	rcu_assign_pointer(tsk->cgroups, newcg);
1237 1238
	task_unlock(tsk);

1239 1240 1241 1242 1243 1244 1245 1246
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1247
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1248
		if (ss->attach)
1249
			ss->attach(ss, cgrp, oldcgrp, tsk);
1250
	}
1251
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1252
	synchronize_rcu();
1253
	put_css_set(cg);
1254 1255 1256 1257
	return 0;
}

/*
1258
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1259 1260
 * cgroup_mutex, may take task_lock of task
 */
1261
static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	pid_t pid;
	struct task_struct *tsk;
	int ret;

	if (sscanf(pidbuf, "%d", &pid) != 1)
		return -EIO;

	if (pid) {
		rcu_read_lock();
1272
		tsk = find_task_by_vpid(pid);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}
		get_task_struct(tsk);
		rcu_read_unlock();

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1290
	ret = cgroup_attach_task(cgrp, tsk);
1291 1292 1293 1294
	put_task_struct(tsk);
	return ret;
}

1295 1296 1297 1298 1299 1300
/* The various types of files and directories in a cgroup file system */

enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1301 1302 1303
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASABLE,
	FILE_RELEASE_AGENT,
1304 1305
};

1306
static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
				 struct file *file,
				 const char __user *userbuf,
				 size_t nbytes, loff_t *unused_ppos)
{
	char buffer[64];
	int retval = 0;
	u64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoull(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
1333
	retval = cft->write_uint(cgrp, cft, val);
1334 1335 1336 1337 1338
	if (!retval)
		retval = nbytes;
	return retval;
}

1339
static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
					   struct cftype *cft,
					   struct file *file,
					   const char __user *userbuf,
					   size_t nbytes, loff_t *unused_ppos)
{
	enum cgroup_filetype type = cft->private;
	char *buffer;
	int retval = 0;

	if (nbytes >= PATH_MAX)
		return -E2BIG;

	/* +1 for nul-terminator */
	buffer = kmalloc(nbytes + 1, GFP_KERNEL);
	if (buffer == NULL)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */
P
Paul Jackson 已提交
1362
	strstrip(buffer);	/* strip -just- trailing whitespace */
1363 1364 1365

	mutex_lock(&cgroup_mutex);

1366 1367 1368 1369
	/*
	 * This was already checked for in cgroup_file_write(), but
	 * check again now we're holding cgroup_mutex.
	 */
1370
	if (cgroup_is_removed(cgrp)) {
1371 1372 1373 1374 1375 1376
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_TASKLIST:
1377
		retval = attach_task_by_pid(cgrp, buffer);
1378
		break;
1379
	case FILE_NOTIFY_ON_RELEASE:
1380
		clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1381
		if (simple_strtoul(buffer, NULL, 10) != 0)
1382
			set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1383
		else
1384
			clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1385 1386
		break;
	case FILE_RELEASE_AGENT:
P
Paul Jackson 已提交
1387 1388
		BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
		strcpy(cgrp->root->release_agent_path, buffer);
1389
		break;
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
	mutex_unlock(&cgroup_mutex);
out1:
	kfree(buffer);
	return retval;
}

1404 1405 1406 1407
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1408
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1409

1410
	if (!cft || cgroup_is_removed(cgrp))
1411
		return -ENODEV;
1412
	if (cft->write)
1413
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1414
	if (cft->write_uint)
1415
		return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1416
	return -EINVAL;
1417 1418
}

1419
static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1420 1421 1422 1423 1424
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
{
	char tmp[64];
1425
	u64 val = cft->read_uint(cgrp, cft);
1426 1427 1428 1429 1430
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1431
static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
					  struct cftype *cft,
					  struct file *file,
					  char __user *buf,
					  size_t nbytes, loff_t *ppos)
{
	enum cgroup_filetype type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_RELEASE_AGENT:
	{
		struct cgroupfs_root *root;
		size_t n;
		mutex_lock(&cgroup_mutex);
1453
		root = cgrp->root;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
		n = strnlen(root->release_agent_path,
			    sizeof(root->release_agent_path));
		n = min(n, (size_t) PAGE_SIZE);
		strncpy(s, root->release_agent_path, n);
		mutex_unlock(&cgroup_mutex);
		s += n;
		break;
	}
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
out:
	free_page((unsigned long)page);
	return retval;
}

1474 1475 1476 1477
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1478
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1479

1480
	if (!cft || cgroup_is_removed(cgrp))
1481 1482 1483
		return -ENODEV;

	if (cft->read)
1484
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1485
	if (cft->read_uint)
1486
		return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	return -EINVAL;
}

static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1575
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cgroup_create_dir - create a directory for an object.
1588
 *	cgrp:	the cgroup we create the directory for.
1589 1590
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
1591
 *	dentry: dentry of the new cgroup
1592 1593
 *	mode:	mode to set on new directory.
 */
1594
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1595 1596 1597 1598 1599
				int mode)
{
	struct dentry *parent;
	int error = 0;

1600 1601
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1602
	if (!error) {
1603
		dentry->d_fsdata = cgrp;
1604
		inc_nlink(parent->d_inode);
1605
		cgrp->dentry = dentry;
1606 1607 1608 1609 1610 1611 1612
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1613
int cgroup_add_file(struct cgroup *cgrp,
1614 1615 1616
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1617
	struct dentry *dir = cgrp->dentry;
1618 1619 1620 1621
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1622
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1623 1624 1625 1626 1627 1628 1629 1630
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1631
						cgrp->root->sb);
1632 1633 1634 1635 1636 1637 1638 1639
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1640
int cgroup_add_files(struct cgroup *cgrp,
1641 1642 1643 1644 1645 1646
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1647
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1648 1649 1650 1651 1652 1653
		if (err)
			return err;
	}
	return 0;
}

1654 1655
/* Count the number of tasks in a cgroup. */

1656
int cgroup_task_count(const struct cgroup *cgrp)
1657 1658
{
	int count = 0;
1659 1660 1661
	struct list_head *l;

	read_lock(&css_set_lock);
1662 1663
	l = cgrp->css_sets.next;
	while (l != &cgrp->css_sets) {
1664
		struct cg_cgroup_link *link =
1665
			list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1666 1667 1668 1669
		count += atomic_read(&link->cg->ref.refcount);
		l = l->next;
	}
	read_unlock(&css_set_lock);
1670 1671 1672
	return count;
}

1673 1674 1675 1676
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1677
static void cgroup_advance_iter(struct cgroup *cgrp,
1678 1679 1680 1681 1682 1683 1684 1685 1686
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1687
		if (l == &cgrp->css_sets) {
1688 1689 1690
			it->cg_link = NULL;
			return;
		}
1691
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1692 1693 1694 1695 1696 1697
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
void cgroup_enable_task_cg_lists(void)
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
		if (list_empty(&p->cg_list))
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1721
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1722 1723 1724 1725 1726 1727
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1728 1729 1730
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1731
	read_lock(&css_set_lock);
1732 1733
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1734 1735
}

1736
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1751
		cgroup_advance_iter(cgrp, it);
1752 1753 1754 1755 1756 1757
	} else {
		it->task = l;
	}
	return res;
}

1758
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1759 1760 1761 1762
{
	read_unlock(&css_set_lock);
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
			struct task_struct *p = heap->ptrs[i];
			if (i == 0) {
				latest_time = p->start_time;
				latest_task = p;
			}
			/* Process the task per the caller's callback */
			scan->process_task(p, scan);
			put_task_struct(p);
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */
struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1944
 * 'cgrp'.  Return actual number of pids loaded.  No need to
1945 1946 1947 1948
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
1949
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1950 1951
{
	int n = 0;
1952 1953
	struct cgroup_iter it;
	struct task_struct *tsk;
1954 1955
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
1956 1957
		if (unlikely(n == npids))
			break;
1958
		pidarray[n++] = task_pid_vnr(tsk);
1959
	}
1960
	cgroup_iter_end(cgrp, &it);
1961 1962 1963
	return n;
}

B
Balbir Singh 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
/**
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
 *
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
1975
	struct cgroup *cgrp;
B
Balbir Singh 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984
	struct cgroup_iter it;
	struct task_struct *tsk;
	/*
	 * Validate dentry by checking the superblock operations
	 */
	if (dentry->d_sb->s_op != &cgroup_ops)
		 goto err;

	ret = 0;
1985
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
1986 1987
	rcu_read_lock();

1988 1989
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2009
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2010 2011 2012 2013 2014 2015

	rcu_read_unlock();
err:
	return ret;
}

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cgroup being opened.
 *
 * Does not require any specific cgroup mutexes, and does not take any.
 */
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2044
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2063
	npids = cgroup_task_count(cgrp);
2064 2065 2066 2067 2068
	if (npids) {
		pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
		if (!pidarray)
			goto err1;

2069
		npids = pid_array_load(pidarray, npids, cgrp);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

		/* Call pid_array_to_buf() twice, first just to get bufsz */
		ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
		ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
		if (!ctr->buf)
			goto err2;
		ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

		kfree(pidarray);
	} else {
		ctr->buf = 0;
		ctr->bufsz = 0;
	}
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

2095
static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
				    struct cftype *cft,
				    struct file *file, char __user *buf,
				    size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
}

static int cgroup_tasks_release(struct inode *unused_inode,
					struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

2118
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2119 2120
					    struct cftype *cft)
{
2121
	return notify_on_release(cgrp);
2122 2123
}

2124
static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
2125
{
2126
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
2127 2128
}

2129 2130 2131
/*
 * for the common functions, 'private' gives the type of file
 */
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
		.read = cgroup_tasks_read,
		.write = cgroup_common_file_write,
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
		.read_uint = cgroup_read_notify_on_release,
		.write = cgroup_common_file_write,
		.private = FILE_NOTIFY_ON_RELEASE,
	},

	{
		.name = "releasable",
		.read_uint = cgroup_read_releasable,
		.private = FILE_RELEASABLE,
	}
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
	.read = cgroup_common_file_read,
2159
	.write = cgroup_common_file_write,
2160
	.private = FILE_RELEASE_AGENT,
2161 2162
};

2163
static int cgroup_populate_dir(struct cgroup *cgrp)
2164 2165 2166 2167 2168
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2169
	cgroup_clear_directory(cgrp->dentry);
2170

2171
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2172 2173 2174
	if (err < 0)
		return err;

2175 2176
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2177 2178 2179
			return err;
	}

2180 2181
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2182 2183 2184 2185 2186 2187 2188 2189
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2190
			       struct cgroup *cgrp)
2191
{
2192
	css->cgroup = cgrp;
2193 2194
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2195
	if (cgrp == dummytop)
2196
		set_bit(CSS_ROOT, &css->flags);
2197 2198
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
}

/*
 *	cgroup_create - create a cgroup
 *	parent:	cgroup that will be parent of the new cgroup.
 *	name:		name of the new cgroup. Will be strcpy'ed.
 *	mode:		mode to set on new inode
 *
 *	Must be called with the mutex on the parent inode held
 */

static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2213
	struct cgroup *cgrp;
2214 2215 2216 2217 2218
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2219 2220
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2232 2233 2234 2235 2236
	cgrp->flags = 0;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
2237

2238 2239 2240
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2241 2242

	for_each_subsys(root, ss) {
2243
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2244 2245 2246 2247
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2248
		init_cgroup_css(css, ss, cgrp);
2249 2250
	}

2251
	list_add(&cgrp->sibling, &cgrp->parent->children);
2252 2253
	root->number_of_cgroups++;

2254
	err = cgroup_create_dir(cgrp, dentry, mode);
2255 2256 2257 2258
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2259
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2260

2261
	err = cgroup_populate_dir(cgrp);
2262 2263 2264
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2265
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2266 2267 2268 2269 2270

	return 0;

 err_remove:

2271
	list_del(&cgrp->sibling);
2272 2273 2274 2275 2276
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2277 2278
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2279 2280 2281 2282 2283 2284 2285
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2286
	kfree(cgrp);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2298
static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2314
		if (ss->root != cgrp->root)
2315
			continue;
2316
		css = cgrp->subsys[ss->subsys_id];
2317 2318 2319 2320 2321 2322
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2323
		if (css && atomic_read(&css->refcnt))
2324 2325 2326 2327 2328
			return 1;
	}
	return 0;
}

2329 2330
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2331
	struct cgroup *cgrp = dentry->d_fsdata;
2332 2333 2334 2335 2336 2337 2338 2339
	struct dentry *d;
	struct cgroup *parent;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2340
	if (atomic_read(&cgrp->count) != 0) {
2341 2342 2343
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2344
	if (!list_empty(&cgrp->children)) {
2345 2346 2347 2348
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2349 2350
	parent = cgrp->parent;
	root = cgrp->root;
2351
	sb = root->sb;
2352 2353 2354 2355 2356 2357 2358
	/*
	 * Call pre_destroy handlers of subsys
	 */
	cgroup_call_pre_destroy(cgrp);
	/*
	 * Notify subsyses that rmdir() request comes.
	 */
2359

2360
	if (cgroup_has_css_refs(cgrp)) {
2361 2362 2363 2364
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2365
	spin_lock(&release_list_lock);
2366 2367 2368
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2369
	spin_unlock(&release_list_lock);
2370
	/* delete my sibling from parent->children */
2371 2372 2373 2374
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
	cgrp->dentry = NULL;
2375 2376 2377 2378 2379
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2380
	set_bit(CGRP_RELEASABLE, &parent->flags);
2381 2382
	check_for_release(parent);

2383 2384 2385 2386 2387 2388 2389
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static void cgroup_init_subsys(struct cgroup_subsys *ss)
{
	struct cgroup_subsys_state *css;
2390
	struct list_head *l;
D
Diego Calleja 已提交
2391 2392

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2393 2394 2395 2396 2397 2398 2399 2400

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	/* Update all cgroup groups to contain a subsys
	 * pointer to this state - since the subsystem is
	 * newly registered, all tasks and hence all cgroup
	 * groups are in the subsystem's top cgroup. */
	write_lock(&css_set_lock);
	l = &init_css_set.list;
	do {
		struct css_set *cg =
			list_entry(l, struct css_set, list);
		cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
		l = l->next;
	} while (l != &init_css_set.list);
	write_unlock(&css_set_lock);
2414 2415 2416 2417

 	/* If this subsystem requested that it be notified with fork
 	 * events, we should send it one now for every process in the
 	 * system */
2418 2419 2420 2421 2422 2423 2424 2425 2426
	if (ss->fork) {
		struct task_struct *g, *p;

		read_lock(&tasklist_lock);
		do_each_thread(g, p) {
			ss->fork(ss, p);
		} while_each_thread(g, p);
		read_unlock(&tasklist_lock);
	}
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

	need_forkexit_callback |= ss->fork || ss->exit;

	ss->active = 1;
}

/**
 * cgroup_init_early - initialize cgroups at system boot, and
 * initialize any subsystems that request early init.
 */
int __init cgroup_init_early(void)
{
	int i;
2440 2441 2442 2443 2444 2445
	kref_init(&init_css_set.ref);
	kref_get(&init_css_set.ref);
	INIT_LIST_HEAD(&init_css_set.list);
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
	css_set_count = 1;
2446 2447
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2448 2449 2450 2451
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2452
	list_add(&init_css_set_link.cgrp_link_list,
2453 2454 2455
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2456 2457 2458 2459 2460 2461 2462 2463 2464

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2465
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
 * cgroup_init - register cgroup filesystem and /proc file, and
 * initialize any subsystems that didn't request early init.
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2484 2485 2486 2487 2488
	struct proc_dir_entry *entry;

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

2500 2501 2502 2503
	entry = create_proc_entry("cgroups", 0, NULL);
	if (entry)
		entry->proc_fops = &proc_cgroupstats_operations;

2504
out:
2505 2506 2507
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2508 2509
	return err;
}
2510

2511 2512 2513 2514 2515 2516
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2517
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2549
		struct cgroup *cgrp;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2560 2561
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2595
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2596 2597 2598
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2599 2600 2601
		seq_printf(m, "%s\t%lu\t%d\n",
			   ss->name, ss->root->subsys_bits,
			   ss->root->number_of_cgroups);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_cgroupstats_show, 0);
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2619 2620 2621 2622 2623 2624 2625 2626 2627
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
 * @tsk: pointer to task_struct of forking parent process.
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2628
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2629 2630
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2631 2632 2633 2634 2635 2636
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2637 2638 2639 2640 2641
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
}

/**
 * cgroup_fork_callbacks - called on a new task very soon before
 * adding it to the tasklist. No need to take any locks since no-one
 * can be operating on this task
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/**
 * cgroup_post_fork - called on a new task after adding it to the
 * task list. Adds the task to the list running through its css_set
 * if necessary. Has to be after the task is visible on the task list
 * in case we race with the first call to cgroup_iter_start() - to
 * guarantee that the new task ends up on its list. */
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2707 2708
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2709 2710 2711 2712 2713
 *
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2714
	struct css_set *cg;
2715 2716 2717 2718 2719 2720 2721 2722

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2736 2737
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2738 2739
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2740
	task_unlock(tsk);
2741
	if (cg)
2742
		put_css_set_taskexit(cg);
2743
}
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

/**
 * cgroup_clone - duplicate the current cgroup in the hierarchy
 * that the given subsystem is attached to, and move this task into
 * the new child
 */
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
{
	struct dentry *dentry;
	int ret = 0;
	char nodename[MAX_CGROUP_TYPE_NAMELEN];
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		printk(KERN_INFO
		       "Not cloning cgroup for unused subsystem %s\n",
		       subsys->name);
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2776
	cg = tsk->cgroups;
2777 2778 2779 2780 2781 2782 2783
	parent = task_cgroup(tsk, subsys->subsys_id);

	snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);

	/* Pin the hierarchy */
	atomic_inc(&parent->root->sb->s_active);

2784 2785
	/* Keep the cgroup alive */
	get_css_set(cg);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2797
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2798 2799 2800 2801 2802 2803 2804
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2805
	child = __d_cgrp(dentry);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2829
		put_css_set(cg);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
2848
	ret = cgroup_attach_task(child, tsk);
2849 2850 2851 2852
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
2853 2854

	mutex_lock(&cgroup_mutex);
2855
	put_css_set(cg);
2856
	mutex_unlock(&cgroup_mutex);
2857 2858 2859 2860 2861
	deactivate_super(parent->root->sb);
	return ret;
}

/*
2862
 * See if "cgrp" is a descendant of the current task's cgroup in
2863 2864 2865 2866 2867 2868 2869
 * the appropriate hierarchy
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
2870
int cgroup_is_descendant(const struct cgroup *cgrp)
2871 2872 2873 2874 2875
{
	int ret;
	struct cgroup *target;
	int subsys_id;

2876
	if (cgrp == dummytop)
2877 2878
		return 1;

2879
	get_first_subsys(cgrp, NULL, &subsys_id);
2880
	target = task_cgroup(current, subsys_id);
2881 2882 2883
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
2884 2885
	return ret;
}
2886

2887
static void check_for_release(struct cgroup *cgrp)
2888 2889 2890
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
2891 2892
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2893 2894 2895 2896 2897
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
2898 2899 2900
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
2911
	struct cgroup *cgrp = css->cgroup;
2912
	rcu_read_lock();
2913 2914 2915
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 *
 */

static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
		char *pathbuf;
2954
		struct cgroup *cgrp = list_entry(release_list.next,
2955 2956
						    struct cgroup,
						    release_list);
2957
		list_del_init(&cgrp->release_list);
2958 2959 2960 2961 2962 2963 2964
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!pathbuf) {
			spin_lock(&release_list_lock);
			continue;
		}

2965
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2966 2967 2968 2969 2970 2971
			kfree(pathbuf);
			spin_lock(&release_list_lock);
			continue;
		}

		i = 0;
2972
		argv[i++] = cgrp->root->release_agent_path;
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		argv[i++] = (char *)pathbuf;
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		kfree(pathbuf);
		mutex_lock(&cgroup_mutex);
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}